Intermittent Hypoxia Alters the Function of Cardiovascular Neurons and Reflex Pathways in the Brainstem

  • David D. Kline
  • David MendelowitzEmail author


Obstructive sleep apnea, and the animal model of this disease, chronic intermittent hypoxia, alters autonomic balance and many different neurobiological functions in the brainstem that likely play an important role in both the initiation and progression of cardiovascular diseases associated with obstructive sleep apnea including hypertension and arrhythmia. Current research suggests the targets of chronic intermittent hypoxia include increased release of the excitatory neurotransmitter glutamate from baroreceptor sensory neurons, likely via altered presynaptic calcium homeostasis and increased spontaneous release of neurotransmitters from these baroreceptor sensory neurons onto brainstem neurons in the nucleus tractus solitarius. Additionally, acute exposures to hypoxia diminish excitatory and enhance inhibitory neurotransmission to parasympathetic cardiac neurons in the nucleus ambiguus that control heart rate and cardiac excitability. Future targets for restoring autonomic balance and increasing survival in these cardiorespiratory diseases require a more thorough understanding of the alterations of synaptic neurotransmission and receptor activation in the brainstem that occur with chronic intermittent hypoxia and obstructive sleep apnea.


Obstructive Sleep Apnea Continuous Positive Airway Pressure Carotid Body Obstructive Sleep Apnea Patient Respiratory Sinus Arrhythmia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



5-Hydroxytryptamine, serotonin


Action potential


Chronic intermittent hypoxia


Continuous positive airway pressure


Caudal ventrolateral medulla




Excitatory postsynaptic currents


Inhibitory postsynaptic currents


Nucleus ambiguus




Nitric oxide


Nucleus tractus solitarius


Obstructive sleep apnea


Rostral ventrolateral medulla


Tyrosine hydroxylase



Supported by NIH grants HL49965, HL59895, and HL72006 to D.M. and HL085108 to DDK.


  1. 1.
    Pickering TG, Gribbin B, Petersen ES, et al. Effects of autonomic blockade on the baroreflex in man at rest and during exercise. Circ Res. 1972;30:177–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Scher AM, Young AC. Reflex control of heart rate in the unanesthetized dog. Am J Physiol. 1970;218:780–9.PubMedGoogle Scholar
  3. 3.
    Kunze DL. Reflex discharge patterns of cardiac vagal efferent fibres. J Physiol. 1972;222:1–15.PubMedGoogle Scholar
  4. 4.
    Coleman TG. Arterial baroreflex control of heart rate in the conscious rat. Am J Physiol. 1980;238:H515–20.PubMedGoogle Scholar
  5. 5.
    Stornetta RL, Guyenet PG, McCarty RC. Autonomic nervous system control of heart rate during baroreceptor activation in conscious and anesthetized rats. J Auton Nerv Syst. 1987;20:121–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Spyer KM. Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol. 1981;88:24–124.PubMedGoogle Scholar
  7. 7.
    Spyer KM, Gilbey MP. Cardiorespiratory interactions in heart-rate control. Ann N Y Acad Sci. 1988;533:350–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Levy MN, Zieske H. Autonomic control of cardiac pacemaker activity and atrioventricular transmission. J Appl Physiol. 1969;27:465–70.PubMedGoogle Scholar
  9. 9.
    Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335–46.PubMedCrossRefGoogle Scholar
  10. 10.
    Andresen MC, Kunze DL. Nucleus tractus solitarius – gateway to neural circulatory control. Annu Rev Physiol. 1994;56:93–116.PubMedCrossRefGoogle Scholar
  11. 11.
    Schreihofer AM, Guyenet PG. The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol. 2002;29:514–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Carlson JT, Hedner JA, Sellgren J, Elam M, Wallin BG. Depressed baroreflex sensitivity in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 1996;154:1490–6.PubMedGoogle Scholar
  13. 13.
    Bonsignore MR, Parati G, Insalaco G, et al. Baroreflex control of heart rate during sleep in severe obstructive sleep apnoea: effects of acute CPAP. Eur Respir J. 2006;27:128–35.PubMedCrossRefGoogle Scholar
  14. 14.
    Bonsignore MR, Parati G, Insalaco G, et al. Continuous positive airway pressure treatment improves baroreflex control of heart rate during sleep in severe obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2002;166:279–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Lai CJ, Yang CC, Hsu YY, et al. Enhanced sympathetic outflow and decreased baroreflex sensitivity are associated with intermittent hypoxia-induced systemic hypertension in conscious rats. J Appl Physiol. 2006;100:1974–82.PubMedCrossRefGoogle Scholar
  16. 16.
    Narkiewicz K, Somers VK. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand. 2003;177:385–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Hull Jr SS, Vanoli E, Adamson PB, et al. Do increases in markers of vagal activity imply protection from sudden death? The case of scopolamine. Circulation. 1995;91:2516–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Ferguson DW, Berg WJ, Sanders JS. Clinical and hemodynamic correlates of sympathetic nerve activity in normal humans and patients with heart failure: evidence from direct microneurographic recordings. J Am Coll Cardiol. 1990;16:1125–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Nishime EO, Cole CR, Blackstone EH, et al. Heart rate recovery and treadmill exercise score as predictors of mortality in patients referred for exercise ECG. JAMA. 2000;284:1392–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Routledge HC, Chowdhary S, Townend JN. Heart rate variability – a therapeutic target? J Clin Pharm Ther. 2002;27:85–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Eckberg DL, Drabinsky M, Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med. 1971;285:877–83.PubMedCrossRefGoogle Scholar
  22. 22.
    La Rovere MT, Specchia G, Mortara A, et al. Baroreflex sensitivity, clinical correlates, and cardiovascular mortality among patients with a first myocardial infarction. A prospective study. Circulation. 1988;78:816–24.PubMedCrossRefGoogle Scholar
  23. 23.
    Vanoli E, De Ferrari GM, Stramba-Badiale M, et al. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68:1471–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Esler M. The sympathetic system and hypertension. Am J Hypertens. 2000;13:99S–105.PubMedCrossRefGoogle Scholar
  25. 25.
    Straznicky NE, Eikelis N, Lambert EA, et al. Mediators of sympathetic activation in metabolic syndrome obesity. Curr Hypertens Rep. 2008;10:440–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Bazzano LA, Khan Z, Reynolds K, et al. Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea. Hypertension. 2007;50:417–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5:136–43.PubMedCrossRefGoogle Scholar
  28. 28.
    Marin JM, Carrizo SJ, Vicente E, et al. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365:1046–53.PubMedGoogle Scholar
  29. 29.
    Bradley TD, Floras JS. Obstructive sleep apnoea and its cardiovascular consequences. Lancet. 2009;373:82–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Kato M, Adachi T, Koshino Y, et al. Obstructive sleep apnea and cardiovascular disease. Circ J. 2009;73:1363–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Narkiewicz K, van de Borne PJ, Montano N, et al. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation. 1998;97:943–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Narkiewicz K, van de Borne PJ, Pesek CA, et al. Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. Circulation. 1999;99:1183–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Spicuzza L, Bernardi L, Balsamo R, et al. Effect of treatment with nasal continuous positive airway pressure on ventilatory response to hypoxia and hypercapnia in patients with sleep apnea syndrome. Chest. 2006;130:774–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Tafil-Klawe M, Thiele AE, Raschke F, et al. Peripheral chemoreceptor reflex in obstructive sleep apnea patients; a relationship between ventilatory response to hypoxia and nocturnal bradycardia during apnea events. Pneumologie. 1991;45 Suppl 1:309–11.PubMedGoogle Scholar
  35. 35.
    Somers VK, Abboud FM. Chemoreflexes – responses, interactions and implications for sleep apnea. Sleep. 1993;16:S30–3.PubMedGoogle Scholar
  36. 36.
    Narkiewicz K, Kato M, Phillips BG, et al. Nocturnal continuous positive airway pressure decreases daytime sympathetic traffic in obstructive sleep apnea. Circulation. 1999;100:2332–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Doherty LS, Kiely JL, Swan V, et al. Long-term effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome. Chest. 2005;127:2076–84.PubMedCrossRefGoogle Scholar
  38. 38.
    Parati G, Lombardi C, Narkiewicz K. Sleep apnea: epidemiology, pathophysiology, and relation to cardiovascular risk. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1671–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Kline DD, Ramirez-Navarro A, Kunze DL. Adaptive depression in synaptic transmission in the nucleus of the solitary tract after in vivo chronic intermittent hypoxia: evidence for homeostatic plasticity. J Neurosci. 2007;27:4663–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Peters JH, McDougall SJ, Fawley JA, et al. Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons. Neuron. 2010;65:657–69.PubMedCrossRefGoogle Scholar
  41. 41.
    de Paula PM, Tolstykh G, Mifflin S. Chronic intermittent hypoxia alters NMDA and AMPA-evoked currents in NTS neurons receiving carotid body chemoreceptor inputs. Am J Physiol Regul Integr Comp Physiol. 2007;292:R2259–65.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang W, Carreno FR, Cunningham JT, et al. Chronic sustained and intermittent hypoxia reduce function of ATP-sensitive potassium channels in nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1555–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Raghuraman G, Rai V, Peng YJ, et al. Pattern-specific sustained activation of tyrosine hydroxylase by intermittent hypoxia: role of reactive oxygen species-dependent downregulation of protein phosphatase 2A and upregulation of protein kinases. Antioxid Redox Signal. 2009;11:1777–89.PubMedCrossRefGoogle Scholar
  44. 44.
    Hui AS, Striet JB, Gudelsky G, et al. Regulation of catecholamines by sustained and intermittent hypoxia in neuroendocrine cells and sympathetic neurons. Hypertension. 2003;42:1130–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Goiny M, Lagercrantz H, Srinivasan M, et al. Hypoxia-mediated in vivo release of dopamine in nucleus tractus solitarii of rabbits. J Appl Physiol. 1991;70:2395–400.PubMedCrossRefGoogle Scholar
  46. 46.
    Huey KA, Powell FL. Time-dependent changes in dopamine D2-receptor mRNA in the arterial chemoreflex pathway with chronic hypoxia. Brain Res Mol Brain Res. 2000;75:264–70.PubMedCrossRefGoogle Scholar
  47. 47.
    Li R, Bao G, el-Mallakh RS, et al. Effects of chronic episodic hypoxia on monoamine metabolism and motor activity. Physiol Behav. 1996;60:1071–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Kline DD, Takacs KN, Ficker E, et al. Dopamine modulates synaptic transmission in the nucleus of the solitary tract. J Neurophysiol. 2002;88:2736–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Kline DD, Hendricks G, Hermann G, et al. Dopamine inhibits N-type channels in visceral afferents to reduce synaptic transmitter release under normoxic and chronic intermittent hypoxic conditions. J Neurophysiol. 2009;101:2270–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Pajolla GP, Accorsi-Mendonca D, Lunardi CN, et al. Immunoreactivity for neuronal NOS and fluorescent indication of NO formation in the NTS of juvenile rats submitted to chronic intermittent hypoxia. Auton Neurosci. 2009;148:55–62.PubMedCrossRefGoogle Scholar
  51. 51.
    Mendelowitz D. Advances in parasympathetic control of heart rate and cardiac function. News Physiol Sci. 1999;14:155–61.PubMedGoogle Scholar
  52. 52.
    Neff RA, Mihalevich M, Mendelowitz D. Stimulation of NTS activates NMDA and non-NMDA receptors in rat cardiac vagal neurons in the nucleus ambiguus. Brain Res. 1998;792:277–82.PubMedCrossRefGoogle Scholar
  53. 53.
    Koshiya N, Guyenet PG. NTS neurons with carotid chemoreceptor inputs arborize in the rostral ventrolateral medulla. Am J Physiol. 1996;270:R1273–8.PubMedGoogle Scholar
  54. 54.
    Accorsi-Mendonca D, Bonagamba LG, Leao RM, et al. Are L-glutamate and ATP cotransmitters of the peripheral chemoreflex in the rat nucleus tractus solitarius? Exp Physiol. 2009;94:38–45.PubMedCrossRefGoogle Scholar
  55. 55.
    Kline DD, King TL, Austgen JR, et al. Sensory afferent and hypoxia-mediated activation of nucleus tractus solitarius neurons that project to the rostral ventrolateral medulla. Neuroscience. 2010;167:510–27.PubMedCrossRefGoogle Scholar
  56. 56.
    Frank JG, Jameson HS, Gorini C, et al. Mapping and identification of GABAergic neurons in transgenic mice projecting to cardiac vagal neurons in the nucleus ambiguus using photo-uncaging. J Neurophysiol. 2009;101:1755–60.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang J, Irnaten M, Mendelowitz D. Characteristics of spontaneous and evoked GABAergic synaptic currents in cardiac vagal neurons in rats. Brain Res. 2001;889:78–83.PubMedCrossRefGoogle Scholar
  58. 58.
    Evans C, Baxi S, Neff RA, et al. Synaptic activation of cardiac vagal neurons by capsaicin sensitive and insensitive sensory neurons. Brain Res. 2003;979:210–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Davidson NS, Goldner S, McCloskey DI. Respiratory modulation of barareceptor and chemoreceptor reflexes affecting heart rate and cardiac vagal efferent nerve activity. J Physiol. 1976;259:523–30.PubMedGoogle Scholar
  60. 60.
    Eckberg DL, Orshan CR. Respiratory and baroreceptor reflex interactions in man. J Clin Invest. 1977;59:780–5.PubMedCrossRefGoogle Scholar
  61. 61.
    McAllen RM, Spyer KM. The baroreceptor input to cardiac vagal motoneurones. J Physiol. 1978;282:365–74.PubMedGoogle Scholar
  62. 62.
    Eckberg DL. The human respiratory gate. J Physiol. 2003;548:339–52.PubMedGoogle Scholar
  63. 63.
    Loewy AD, Spyer KM. Central regulation of autonomic functions. New York: Oxford University Press; 1990.Google Scholar
  64. 64.
    Anrep G, Pascual F, Rossler R. Respiratory variations of the heart rate II – the central mechanism of the respiratory sinus arrythmia and the inter-relations between the central and the reflex mechanisms. Proc R Soc. 1936;119:218–32.CrossRefGoogle Scholar
  65. 65.
    Richter DW, Spyer KM. Cardiorespiratory control. In: Spyer KM, editor. Central regulation of autonomic function. New York: Oxford University Press; 1990. p. 189–207.Google Scholar
  66. 66.
    Berne RM, Levy MN. Cardiovascular physiology. 7th ed. St. Louis: Mosby; 1997.Google Scholar
  67. 67.
    Anrep G, Pascual F, Rossler R. Respiratory variations of the heart rate I – the reflex mechanism of the respiratory sinus arrhythmia. Proc R Soc. 1936;119:191–217.CrossRefGoogle Scholar
  68. 68.
    Anrep GVPW, Rossler R. Respiratory variations of the heart rate II – the central mechanism of the respiratory arrhythmia and the interrelationships between the central and reflex mechanisms. Proc R Soc. 1935;119:218–31.Google Scholar
  69. 69.
    Daly MD. Some reflex cardioinhibitory responses in the cat and their modulation by central inspiratory neuronal activity. J Physiol. 1991;439:559–77.PubMedGoogle Scholar
  70. 70.
    Elghozi JL, Laude D, Girard A. Effects of respiration on blood pressure and heart rate variability in humans. Clin Exp Pharmacol Physiol. 1991;18:735–42.PubMedCrossRefGoogle Scholar
  71. 71.
    Hrushesky WJ. Quantitative respiratory sinus arrhythmia analysis. A simple noninvasive, reimbursable measure of cardiac wellness and dysfunction. Ann N Y Acad Sci. 1991;618:67–101.PubMedCrossRefGoogle Scholar
  72. 72.
    Shykoff BE, Naqvi SS, Menon AS, et al. Respiratory sinus arrhythmia in dogs. Effects of phasic afferents and chemostimulation. J Clin Invest. 1991;87:1621–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Inoue K, Miyake S, Kumashiro M, et al. Power spectral analysis of heart rate variability in traumatic quadriplegic humans. Am J Physiol. 1990;258:H1722–6.PubMedGoogle Scholar
  74. 74.
    Kollai M, Koizumi K. Reciprocal and non-reciprocal action of the vagal and sympathetic nerves innervating the heart. J Auton Nerv Syst. 1979;1:33–52.PubMedCrossRefGoogle Scholar
  75. 75.
    Warner MR, deTarnowsky JM, Whitson CC, et al. Beat-by-beat modulation of AV conduction. II. Autonomic neural mechanisms. Am J Physiol. 1986;251:H1134–42.PubMedGoogle Scholar
  76. 76.
    Neff RA, Wang J, Baxi S, et al. Respiratory sinus arrhythmia: endogenous activation of nicotinic receptors mediates respiratory modulation of brainstem cardioinhibitory parasympathetic neurons. Circ Res. 2003;93:565–72.PubMedCrossRefGoogle Scholar
  77. 77.
    Wang J, Wang X, Irnaten M, et al. Endogenous acetylcholine and nicotine activation enhances GABAergic and glycinergic inputs to cardiac vagal neurons. J Neurophysiol. 2003;89:2473–81.PubMedCrossRefGoogle Scholar
  78. 78.
    Guntheroth WG, Kawabori I. Hypoxic apnea and gasping. J Clin Invest. 1975;56:1371–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Deshpande P, Khurana A, Hansen P, et al. Failure of autoresuscitation in weanling mice: significance of cardiac glycogen and heart rate regulation. J Appl Physiol. 1999;87:203–10.PubMedGoogle Scholar
  80. 80.
    Schuen JN, Bamford OS, Carroll JL. The cardiorespiratory response to anoxia: normal development and the effect of nicotine. Respir Physiol. 1997;109:231–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Taylor EW, Butler PJ. Nervous control of heart rate: activity in the cardiac vagus of the dogfish. J Appl Physiol. 1982;53:1330–5.PubMedGoogle Scholar
  82. 82.
    Baird TM. Clinical correlates, natural history and outcome of neonatal apnoea. Semin Neonatol. 2004;9:205–11.PubMedCrossRefGoogle Scholar
  83. 83.
    Madden BP, Shenoy V, Dalrymple-Hay M, et al. Absence of bradycardic response to apnea and hypoxia in heart transplant recipients with obstructive sleep apnea. J Heart Lung Transplant. 1997;16:394–7.PubMedGoogle Scholar
  84. 84.
    Berk JL, Levy MN. Profound reflex bradycardia produced by transient hypoxia or hypercapnia in man. Eur Surg Res. 1977;9:75–84.PubMedCrossRefGoogle Scholar
  85. 85.
    Somers VK, Dyken ME, Mark AL, et al. Parasympathetic hyperresponsiveness and bradyarrhythmias during apnoea in hypertension. Clin Auton Res. 1992;2:171–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Martin RJ, Abu-Shaweesh JM, Baird TM. Apnoea of prematurity. Paediatr Respir Rev. 2004;5:S377–82.PubMedCrossRefGoogle Scholar
  87. 87.
    O’Donnell CP, Bower EA. Heart rate changes evoked by hypoxia in the anaesthetized, artificially ventilated cat. Exp Physiol. 1992;77:271–83.PubMedGoogle Scholar
  88. 88.
    de Burgh DM, Elsner R, Angell-James JE. Cardiorespiratory control by carotid chemoreceptors during experimental dives in the seal. Am J Physiol. 1977;232:H508–16.Google Scholar
  89. 89.
    Daly MB, Korner PI, Angell-James JE, et al. Cardiovascular-respiratory reflex interactions between carotid bodies and upper-airways receptors in the monkey. Am J Physiol. 1978;234:H293–9.PubMedGoogle Scholar
  90. 90.
    Lewis AB, Donovan M, Platzker AC. Cardiovascular responses to autonomic blockade in hypoxemic fetal lambs. Biol Neonate. 1980;37:233–42.PubMedCrossRefGoogle Scholar
  91. 91.
    Cohn HE, Piasecki GJ, Jackson BT. The effect of fetal heart rate on cardiovascular function during hypoxemia. Am J Obstet Gynecol. 1980;138:1190–9.PubMedGoogle Scholar
  92. 92.
    Przybylski J, Trzebski A, Przybyszewski A. Circulatory responses to acute hypoxia in spontaneously hypertensive and normotensive rats. Acta Physiol Pol. 1980;31:463–8.PubMedGoogle Scholar
  93. 93.
    Yu ZY, Lumbers ER, Gibson KJ, et al. Effects on hypoxaemia on foetal heart rate, variability and cardiac rhythm. Clin Exp Pharmacol Physiol. 1998;25:577–84.PubMedCrossRefGoogle Scholar
  94. 94.
    Ikenoue T, Martin Jr CB, Murata Y, et al. Effect of acute hypoxemia and respiratory acidosis on the fetal heart rate in monkeys. Am J Obstet Gynecol. 1981;141:797–806.PubMedGoogle Scholar
  95. 95.
    Hayashi M, Nagasaka T. Hypoxic tachycardia in hypoxia-acclimated rats. Jpn J Physiol. 1982;32:149–52.PubMedCrossRefGoogle Scholar
  96. 96.
    Boddy K, Dawes GS, Fisher R, et al. Foetal respiratory movements, electrocortical and cardiovascular responses to hypoxaemia and hypercapnia in sheep. J Physiol. 1974;243:599–618.PubMedGoogle Scholar
  97. 97.
    Scremin AM, Scremin OU, Brechner T. Survival under hypoxia. Age dependence and effect of cholinergic drugs. Stroke. 1980;11:548–52.PubMedCrossRefGoogle Scholar
  98. 98.
    Potter EK, McCloskey DI. Effects of hypoxia on cardiac vagal efferent activity and on the action of the vagus nerve at the heart in the dog. J Auton Nerv Syst. 1986;17:325–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Serani A, Lavados M, Zapata P. Cardiovascular responses to hypoxia in the spontaneously breathing cat: reflexes originating from carotid and aortic bodies. Arch Biol Med Exp (Santiago). 1983;16:29–41.Google Scholar
  100. 100.
    Neff RA, Simmens SJ, Evans C, et al. Prenatal nicotine exposure alters central cardiorespiratory responses to hypoxia in rats: implications for sudden infant death syndrome. J Neurosci. 2004;24:9261–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Erickson JT, Millhorn DE. Hypoxia and electrical stimulation of the carotid sinus nerve induce Fos-like immunoreactivity within catecholaminergic and serotoninergic neurons of the rat brainstem. J Comp Neurol. 1994;348:161–82.PubMedCrossRefGoogle Scholar
  102. 102.
    Teppema LJ, Veening JG, Kranenburg A, et al. Expression of c-fos in the rat brainstem after exposure to hypoxia and to normoxic and hyperoxic hypercapnia. J Comp Neurol. 1997;388:169–90.PubMedCrossRefGoogle Scholar
  103. 103.
    Richter DW, Schmidt-Garcon P, Pierrefiche O, et al. Neurotransmitters and neuromodulators controlling the hypoxic respiratory response in anaesthetized cats. J Physiol. 1999;514:567–78.PubMedCrossRefGoogle Scholar
  104. 104.
    Nucci TB, Branco LG, Gargaglioni LH. 5-HT1A, but not 5-HT2 and 5-HT7, receptors in the nucleus raphe magnus modulate hypoxia-induced hyperpnoea. Acta Physiol (Oxf). 2008;193:403–14.CrossRefGoogle Scholar
  105. 105.
    Gargaglioni LH, Bicego KC, Nucci TB, et al. Serotoninergic receptors in the anteroventral preoptic region modulate the hypoxic ventilatory response. Respir Physiol Neurobiol. 2006;153:1–13.PubMedCrossRefGoogle Scholar
  106. 106.
    Tryba AK, Pena F, Ramirez JM. Gasping activity in vitro: a rhythm dependent on 5-HT2A receptors. J Neurosci. 2006;26:2623–34.PubMedCrossRefGoogle Scholar
  107. 107.
    St-John WM, Leiter JC. Maintenance of gasping and restoration of eupnea after hypoxia is impaired following blockers of α-1 adrenergic receptors and serotonin 5HT2 receptors. J Appl Physiol. 2008;104:665–73.PubMedCrossRefGoogle Scholar
  108. 108.
    Fuller DD, Zabka AG, Baker TL, et al. Physiological and genomic consequences of intermittent hypoxia selected contribution: phrenic long-term facilitation requires 5-HT receptor activation during but not following episodic hypoxia. J Appl Physiol. 2001;90:2001–6.PubMedGoogle Scholar
  109. 109.
    McGuire M, Zhang Y, White DP, et al. Serotonin receptor subtypes required for ventilatory long-term facilitation and its enhancement after chronic intermittent hypoxia in awake rats. Am J Physiol Regul Integr Comp Physiol. 2004;286:R334–41.PubMedCrossRefGoogle Scholar
  110. 110.
    Takeuchi Y, Kojima M, Matsuura T, et al. Serotonergic innervation on the motoneurons in the mammalian brainstem. Light and electron microscopic immunohistochemistry. Anat Embryol (Berl). 1983;167:321–33.CrossRefGoogle Scholar
  111. 111.
    Izzo PN, Deuchars J, Spyer KM. Localization of cardiac vagal preganglionic motoneurones in the rat: immunocytochemical evidence of synaptic inputs containing 5-hydroxytryptamine. J Comp Neurol. 1993;327:572–83.PubMedCrossRefGoogle Scholar
  112. 112.
    Dergacheva O, Kamendi H, Wang X, et al. The role of 5-HT3 and other excitatory receptors in central cardiorespiratory responses to hypoxia: implications for sudden infant death syndrome. Pediatr Res. 2009;65:625–30.PubMedCrossRefGoogle Scholar
  113. 113.
    Dergacheva O, Kamendi H, Wang X, et al. 5-HT2 receptors modulate excitatory neurotransmission to cardiac vagal neurons within the nucleus ambiguus evoked during and after hypoxia. Neuroscience. 2009;164:1191–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Dergacheva O, Griffioen KJ, Wang X, et al. 5-HT2 receptor subtypes mediate different long-term changes in GABAergic activity to parasympathetic cardiac vagal neurons in the nucleus ambiguus. Neuroscience. 2007;149:696–705.PubMedCrossRefGoogle Scholar
  115. 115.
    Wang X, Dergacheva O, Kamendi H, et al. 5-Hydroxytryptamine 1A/7 and 4alpha receptors differentially prevent opioid-induced inhibition of brain stem cardiorespiratory function. Hypertension. 2007;50:368–76.PubMedCrossRefGoogle Scholar
  116. 116.
    Pichot V, Roche F, Gaspoz JM, et al. Relation between heart rate variability and training load in middle-distance runners. Med Sci Sports Exerc. 2000;32:1729–36.PubMedCrossRefGoogle Scholar
  117. 117.
    Roche F, Reynaud C, Garet M, et al. Cardiac baroreflex control in humans during and immediately after brief exposure to simulated high altitude. Clin Physiol Funct Imaging. 2002;22:301–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Evans C, Wang J, Neff R, et al. Hypoxia recruits a respiratory-related excitatory pathway to brainstem premotor cardiac vagal neurons in animals exposed to prenatal nicotine. Neuroscience. 2005;133:1073–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Griffioen KJ, Gorini C, Jameson H, et al. Purinergic P2X receptors mediate excitatory transmission to cardiac vagal neurons in the nucleus ambiguus after hypoxia. Hypertension. 2007;50:75–81.PubMedCrossRefGoogle Scholar
  120. 120.
    Griffioen KJ, Kamendi HW, Gorini CJ, et al. Reactive oxygen species mediate central cardiorespiratory network responses to acute intermittent hypoxia. J Neurophysiol. 2007;97:2059–66.PubMedCrossRefGoogle Scholar
  121. 121.
    Feldman JL, Mitchell GS, Nattie EE. Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci. 2003;26:239–66.PubMedCrossRefGoogle Scholar
  122. 122.
    Bocchiaro CM, Feldman JL. Synaptic activity-independent persistent plasticity in endogenously active mammalian motoneurons. Proc Natl Acad Sci USA. 2004;101:4292–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Soukhova-O’Hare GK, Cheng ZJ, Roberts AM, et al. Postnatal intermittent hypoxia alters baroreflex function in adult rats. Am J Physiol Heart Circ Physiol. 2006;290:H1157–64.PubMedCrossRefGoogle Scholar
  124. 124.
    Lin M, Ai J, Li L, et al. Structural remodeling of nucleus ambiguus projections to cardiac ganglia following chronic intermittent hypoxia in C57BL/6J mice. J Comp Neurol. 2008;509:103–17.PubMedCrossRefGoogle Scholar
  125. 125.
    Gu H, Lin M, Liu J, et al. Selective impairment of central mediation of baroreflex in anesthetized young adult Fischer 344 rats after chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol. 2007;293:H2809–18.PubMedCrossRefGoogle Scholar
  126. 126.
    Lin M, Liu R, Gozal D, et al. Chronic intermittent hypoxia impairs baroreflex control of heart rate but enhances heart rate responses to vagal efferent stimulation in anesthetized mice. Am J Physiol Heart Circ Physiol. 2007;293:H997–1006.PubMedCrossRefGoogle Scholar
  127. 127.
    Yan B, Soukhova-O’Hare GK, Li L, et al. Attenuation of heart rate control and neural degeneration in nucleus ambiguus following chronic intermittent hypoxia in young adult Fischer 344 rats. Neuroscience. 2008;153:709–20.PubMedCrossRefGoogle Scholar
  128. 128.
    Yan B, Li L, Harden SW, et al. Chronic intermittent hypoxia impairs heart rate responses to AMPA and NMDA and induces loss of glutamate receptor neurons in nucleus ambiguous of F344 rats. Am J Physiol Regul Integr Comp Physiol. 2009;296:R299–308.PubMedCrossRefGoogle Scholar
  129. 129.
    Smith IE, Quinnell TG. Pharmacotherapies for obstructive sleep apnoea: where are we now? Drugs. 2004;64:1385–99.PubMedCrossRefGoogle Scholar
  130. 130.
    Carley DW, Olopade C, Ruigt GS, et al. Efficacy of mirtazapine in obstructive sleep apnea syndrome. Sleep. 2007;30:35–41.PubMedGoogle Scholar
  131. 131.
    Veasey SC. Serotonin agonists and antagonists in obstructive sleep apnea: therapeutic potential. Am J Respir Med. 2003;2:21–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Grunstein RR, Hedner J, Grote L. Treatment options for sleep apnoea. Drugs. 2001;61:237–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaUSA
  2. 2.Department of Pharmacology and PhysiologyThe George Washington UniversityWashingtonUSA

Personalised recommendations