Skip to main content

Effects of Chronic Intermittent Hypoxia on Cardiac Rhythm Transcriptomic Networks

  • Chapter
  • First Online:
Intermittent Hypoxia and Human Diseases

Abstract

This chapter completes a series of four studies analyzing in a mouse model the genomic consequences of chronic obstructive sleep apnea during development from neonatal to puberty. Groups of two male and two female 1-day-old sibling mice each were subjected for 1, 2, or 4 weeks to normal atmospheric conditions or to chronic intermittent hypoxia, and the transcriptomes of their hearts profiled and compared. Our previous papers reported alterations of individual genes, gene ontology categories, translation regulators and responses to stress, and analyzed and quantified the topological changes of the heart rhythm determinant (HRD) genomic fabric, including the ranking of the HRD genes. HRD fabric was defined as the most stably expressed and interconnected gene web that might be responsible for the generation, maintenance, and modulation of the heart rhythm in each condition. Here, we introduce the new analysis of the network landscape to determine the ways by which Ca2+ and Wnt signaling pathways, translation initiation, and elongation factors, and SOX (i.e., sex-determining region Y-box) genes control the HRD fabric. We also analyze the changes in the networks by which connexin 43, the main protein that couples the cardiomyocytes by forming intercellular gap junction channels, modulates the HRD fabric during development under normoxic and hypoxic conditions. Remarkably, the amplitude of the transcriptomic alterations diminished from 1 to 4 weeks of hypoxia, indicating activation of certain acclimatization or accommodation mechanisms. In addition to regulation of expression level, our analyses revealed changes in the stability control and interlinking of functional gene networks as well as switch of dominant gene pairs. Thus, we found that Hif1a-Jup, Lmna-Pcdh7, and Eef1a2-Gnao1 are the most important pairs at 1, 2, and 4 weeks normoxia, respectively, while Jup-Slc25a20, Cdh16-Vezt, and Eif2ak4-Pcdh12 are the controlling pairs at 1, 2, and 4 weeks hypoxia, respectively. The analysis has shown that changes in expression control and coordination had substantial contributions to the overall transcriptomic differences. Moreover, with respect to magnitude, hypoxia transcriptomic effects are comparable to those associated to development. Altogether, these results indicate the profound remodeling of the HRD fabric and regulatory pathways in response to intermittent oxygen deprivation that may explain the cardiac arrhythmias experienced by teenagers suffering by chronic obstructive sleep apnea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CIH:

Chronic intermittent hypoxia

HRD:

Heart rhythm determinant

NOR:

Normoxia (normal atmospheric conditions)

PGA:

Prominent Gene Analysis

SIG:

Signaling genes

SOX:

Sex-determining region Y-box

TRA:

Transcription and translation regulators

WNT:

Wingless-related MMTV integration site

References

  1. Dursunoglu D, Dursunoglu N. Cardiovascular diseases in obstructive sleep apnea. Tuberk Toraks. 2006;54:382–96.

    PubMed  Google Scholar 

  2. Jain V. Clinical perspective of obstructive sleep apnea-induced cardiovascular complications. Antioxid Redox Signal. 2007;9:701–10.

    Article  PubMed  CAS  Google Scholar 

  3. Park AM, Nagase H, Kumar SV, et al. Effects of intermittent hypoxia on the heart. Antioxid Redox Signal. 2007;9:723–9.

    Article  PubMed  CAS  Google Scholar 

  4. Schweitzer P. Cardiac arrhythmias in obstructive sleep apnea. Vnitr Lek. 2008;54:1006–9.

    PubMed  CAS  Google Scholar 

  5. Serebrovskaya TV, Manukhina EB, Smith ML, et al. Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med. 2008;233:627–50.

    Article  CAS  Google Scholar 

  6. Brisco MA, Goldberg LR. Sleep apnea in congestive heart failure. Curr Heart Fail Rep. 2010;7:175–84.

    Article  PubMed  Google Scholar 

  7. Nattel S, Maguy A, Le Bouter S, et al. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007;87:425–56.

    Article  PubMed  CAS  Google Scholar 

  8. Mohler PJ, Wehrens XH. Mechanisms of human arrhythmia syndromes: abnormal cardiac macromolecular interactions. Physiology (Bethesda). 2007;22:342–50.

    Article  CAS  Google Scholar 

  9. Dostanic I, Schultz Jel J, Lorenz JN, et al. The alpha 1 isoform of Na, K-ATPase regulates cardiac contractility and functionally interacts and co-localizes with the Na/Ca exchanger in heart. J Biol Chem. 2004;279:54053–61.

    Article  PubMed  CAS  Google Scholar 

  10. Lee RS, Lam CW, Lai CK, et al. Carnitine-acylcarnitine translocase deficiency in three neonates presenting with rapid deterioration and cardiac arrest. Hong Kong Med J. 2007;13:66–8.

    PubMed  Google Scholar 

  11. Killeen MJ, Thomas G, Sabir IN, et al. Mouse models of human arrhythmia syndromes. Acta Physiol (Oxy). 2008;192:455–69.

    Article  CAS  Google Scholar 

  12. Teng GQ, Zhao X, Lees-Miller JP, et al. Homozygous missense N629D hERG (KCNH2) potassium channel mutation causes developmental defects in the right ventricle and its outflow tract and embryonic lethality. Circ Res. 2008;103:1483–91.

    Article  PubMed  CAS  Google Scholar 

  13. Fan C, Iacobas DA, Zhou D, et al. Gene expression and phenotypic characterization of mouse heart after chronic constant and intermittent hypoxia. Physiol Genomics. 2005;22:292–307.

    Article  PubMed  CAS  Google Scholar 

  14. Iacobas DA, Fan C, Iacobas S, et al. Transcriptomic changes in developing kidney exposed to chronic hypoxia. Biochem Biophys Res Commun. 2006;349:329–38.

    Article  PubMed  CAS  Google Scholar 

  15. Douglas RM, Miyasaka N, Takahashi K, Hetherington HP, et al. Chronic intermittent but not constant hypoxia decreases NAA/Cr ratios in neonatal mouse hippocampus and thalamus. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1254–9.

    Article  PubMed  CAS  Google Scholar 

  16. Iacobas DA, Fan C, Iacobas S, et al. Integrated transcriptomic response to cardiac chronic hypoxia: translation regulators and response to stress in cell survival. Funct Integr Genomics. 2008;8:265–75.

    Article  PubMed  CAS  Google Scholar 

  17. Iacobas DA, Iacobas S, Haddad GG. Heart rhythm genomic fabric in hypoxia. Biochem Biophys Res Commun. 2010;391:1769–74.

    Article  PubMed  CAS  Google Scholar 

  18. Ai J, Wurster RD, Harden SW, et al. Vagal afferent innervation and remodeling in the aortic arch of young adult Fischer 344 rats following chronic intermittent hypoxia. Neuroscience. 2009;164:658–66.

    Article  PubMed  CAS  Google Scholar 

  19. Naghshin J, McGaffin KR, Witham WG, et al. Chronic intermittent hypoxia increases left ventricular contractility in C57BL/6J mice. J Appl Physiol. 2009;107:787–93.

    Article  PubMed  CAS  Google Scholar 

  20. Chen L, Zhang J, Hu X, et al. The Na+/Ca2+ exchanger-1 mediates left ventricular dysfunction in mice with chronic intermittent hypoxia. J Appl Physiol. 2010;109:1675–85.

    Article  PubMed  CAS  Google Scholar 

  21. Guan Y, Gao L, Ma HJ, et al. Chronic intermittent hypobaric hypoxia decreases beta-adrenoceptor activity in right ventricular papillary muscle. Am J Physiol Heart Circ Physiol. 2010;298:H1267–72.

    Article  PubMed  CAS  Google Scholar 

  22. Kc P, Balan KV, Tjoe SS, et al. Increased vasopressin transmission from the paraventricular nucleus to the rostral medulla augments cardiorespiratory outflow in chronic intermittent hypoxia-conditioned rats. J Physiol. 2010;588:725–40.

    Article  PubMed  CAS  Google Scholar 

  23. Liu JN, Zhang JX, Lu G, et al. The effect of oxidative stress in myocardial cell injury in mice exposed to chronic intermittent hypoxia. Chin Med J. 2010;123:74–8.

    PubMed  Google Scholar 

  24. Tekin D, Dursun AD, Xi L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol Sin. 2010;31:1085–94.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Y, Zhong N, Zhou ZN. Effects of chronic intermittent hypobaric hypoxia on the L-type calcium current in rat ventricular myocytes. High Alt Med Biol. 2010;11:61–7.

    Article  PubMed  CAS  Google Scholar 

  26. van Rooij E, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest. 2007;117:2369–76.

    Article  PubMed  Google Scholar 

  27. Cai B, Pan Z, Lu Y. The roles of microRNAs in heart diseases: a novel important regulator. Curr Med Chem. 2010;17:407–11.

    Article  PubMed  CAS  Google Scholar 

  28. Girmatsion Z, Biliczki P, Bonauer A, et al. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm. 2009;6:1802–9.

    Article  PubMed  Google Scholar 

  29. Kormish JD, Sinner D, Zorn AM. Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease. Dev Dyn. 2010;239:56–68.

    PubMed  CAS  Google Scholar 

  30. Ai Z, Fischer A, Spray DC, et al. Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest. 2000;105:161–71.

    Article  PubMed  CAS  Google Scholar 

  31. Gessert S, Kühl M. The multiple phases and faces of Wnt signaling during cardiac differentiation and development. Circ Res. 2010;107:186–99.

    Article  PubMed  CAS  Google Scholar 

  32. Nagy II, Railo A, Rapila R, et al. Wnt-11 signalling controls ventricular myocardium development by patterning N-cadherin and beta-catenin expression. Cardiovasc Res. 2010;85:100–9.

    Article  PubMed  CAS  Google Scholar 

  33. Garcia-Gras E, Lombardi R, Giocondo MJ, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest. 2006;116:2012–21.

    Article  PubMed  CAS  Google Scholar 

  34. Malekar P, Hagenmueller M, Anyanwu A, et al. Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension. 2010;55:939–45.

    Article  PubMed  CAS  Google Scholar 

  35. Martin J, Afouda BA, Hoppler S. Wnt/beta-catenin signalling regulates cardiomyogenesis via GATA transcription factors. J Anat. 2010;216:92–107.

    Article  PubMed  CAS  Google Scholar 

  36. Iacobas DA, Iacobas S, Urban-Maldonado M, et al. Similar transcriptomic alterations in Cx43 knock-down and knock-out astrocytes. Cell Commun Adhes. 2008;15:195–206.

    Article  PubMed  CAS  Google Scholar 

  37. Spray DC, Iacobas DA. Organizational principles of the connexin-related brain transcriptome. J Membr Biol. 2007;218:39–47.

    Article  PubMed  CAS  Google Scholar 

  38. Iacobas DA, Iacobas S, Spray DC. Connexin-dependent transcellular transcriptomic networks in mouse brain. Prog Biophys Mol Biol. 2007;94:168–84.

    Article  Google Scholar 

  39. Iacobas DA, Iacobas S, Thomas N, et al. Sex-dependent gene regulatory networks of the heart rhythm. Funct Integr Genomics. 2010;10:73–86.

    Article  PubMed  CAS  Google Scholar 

  40. Iacobas S, Iacobas DA. Astrocyte proximity modulates the myelination gene fabric of oligodendrocytes. Neuron Glia Biol. 2010;6:157–169.

    Google Scholar 

  41. Lombardi R, Dong J, Rodriguez G, et al. Genetic fate mapping identifies second heart field progenitor cells as a source of adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ Res. 2009;104:1076–84.

    Article  PubMed  CAS  Google Scholar 

  42. Paige SL, Osugi T, Afanasiev OK, et al. Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One. 2010;5:e11134.

    Article  PubMed  Google Scholar 

  43. Chen HW, Yu SL, Chen WJ, et al. Dynamic changes of gene expression profiles during postnatal development of the heart in mice. Heart. 2004;90:927–34.

    Article  PubMed  CAS  Google Scholar 

  44. Liew CC, Dzau VJ. Molecular genetics and genomics of heart failure. Nat Rev Genet. 2004;5:811–25.

    Article  PubMed  CAS  Google Scholar 

  45. Gao Z, Xu H, DiSilvestre D, et al. Transcriptomic profiling of the canine tachycardia-induced heart failure model: global comparison to human and murine heart failure. J Mol Cell Cardiol. 2006;40:76–86.

    Article  PubMed  CAS  Google Scholar 

  46. Roberts R. Genomics and cardiac arrhythmias. J Am Coll Cardiol. 2006;47:9–21.

    Article  PubMed  CAS  Google Scholar 

  47. Jickling GC, Xu H, Stamova B, et al. Signatures of cardioembolic and large-vessel ischemic stroke. Ann Neurol. 2010;68:681–92.

    Article  PubMed  Google Scholar 

  48. Du CY, El Harchi A, McPate MJ, et al. Enhanced inhibitory effect of acidosis on hERG potassium channels that incorporate the hERG1b isoform. Biochem Biophys Res Commun. 2011;405:222–7.

    Article  PubMed  CAS  Google Scholar 

  49. Sun Z, Cheng Z, Taylor CA, et al. Apoptosis induction by eIF5A1 involves activation of the intrinsic mitochondrial pathway. J Cell Physiol. 2010;223:798–809.

    PubMed  CAS  Google Scholar 

  50. Wong AK, Howie J, Petrie JR, et al. AMP-activated protein kinase pathway: a potential therapeutic target in cardiometabolic disease. Clin Sci. 2009;116:607–20.

    Article  PubMed  CAS  Google Scholar 

  51. Ieda M, Kanazawa H, Kimura K, et al. Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med. 2007;13:604–12.

    Article  PubMed  CAS  Google Scholar 

  52. Iacobas DA, Iacobas S, Li WE, et al. Genes controlling multiple functional pathways are transcriptionally regulated in connexin43 null mouse heart. Physiol Genomics. 2005;20:211–23.

    PubMed  CAS  Google Scholar 

  53. Delmar M, McKenna WJ. The cardiac desmosome and arrhythmogenic cardiomyopathies: from gene to disease. Circ Res. 2010;107:700–14.

    Article  PubMed  CAS  Google Scholar 

  54. Soares MBP, Lima RS, Souza BSF, et al. Reversion of gene expression alterations in hearts of mice with chronic chagasic cardiomyopathy after transplantation of bone marrow cells. Cell Cycle. 2011;10:1448–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The research was supported by award number HL092001 (DAI) from the National Heart, Lung, and Blood Institute (NHLBI). The content is solely the responsibility of the authors and does not necessarily represent the NHLBI official views.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Andrei Iacobas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Iacobas, S., Iacobas, D.A. (2012). Effects of Chronic Intermittent Hypoxia on Cardiac Rhythm Transcriptomic Networks. In: Xi, L., Serebrovskaya, T. (eds) Intermittent Hypoxia and Human Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-2906-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2906-6_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2905-9

  • Online ISBN: 978-1-4471-2906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics