Skip to main content

Role of Mitochondrial Permeability Transition Pore in Intermittent Hypoxia-Induced Cardiac and Neuronal Protection

  • Chapter
  • First Online:
Book cover Intermittent Hypoxia and Human Diseases

Abstract

We have investigated protective effects of intermittent hypoxic training (IHT) in three experimental models. In experiments on isolated hearts from adult and old guinea pigs, perfused under Langendorff mode, the effect of the intermittent hypoxia on reperfusion injury and activation of mitochondrial permeability transition pore (mPTP) was studied. It was shown that 7-day course of the IHT led to decrease of mitochondrial permeability tran­sition, increased efficiency of the heart in both adult and old animals. Cardiac reperfusion was followed by an increased cardiac contractility and decrease of an oxygen cost of myocardial work. On the heart mitochondria from adult and old rats subjected to IHT, we studied the sensitivity of mPTP opening to its inductor, phenylarsine oxide (PAO). We have found that IHT used in regime II (8% O2 gas mixture) resulted in a twofold decrease as compared with the control in the PAO-induced adult rat heart mitochondria swelling, which was completely abolished in the presence of an inhibitor – cyclosporin A (10–5 mol/l). We have estimated the sensitivity of mPTP opening based on two parameters: alterations of mitochondrial swelling and release of mitochondrial substances (mitochondrial factor). We have demonstrated that old rat heart mitochondria are more sensitive to PAO (that induces the CsA-sensitive mPTP opening and mPTP-dependent release of mitochondrial factor) than adult rat heart mitochondria. Therefore, we have observed protective effect of IHT on PAO-induced mPTP-opening and mPTP-dependent factor release from old rat heart mitochondria. In experiments on the rat hemiparkinsonian model induced by 6-hydroxydopamine (6-OHDA), we have demonstrated that the used IHT course prevented pharmacologically induced unilateral dopaminergic neuronal loss. The most significant neuroprotective effect was observed in case when IHT course carried out prior and after 6-OHDA injection. Prevention of DAergic nigral neurons apoptosis upon the action of 6-OHDA is apparently due to the protective effect of IHT on mPTP opening. By reference to the obtained data, we conclude that IHT, due to its cardio- and neuroprotective effects, can be used as a protective procedure preventing mPTP opening in aging, in a number of chronic pathologies induced by oxidative stress, and also in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Absorbance

Apo:

Apomorphine

CsA:

Cyclosporin A

DA:

Dopamine

IHT:

Intermittent hypoxia training

IV:

Index Veragut

LVP:

Left ventricle pressure

mPTP:

Mitochondrial permeability transition pore

NO:

Nitric oxide

OCMW:

Oxygen cost of myocardial work

6-OHDA:

6-hydroxydopamine

PAO:

Phenylarsine oxide

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

References

  1. Andrew R, Watson DG, Best SA. The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem Res. 1993;18:1175–7.

    Article  PubMed  CAS  Google Scholar 

  2. Argaud L, Gateau-Roesch O, Muntean D, et al. Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol. 2005;38:367–74.

    Article  PubMed  CAS  Google Scholar 

  3. Bertuglia S. Intermittent hypoxia modulates nitric oxide-dependent vasodilation and capillary perfusion during ischemia-reperfusion-induced damage. Am J Physiol. 2008;294:H1914–22.

    CAS  Google Scholar 

  4. Bowling AC, Beal MF. Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci. 1995;56:1151–71.

    Article  PubMed  CAS  Google Scholar 

  5. Burtscher M, Pachinger O, Ehrenbourg I, et al. Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol. 2004;96:247–54.

    Article  PubMed  Google Scholar 

  6. Cassarino DS, Bennett Jr JP. An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res Rev. 1999;29:1–25.

    Article  PubMed  CAS  Google Scholar 

  7. Chorna SV, Talanov SO, Strutynska NA, et al. The functional state of the rat heart during ischemia-reperfusion, the sensitivity of calcium-induced NO-dependent mitochondrial permeability transition pore opening and the uncoupling protein 3 expression under long exercise training. Fiziol Zh. 2010;56:13–21 [In Ukrainian].

    Google Scholar 

  8. Crompton M. Mitochondria and aging: a role for the permeability transition? Aging Cell. 2004;3:3–6.

    Article  PubMed  CAS  Google Scholar 

  9. Curtius HC, Wolfensberger M, Steinmann B, et al. Mass fragmentography of dopamine and 6-hydroxydopamine. Application to the determination of dopamine in human brain biopsies from the caudate nucleus. J Chromatogr. 1974;99:529–40.

    Article  PubMed  CAS  Google Scholar 

  10. El’chaninova SA, Smagina IV, Koreniak NA, et al. The influence of interval hypoxic training on lipid peroxidation and antioxidant enzyme activity. Fiziol Cheloveka. 2003;29:72–5 [In Russian].

    PubMed  Google Scholar 

  11. Feng J, Lucchinetti E, Ahuja P, et al. Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3beta. Anesthesiology. 2005;103:987–95.

    Article  PubMed  CAS  Google Scholar 

  12. Griffiths E, Halestrap A. Mitochondrial non-specific pores remain closed during cardiac ischemia but open upon reperfusion. Biochem J. 1995;307:93–8.

    PubMed  CAS  Google Scholar 

  13. Halestrap AP. A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans. 2010;38:841–60.

    Article  PubMed  CAS  Google Scholar 

  14. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion - a target for cardioprotection. Cardiovasc Res. 2004;61:372–85.

    Article  PubMed  CAS  Google Scholar 

  15. Halestrap AP, Pasdois P. The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta. 2009;1787:1402–15.

    Article  PubMed  CAS  Google Scholar 

  16. Hausenloy DJ, Yellon DM, Mani-Babu S, et al. Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol. 2004;287:H841–9.

    CAS  Google Scholar 

  17. Jung ME, Simpkins JW, Wilson AM, et al. Intermittent hypoxia conditioning prevents behavioral deficit and brain oxidative stress in ethanol-withdrawn rats. J Appl Physiol. 2008;105:510–7.

    Article  PubMed  Google Scholar 

  18. Kolchinskaya AZ, Cyganova TN, Ostapenko LA. Normobaric intermittent hypoxic training in medicine and sport. Moscow: Medicine; 2003 [In Russian].

    Google Scholar 

  19. Leeuwenburgh C, Phaneuf S. Cytochrome c release from mitochondria in the aging hear: a possible mechanism for apoptosis with age. Am J Physiol Regul Integr Comp Physiol. 2002;282:R423–30.

    PubMed  Google Scholar 

  20. Lesnefsky EJ, Hoppel CL. Ischemia-reperfusion injury in the aged heart: role of the mitochondria. Arch Biochem Biophys. 2003;420:287–97.

    Article  PubMed  CAS  Google Scholar 

  21. Lin AM, Chen CF, Ho LT. Neuroprotective effect of intermittent hypoxia on iron-induced oxidative injury in rat brain. Exp Neurol. 2002;176:328–35.

    Article  PubMed  CAS  Google Scholar 

  22. Malyshev IY, Manuhina EB. Stress, adaptation and nitric oxide. Biochemistry. 1998;67:992–1006 [In Russian].

    Google Scholar 

  23. Meerson FZ. Essentials of adaptive medicine: protective effects of adaptation, hypoxia. Moscow: Hypoxia Medical LTD; 1994.

    Google Scholar 

  24. Mochizuki H, Goto K, Mori H, et al. Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci. 1996;137:120–3.

    Article  PubMed  CAS  Google Scholar 

  25. Mochizuki H, Mori H, Mizuno Y. Apoptosis in neurodegenerative disorders. J Neural Transm. 1997;50:125–40.

    Article  CAS  Google Scholar 

  26. Nadtochiy SM, Bohuslavs’kyĭ AI, Sagach VF. Determination of the stable mitochondrial factor in vivo. Fiziol Zh. 2003;49:25–30 [In Ukrainian].

    Google Scholar 

  27. Nadtochiy SM, Nauduri D, Shimanskaya TV, et al. Purine release: a protective signaling mechanism of the mitochondrial permeability transition pore in ischemia. Fiziol Zh. 2008;54:5–14.

    PubMed  CAS  Google Scholar 

  28. Naghshin J, McGaffin KR, Witham WG, et al. Chronic intermittent hypoxia increases left ventricular contractility in C57BL/6J mice. J Appl Physiol. 2009;107:787–93.

    Article  PubMed  CAS  Google Scholar 

  29. Nazareth W, Yafei N, Crompton M. Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol. 1991;23:1351–4.

    Article  PubMed  CAS  Google Scholar 

  30. Park AM, Suzuki YJ. Effects of intermittent hypoxia on oxidative stress-induced myocardial damage in mice. J Appl Physiol. 2007;102:1806–14.

    Article  PubMed  CAS  Google Scholar 

  31. Pilar Valle M, García-Godos F, Woolcott OO, et al. Improvement of myocardial perfusion in coronary patients after intermittent hypobaric hypoxia. J Nucl Cardiol. 2006;13:69–74.

    Article  PubMed  Google Scholar 

  32. Prabhakar NR, Kumar GK. Oxidative stress in the systemic and ­cellular responses to intermittent hypoxia. Biol Chem. 2004;385:217–21.

    Article  PubMed  CAS  Google Scholar 

  33. Prabhakar NR, Kumar GK, Nanduri J. Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS. Respir Physiol Neurobiol. 2010;174:230–4.

    Article  PubMed  CAS  Google Scholar 

  34. Prabhakar NR, Peng YJ, Kumar GK, et al. Long-term regulation of carotid body function: acclimatization and adaptation. Adv Exp Med Biol. 2009;648:307–17.

    Article  PubMed  CAS  Google Scholar 

  35. Rasola A, Sciacovelli M, Pantic B, et al. Signal transduction to the permeability transition pore. FEBS Lett. 2010;584:1989–96.

    Article  PubMed  CAS  Google Scholar 

  36. Rudyk OV, Vavilova HL, Strutyns’ka NA, et al. Sensitivity of phenylarsineoxide-induced mitochondrial permeability transition pore opening in the heart of old rats during intermittent hypoxic training. Fiziol Zh. 2004;50:29–37 [In Ukrainian].

    PubMed  CAS  Google Scholar 

  37. Sagach VF, Dmitrieva AV, Bubnova IuO, et al. Diagnostics method of myocardium ischemia-reperfusion injury and the mitochondrial permeability transition pore opening. 2007; Patent of utility model № 26385. Bul.№15 of 25.09.2007.

    Google Scholar 

  38. Sagach VF, Dmytrieva AV, Bubnova IuO, et al. Using marker of the mitochondrial pore opening in diagnostics of patients with myocardial ischemic lesions. Fiziol Zh. 2009;55:12–8 [In Ukrainian].

    CAS  Google Scholar 

  39. Sagach VF, Maksymenko VB, Dmytrieva AV, et al. Early marker of myocardial injury of the ischemia-reperfused heart in dogs and during operations with artificial circulation in humans. Fiziol Zh. 2006;52:3–8 [In Ukrainian].

    Google Scholar 

  40. Sagach VF, Shimanskaya TV, Nadtochiy SM. Protection of heart from reperfusion injury and ineffective oxygen consumption by inhibitors of the mitochondrial permeability transition pore. Fiziol Zh. 2002;48:3–9 [In Ukrainian].

    Google Scholar 

  41. Sagach VF, Shimanskaya TV, Nadtochiy SM. Factor, released under the isolated heart reperfusion may be the marker of the opening the mitochondrial permeability transition pore. Fiziol Zh. 2003;49:7–13 [In Ukrainian].

    Google Scholar 

  42. Sagach VF, Vavilova HL, Rudyk OV, et al. Release of unidentified mitochondrial substance – evidence for mitochondrial permeability transition pore opening in heart mitochondria of rats. Fiziol Zh. 2003;49:3–12 [In Ukrainian].

    Google Scholar 

  43. Sagach VF, Vavilova HL, Strutynska NA, et al. Effect of inductors and inhibitors of the mitochondrial permeability transition pore on its opening and release of unidentified mitochondrial factor. Fiziol Zh. 2003;49:3–12 [In Ukrainian].

    Google Scholar 

  44. Sagach VF, Vavilova HL, Strutynska NA, et al. The aging-related increase of sensitivity of the mitochondrial permeability transition pore opening to inductors in rat heart. Fiziol Zh. 2004;50:49–63 [In Ukrainian].

    CAS  Google Scholar 

  45. Schapira AH, Gu M, Taanman JW, et al. Mitochondria in the etiology and pathogenesis of Parkinson’s disease. Ann Neurol. 1998;44:S89–98.

    PubMed  CAS  Google Scholar 

  46. Schulz JB, Matthews RT, Klockgether T, et al. The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases. Mol Cell Biochem. 1997;174:193–7.

    Article  PubMed  CAS  Google Scholar 

  47. Serebrovs’ka TV, Kurgaliuk NM, Nosar VI, et al. Intermittent hypoxic training with exogenous nitric oxide improves rat liver mitochondrial oxidation and phosphorylation during acute hypoxia. Fiziol Zh. 2001;47:85–92 [In Ukrainian].

    PubMed  Google Scholar 

  48. Serebrovskaya TV, Vavilova GL, Rudyk OV, et al. Different ­regimen of intermittent hypoxia training (IHT) as modulator of ­mitochondrial membrane permeability transition pore in rat heart. In: Mitochondrial physiology. MiP2005, Schröcken, Vorarlberg, Austria, p.29–30.

    Google Scholar 

  49. Sharp FR, Ran R, Lu A, et al. Hypoxic preconditioning protects against ischemic brain injury. NeuroRx. 2004;1:26–35.

    Article  PubMed  Google Scholar 

  50. Shimanskaya T, Dobrovolsky F, Vavilova G, et al. NO-dependent modulation of the sensitivity of the mitochondrial permeability transition pore opening under ischemia-reperfusion of the isolated heart. I M Sechenov Physiol J. 2009;95:28–37 [In Russian].

    Google Scholar 

  51. Singh S, Kumar S, Dikshit M. Involvement of the mitochondrial apoptotic pathway and nitric oxide synthase in dopaminergic neuronal death induced by 6-hydroxydopamine and lipopolysaccharide. Redox Rep. 2010;15:115–22.

    Article  PubMed  CAS  Google Scholar 

  52. Talanov SA, Oleshko NN, Tkachenko MN, et al. Pharmacoprotective influences on different links of the mechanism underlying 6-hydroxydopamine-induced degeneration of nigro-striatal dopaminergic neurons. Neurophysiology. 2006;38:150–6.

    Google Scholar 

  53. Talanov SA, Sahach VF. Antioxidants prevent experimental hemiparkinsonism in rats. Fiziol Zh. 2008;54:23–9 [In Ukrainian].

    PubMed  CAS  Google Scholar 

  54. Talanov SA, Timoshchuk SV, Rudyk OV, et al. An increased sensitivity of the mitochondrial permeability transition pore to calcium in the heart of rats with chronic deficiency of nigrostriatal dopamine. Fiziol Zh. 2009;55:3–8 [In Ukrainian].

    PubMed  CAS  Google Scholar 

  55. Talanov SO, Sahach VF, Oleshko MM, et al. Inhibitors of mitochondrial permeability transition pore prevent apoptosis of dopaminergic neurons in the mesencephalon. Fiziol Zh. 2006;52:13–8 [In Ukrainian].

    PubMed  CAS  Google Scholar 

  56. Tatton WG, Chalmers-Redman RM, Ju WY, et al. Apoptosis in neurodegenerative disorders: potential for therapy by modifying gene transcription. J Neural Transm Suppl. 1997;49:245–68.

    PubMed  CAS  Google Scholar 

  57. Vannucci RC, Towfighi J, Vannucci SJ. Hypoxic preconditioning and hypoxic-ischemic brain damage in the immature rat: pathologic and metabolic correlates. J Neurochem. 1998;71:1215–20.

    Article  PubMed  CAS  Google Scholar 

  58. Vavilova GL, Serebrovskaya TV, Rudyk OV, et al. Influence of the intermittent hypoxia training on the sensitivity of phenylarsineoxide-induced mitochondrial permeability transition pore in rat heart. Fiziol Zh. 2005;51:3–12 [In Ukrainian].

    PubMed  CAS  Google Scholar 

  59. Wang T, Liu YY, Yang N, et al. Relationship of oxidative DNA damage and expression of mitochondrial apoptotic proteins in rat striatum induced by 6-hydroxydopamine. Zhonghua Yi Xue Za Zhi. 2010;90:2074–7 [In Chinese].

    PubMed  CAS  Google Scholar 

  60. Yuan G, Adhikary G, McCormick AA, et al. Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in PC12 cells. J Physiol. 2004;157:773–83.

    Article  Google Scholar 

  61. Zamzami N, Susin SA, Marchetti P, et al. Mitochondrial control of nuclear apoptosis. J Exp Med. 1996;183:1533–44.

    Article  PubMed  CAS  Google Scholar 

  62. Zhu W-Z, Xie Y, Chen L, et al. Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury. J Mol Cell Cardiol. 2006;40:96–106.

    Article  PubMed  CAS  Google Scholar 

  63. Zorov DB, Filburn CR, Klotz LO, et al. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 2000;192:1001–14.

    Article  PubMed  CAS  Google Scholar 

  64. Zorov DB, Juhaszova M, Yaniv Y, et al. Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc Res. 2009;83:213–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya Strutynska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Vavilova, G., Shimanskaya, T., Strutynska, N., Talanov, S., Sagach, V. (2012). Role of Mitochondrial Permeability Transition Pore in Intermittent Hypoxia-Induced Cardiac and Neuronal Protection. In: Xi, L., Serebrovskaya, T. (eds) Intermittent Hypoxia and Human Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-2906-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2906-6_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2905-9

  • Online ISBN: 978-1-4471-2906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics