Method of Combined Intermittent Hypoxia and Surface Muscle Electrostimulation for Enhancing Peripheral Stem Cells in Humans

  • Ginés ViscorEmail author
  • Casimiro Javierre
  • Teresa Pagès
  • Luisa Corral
  • Joan Ramon Torrella
  • Antoni Ricart
  • Josep Lluis Ventura


Short-term intermittent hypoxia exposure, at a level well tolerated by healthy humans and previously shown by our group to increase erythropoietin and erythropoiesis, could mobilize hematopoietic stem cells (HSC) and increase their presence in peripheral circulation. Four healthy male volunteers were subjected to three protocols: one with only hypoxic stimulus (OH), another with hypoxic stimulus plus muscle electrostimulation (HME), and the third with only muscle electrostimulation (OME). Intermittent hypobaric hypoxia exposure consisted of three sessions of 3 h inside a hypobaric chamber at a barometric pressure 535 hPa (equivalent to an altitude of 5,000 m) for 3 consecutive days. Muscular electrostimulation was performed in two separate periods of 25 min within each session. Blood samples were obtained from an antecubital vein on 3 consecutive days immediately before the experiment and 24, 48 h, 4, and 7 days after the last day of hypoxic exposure. There was a clear increase in the number of circulating CD34+ cells but only after the experimental program combining hypobaric hypoxia and muscular electrostimulation. This response was not observed after the isolated application of the same stimuli. Our results open a new application field for intermittent hypobaric hypoxia as a way to increase peripheral HSC concentration. Muscle electrostimulation combined with hypoxia can be a useful tool for patients with a wide variety of conditions limiting classical physical exercise.


Hematopoietic Stem Cell Intermittent Hypoxia Hypobaric Hypoxia Hypoxia Exposure Simulated Altitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



CXC receptor 4




Fluorescein isothiocyanate


Granulocyte colony-stimulating factor


Hypoxic stimulus plus muscle electrostimulation


Hematopoietic stem cells


Intermittent hypoxia


Only hypoxic stimulus


Only muscle electrostimulation


Stem cells


Stromal-derived factor 1



The authors are grateful to Dr. Gregorio Martín-Henao and Ms. Carmen Azqueta from Unitat de Teràpia Cel·lular (Centre de Transfusió i Banc de Teixits) for their key contribution in HSC quantification. We also acknowledge Mr. Víctor Gómez for his kind support to our research group and for his critical participation in the installation of the hypobaric chamber and annexed facilities. We are also grateful to Mr. Juan A. Silva from Universidad de Antofagasta (Chile) by his collaboration in some data collection, and to Mr. Robin Rycroft (Language Advice Service, Universitat de Barcelona) for his useful help in editing the manuscript. Finally, we wish to express our gratitude and appreciation to Prof. Ramon Segura for his mentoring tasks of our research group and to Prof. Luis Palacios for his support and ideas and his pioneering impulse on hypobaric studies.

Competing Interests

This study was performed without support from any public or private fund, agency, or company. The authors declare that they have no competing interests. This chapter is based on a previous study that was published in J Transl Med (2009) 7:91.


  1. 1.
    Adams V, Lenk K, Linke A, et al. Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler Thromb Vasc Biol. 2004; 24:684–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. 2002;106:3009–17.PubMedCrossRefGoogle Scholar
  4. 4.
    Bahlmann FH, de Groot K, Spandau J, et al. Erythropoietin regulates endothelial progenitor cells. Blood. 2004;103:921–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Bennie SD, Petrofsky JS, Nisperos J, et al. Toward the optimal waveform for electrical stimulation of human muscle. Eur J Appl Physiol. 2002;88:13–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Bonsignore MR, Morici G, Riccioni R, et al. Hemopoietic and angiogenetic progenitors in healthy athletes: different responses to endurance and maximal exercise. J Appl Physiol. 2010;109:60–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Brocherie F, Babault N, Cometti G, et al. Electrostimulation training effects on the physical performance of ice hockey players. Med Sci Sports Exerc. 2005;37:455–60.PubMedCrossRefGoogle Scholar
  8. 8.
    Burtscher M, Pachinger O, Ehrenbourg I, et al. Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol. 2004;96:247–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Casas M, Casas H, Pagès T, et al. Intermittent hypobaric hypoxia induces altitude acclimation and improves the lactate threshold. Aviat Space Environ Med. 2000;71:125–30.PubMedGoogle Scholar
  10. 10.
    Cashen AF, Lazarus HM, Devine SM. Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF? Bone Marrow Transplant. 2007;39:577–88.PubMedCrossRefGoogle Scholar
  11. 11.
    Crameri RM, Weston A, Climstein M, et al. Effects of electrical stimulation-induced leg training on skeletal muscle adaptability in spinal cord injury. Scand J Med Sci Sports. 2002;12:316–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Esteva S, Panisello P, Torrella JR, et al. Blood rheology adjustments in rats after a program of intermittent exposure to hypobaric hypoxia. High Alt Med Biol. 2009;10:275–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Esteva S, Panisello P, Ramon Torrella J, et al. Enzyme activity and myoglobin concentration in rat myocardium and skeletal muscles after passive intermittent simulated altitude exposure. J Sports Sci. 2009;27:633–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Falanga A, Marchetti M, Evangelista V, et al. Neutrophil activation and hemostatic changes in healthy donors receiving granulocyte colony-stimulating factor. Blood. 1999;93:2506–14.PubMedGoogle Scholar
  15. 15.
    Ferrario M, Massa M, Rosti V, et al. Early haemoglobin-independent increase of plasma erythropoietin levels in patients with acute myocardial infarction. Eur Heart J. 2007;28:1805–13.PubMedCrossRefGoogle Scholar
  16. 16.
    Flames N, Pla R, Gelman DM, et al. Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci. 2007;27:9682–95.PubMedCrossRefGoogle Scholar
  17. 17.
    Grayson W, Zhao F, Bunnell B, et al. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun. 2007;358:948–53.PubMedCrossRefGoogle Scholar
  18. 18.
    Gutierrez-Delgado F, Bensinger W. Safety of granulocyte colony-stimulating factor in normal donors. Curr Opin Hematol. 2001;8:155–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Hoetzer GL, Van Guilder GP, Irmiger HM, et al. Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J Appl Physiol. 2007;102:847–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Katayama K, Ishida K, Iwasaki K, et al. Effect of two durations of short-term intermittent hypoxia on ventilatory chemosensitivity in humans. Eur J Appl Physiol. 2009;105:815–21.PubMedCrossRefGoogle Scholar
  21. 21.
    Keeney M, Chin-Yee I, Weir K, et al. Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. International Society of Hematotherapy and Graft Engineering. Cytometry. 1998;34:61–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Kondo T, Hayashi M, Takeshita K, et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol. 2004;24:1442–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Koutedakis Y, Frischknecht R, Vrbova G, et al. Maximal voluntary quadriceps strength patterns in Olympic overtrained athletes. Med Sci Sports Exerc. 1995;27:566–72.PubMedGoogle Scholar
  24. 24.
    Laufs U, Urhausen A, Werner N, et al. Running exercise of different duration and intensity: effect on endothelial progenitor cells in healthy subjects. Eur J Cardiovasc Prev Rehabil. 2005;12:407–14.PubMedCrossRefGoogle Scholar
  25. 25.
    Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83:102–12.PubMedGoogle Scholar
  26. 26.
    Levine BD. Intermittent hypoxic training: fact and fancy. High Alt Med Biol. 2002;3:177–93.PubMedCrossRefGoogle Scholar
  27. 27.
    Meng X, Ichim T, Zhong J, et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007;5:57.PubMedCrossRefGoogle Scholar
  28. 28.
    Miller-Kasprzak E, Jagodzinski PP. Endothelial progenitor cells as a new agent contributing to vascular repair. Arch Immunol Ther Exp (Warsz). 2007;55:247–59.CrossRefGoogle Scholar
  29. 29.
    Mobius-Winkler S, Hilberg T, Menzel K, et al. Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J Appl Physiol. 2009;107:1943–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Panisello P, Torrella JR, Esteva S, et al. Capillary supply, fibre types and fibre morphometry in rat tibialis anterior and diaphragm muscles after intermittent exposure to hypobaric hypoxia. Eur J Appl Physiol. 2008;103:203–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Panisello P, Esteva S, Torrella R, et al. Intermittent hypobaric hypoxia induces changes at a different extent in biochemical parameters depending on muscle activity degree. Comp Biochem Physiol A Mol Integr Physiol. 2007;146:S184.CrossRefGoogle Scholar
  32. 32.
    Perez AL, Bachrach E, Illigens BM, et al. CXCR4 enhances engraftment of muscle progenitor cells. Muscle Nerve. 2009; 40:562–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003;107:2294–302.PubMedCrossRefGoogle Scholar
  34. 34.
    Qiang X, Shaoxia W, Xijuan J, et al. Hypoxia-induced astrocytes promote the migration of neural progenitor cells via vascular endothelial factor, stem cell factor, stromal-derived factor-1α and monocyte chemoattractant protein-1 upregulation in vitro. Clin Exp Pharmacol Physiol. 2007;34:624–31.CrossRefGoogle Scholar
  35. 35.
    Ricart A, Casas H, Casas M, et al. Acclimatization near home? Early respiratory changes after short-term intermittent exposure to simulated altitude. Wilderness Environ Med. 2000;11:84–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Roberts N, Xiao Q, Weir G, et al. Endothelial progenitor cells are mobilized after cardiac surgery. Ann Thorac Surg. 2007;83:598–605.PubMedCrossRefGoogle Scholar
  37. 37.
    Rodriguez FA, Ventura JL, Casas M, et al. Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia. Eur J Appl Physiol. 2000;82:170–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Rodriguez FA, Casas H, Casas M, et al. Intermittent hypobaric hypoxia stimulates erythropoiesis and improves aerobic capacity. Med Sci Sports Exerc. 1999;31:264–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Serebrovskaya TV, Nikolsky IS, Nikolska VV, et al. Intermittent hypoxia mobilizes hematopoietic progenitors and augments cellular and humoral elements of innate immunity in adult men. High Alt Med Biol. 2011;12:243–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Serebrovskaya TV. Intermittent hypoxia research in the former Soviet Union and the Commonwealth of independent states: history and review of the concept and selected applications. High Alt Med Biol. 2002;3:205–21.PubMedCrossRefGoogle Scholar
  41. 41.
    Shatilo VB, Korkushko OV, Ischuk VA, et al. Effects of intermittent hypoxia training on exercise performance, hemodynamics, and ventilation in healthy senior men. High Alt Med Biol. 2008;9:43–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Shintani S, Murohara T, Ikeda H, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation. 2001;103:2776–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet. 2003;361:45–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Steiner S, Niessner A, Ziegler S, et al. Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease. Atherosclerosis. 2005; 181:305–10.PubMedCrossRefGoogle Scholar
  45. 45.
    Theiss HD, David R, Engelmann MG, et al. Circulation of CD34+ progenitor cell populations in patients with idiopathic dilated and ischaemic cardiomyopathy (DCM and ICM). Eur Heart J. 2007; 28:1258–64.PubMedCrossRefGoogle Scholar
  46. 46.
    Thijssen DH, Vos JB, Verseyden C, et al. Haematopoietic stem cells and endothelial progenitor cells in healthy men: effect of aging and training. Aging Cell. 2006;5:495–503.PubMedCrossRefGoogle Scholar
  47. 47.
    Tilling L, Chowienczyk P, Clapp B. Progenitors in motion: mechanisms of mobilization of endothelial progenitor cells. Br J Clin Pharmacol. 2009;68:484–92.PubMedCrossRefGoogle Scholar
  48. 48.
    Valgimigli M, Rigolin GM, Cittanti C, et al. Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J. 2005;26:1838–45.PubMedCrossRefGoogle Scholar
  49. 49.
    Valina C, Pinkernell K, Song Y, et al. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J. 2007;28:2667–77.PubMedCrossRefGoogle Scholar
  50. 50.
    Wahl P, Brixius K, Bloch W. Exercise-induced stem cell activation and its implication for cardiovascular and skeletal muscle regeneration. Minim Invasive Ther Allied Technol. 2008;17:91–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353:999–1007.PubMedCrossRefGoogle Scholar
  52. 52.
    Westenbrink BD, Lipsic E, van der Meer P, et al. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur Heart J. 2007;28:2018–27.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhu L, Zhao T, Li H, et al. Neurogenesis in the adult rat brain after intermittent hypoxia. Brain Res. 2005;1055:1–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Ginés Viscor
    • 1
    Email author
  • Casimiro Javierre
    • 2
  • Teresa Pagès
    • 1
  • Luisa Corral
    • 2
    • 3
  • Joan Ramon Torrella
    • 1
  • Antoni Ricart
    • 3
  • Josep Lluis Ventura
    • 3
  1. 1.Departament de Fisiologia i ImmunologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de Ciències Fisiològiques IIUniversitat de Barcelona, IDIBELL, Feixa Llarga s/nBarcelonaSpain
  3. 3.Servei de Medicina IntensivaHospital Universitari de Bellvitge, IDIBELL, Feixa Llarga s/nBarcelonaSpain

Personalised recommendations