Advertisement

Neuroprotective Mechanisms of Intermittent Hypoxia: An In Vitro Study

  • Galina Skibo
  • Maxim Orlovsky
  • Anastasiia Maistrenko
  • Victor Dosenko
  • Iryna Lushnikova
Chapter

Abstract

It is well known that brief sublethal anoxia episodes can render neurons resistant against subsequent longer or more severe anoxia and ischemia. The progress in applications of hypoxia in medicine is largely dependent on availability of appropriate experimental models. In this chapter, we describe an in vitro model for anoxia investigations using organotypic-cultured hippocampal slices. We investigate the efficiency of different regimes of anoxia preconditioning. We also describe a new single-cell real-time RT-PCR method for analyzing individual neurons within cultured hippocampal slices. This approach allows investigation of short-term neuronal reactions on anoxia preconditioning and oxygen-glucose deprivation – an experimental model of ischemic brain damage. Using these methods, we demonstrated that hypoxia-inducible factors (HIF), a family of transcription regulators, are involved in the mechanisms of anoxia-induced neuroprotection in hippocampus. In particular, brief intermittent anoxia prevented the decrease in HIF-1 mRNA expression caused by severe oxygen-glucose deprivation, which is closely correlated with its neuroprotective action. Possible mechanisms of such endogenous neuroprotective effect are discussed.

Keywords

Intermittent Hypoxia Hypoxic Precondition Organotypic Hippocampal Slice Culture Significant Neuronal Loss Anoxia Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

APC

Anoxia preconditioning

HBSS

Hanks’ balanced salt solution

HIF

Hypoxia-inducible factor

OGD

Oxygen-glucose deprivation

PI

Propidium iodide

Notes

Acknowledgment

This work was funded by the grant of SFFD 46.2/001.

References

  1. 1.
    Viru A. Early contributions of Russian stress and exercise physiologists. J Appl Physiol. 2002;92:1378–82.PubMedGoogle Scholar
  2. 2.
    Kitagawa K, Matsumoto M, Tagaya M, et al. “Ischemic tolerance” phenomenon found in the brain. Brain Res. 1990;528:21–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Moncayo J, de Freitas GR, Bogousslavsky J, et al. Do transient ischemic attacks have a neuroprotective effect? Neurology. 2000;54:2089–94.PubMedCrossRefGoogle Scholar
  4. 4.
    Weih M, Kallenberg K, Bergk A, et al. Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain? Stroke. 1999;30:1851–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Sakaki T, Yamada K, Otsuki H, et al. Brief exposure to hypoxia induces bFGF mRNA and protein and protects rat cortical neurons from prolonged hypoxic stress. Neurosci Res. 1995;23:289–96.PubMedCrossRefGoogle Scholar
  6. 6.
    Schaller B. Endogenous neuroprotection. New York: Nova Publishers; 2008.Google Scholar
  7. 7.
    Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8:398–412.PubMedCrossRefGoogle Scholar
  8. 8.
    Pignataro G, Scorziello A, Di Renzo G, et al. Post-ischemic brain damage: effect of ischemic preconditioning and postconditioning and identification of potential candidates for stroke therapy. FEBS J. 2009;276:46–57.PubMedCrossRefGoogle Scholar
  9. 9.
    Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79:1431–568.PubMedGoogle Scholar
  10. 10.
    Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991;37:173–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Buddle M, Eberhardt E, Ciminello LH, et al. Microtubule-associated protein 2 (MAP2) associates with the NMDA receptor and is spatially redistributed within rat hippocampal neurons after oxygen-glucose deprivation. Brain Res. 2003;978:38–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Lushnikova IV, Voronin KY, Malyarevskyy PY, et al. Morphological and functional changes in rat hippocampal slice cultures after short-term oxygen-glucose deprivation. J Cell Mol Med. 2004;8:241–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Skibo GG, Lushnikova IV, Voronin KY, et al. A synthetic NCAM-derived peptide, FGL, protects hippocampal neurons from ischemic insult both in vitro and in vivo. Eur J Neurosci. 2005;22:1589–96.PubMedCrossRefGoogle Scholar
  14. 14.
    Laake JH, Haug FM, Wieloch T. A simple in vitro model of ischemia based on hippocampal slice cultures and propidium iodide fluorescence. Brain Res Brain Res Protoc. 1999;4:173–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Wilde GJ, Pringle AK, Wright P, et al. Differential vulnerability of the CA1 and CA3 subfields of the hippocampus to superoxide and hydroxyl radicals in vitro. J Neurochem. 1997;69:883–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Hassen GW, Tian D, Ding D, et al. A new model of ischemic preconditioning using young adult hippocampal slice cultures. Brain Res Brain Res Protoc. 2004;13:135–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Raval AP, Bramlett H, Perez-Pinzon MA. Estrogen preconditioning protects the hippocampal CA1 against ischemia. Neuroscience. 2006;141:1721–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Griesemer D, Mautes AM. Closed head injury causes hyperexcitability in rat hippocampal CA1 but not in CA3 pyramidal cells. J Neurotrauma. 2007;24:1823–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Newrzella D, Pahlavan PS, Kruger C, et al. The functional genome of CA1 and CA3 neurons under native conditions and in response to ischemia. BMC Genomics. 2007;8:370.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhao T, Zhang CP, Liu ZH, et al. Hypoxia-driven proliferation of embryonic neural stem/progenitor cells–role of hypoxia-inducible transcription factor-1alpha. FEBS J. 2008;275:1824–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Chang AY, Chan JY, Cheng HL, et al. Hypoxia-inducible factor 1/heme oxygenase 1 cascade as upstream signals in the prolife role of heat shock protein 70 at rostral ventrolateral medulla during experimental brain stem death. Shock. 2009;32:651–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Fan X, Heijnen CJ, van der Kooij MA, et al. The role and regulation of hypoxia-inducible factor-1alpha expression in brain development and neonatal hypoxic-ischemic brain injury. Brain Res Rev. 2009;62:99–108.PubMedCrossRefGoogle Scholar
  23. 23.
    Sorond FA, Shaffer ML, Kung AL, et al. Desferroxamine infusion increases cerebral blood flow: a potential association with hypoxia-inducible factor-1. Clin Sci. 2009;116:771–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Dawn B, Bolli R. HO-1 induction by HIF-1: a new mechanism for delayed cardioprotection? Am J Physiol Heart Circ Physiol. 2005;289:H522–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Grimm C, Hermann DM, Bogdanova A, et al. Neuroprotection by hypoxic preconditioning: HIF-1 and erythropoietin protect from retinal degeneration. Semin Cell Dev Biol. 2005;16:531–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Maxwell PH, Wiesener MS, Chang GW, et al. The tumour ­suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Kamura T, Maenaka K, Kotoshiba S, et al. VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev. 2004;18:3055–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Siddiq A, Aminova LR, Troy CM, et al. Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J Neurosci. 2009;29:8828–38.PubMedCrossRefGoogle Scholar
  29. 29.
    Hara S, Hamada J, Kobayashi C, et al. Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha. Biochem Biophys Res Commun. 2001;287:808–13.PubMedCrossRefGoogle Scholar
  30. 30.
    Makino Y, Cao R, Svensson K, et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature. 2001;414:550–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Heidbreder M, Frohlich F, Johren O, et al. Hypoxia rapidly activates HIF-3alpha mRNA expression. FASEB J. 2003;17:1541–3.PubMedGoogle Scholar
  32. 32.
    Ndubuizu OI, Chavez JC, LaManna JC. Increased prolyl 4-hydroxylase expression and differential regulation of hypoxia-inducible factors in the aged rat brain. Am J Physiol Regul Integr Comp Physiol. 2009;297:R158–65.PubMedCrossRefGoogle Scholar
  33. 33.
    Stroka DM, Burkhardt T, Desaillets I, et al. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J. 2001;15:2445–53.PubMedGoogle Scholar
  34. 34.
    van den Tweel ER, Kavelaars A, Lombardi MS, et al. Bilateral molecular changes in a neonatal rat model of unilateral hypoxic-ischemic brain damage. Pediatr Res. 2006;59:434–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Chavez JC, Agani F, Pichiule P, et al. Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol. 2000;89:1937–42.PubMedGoogle Scholar
  36. 36.
    Li L, Qu Y, Li J, et al. Relationship between HIF-1alpha expression and neuronal apoptosis in neonatal rats with hypoxia-ischemia brain injury. Brain Res. 2007;1180:133–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Galina Skibo
    • 1
  • Maxim Orlovsky
    • 1
  • Anastasiia Maistrenko
    • 1
  • Victor Dosenko
    • 2
  • Iryna Lushnikova
    • 1
  1. 1.Department of CytologyState Key Laboratory of Molecular and Cellular Biology, Bogomoletz Institute of Physiology, National Academy of SciencesKievUkraine
  2. 2.Department of General PathophysiologyState Key Laboratory of Molecular and Cellular Biology, Bogomoletz Institute of Physiology, National Academy of SciencesKievUkraine

Personalised recommendations