Skip to main content

Intermittent Hypoxia and Experimental Parkinson’s Disease

  • Chapter
  • First Online:
Intermittent Hypoxia and Human Diseases

Abstract

Parkinson’s disease (PD) is a common neurodegenerative disease which is characterized by a progressive degeneration of dopaminergic neurons in the midbrain. A most reliable mechanism causing the apoptosis in dopaminergic structures of the brain during aging and Parkinson’s disease is the activation of oxidative stress. Until now, effective means for the prevention of dopaminergic neurons degeneration and for the retention of damaged neurons functioning is still lacking. A promising way to slacken the pace of degenerative processes during aging and PD could be the adaptation to intermittent hypoxia. Such adaptation strengthens dopamine (DA) synthesis and release at peripheral chemoreceptors in carotid bodies and activates tyrosine hydroxylase – a rate-limiting enzyme for catecholamine synthesis. In this chapter, we examined three groups of rats: adult, old, and old rats with experimental DA deficiency. It was revealed that there was an asymmetry of dopamine distribution between the right and left striatum of adult rats. Prevalent quantity of dopamine was concentrated in right hemisphere. During aging DA, production decreased in the examined structures mainly in right hemisphere of the striatum, so its distribution asymmetry diminished. In PD animals, this decrease was much more expressed and led to practically total abolishment of quantitative difference between right and left hemispheres. Two-week course of intermittent hypoxia training (IHT, five cycles of 15-min exposures to 12% O2 followed by 15-min room air breathing per day) increased dopamine synthesis in old and experimental PD animals, especially in the right striatum, restored partially the asymmetry of DA distribution between brain hemispheres. IHT also decreased the intensity of lipid peroxidation. Increased plasma antioxidant activity positively correlated with increased DA concentration in the striatum. Therefore, IHT could serve as a good perspective means for the deceleration of aging and prevention/treatment of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-OHDA:

6-hydroxydopamine

CAT:

Catalase

CB:

Carotid bodies

DA:

Dopamine

EDAD:

Experimental DA deficiency

GFAP:

Glial fibrillary acid protein

HIF:

Hypoxia inducible factor

IHT:

Intermittent hypoxia training

MAO:

Monoamine oxidase

MDA:

Malondialdehyde

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SN:

Substantia nigra

SOD:

Superoxide dismutase

TH:

Tyrosine hydroxylase

References

  1. Wei YH, Ma YS, Lee HC, et al. Mitochondrial theory of aging matures-roles of mtDNA mutation and oxidative stress in human aging. Zhonghua Yi Xue Za Zhi (Taipei). 2001;64:259–70.

    CAS  Google Scholar 

  2. Lee HC, Wei YH. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med. 2007;232:592–606.

    CAS  Google Scholar 

  3. Orr WC, Sohal RS. Effects of Cu, Zn superoxide dismutase overexpression on life span and resistance to oxidative stress in transgenic drosophila melanogaster. Arch Biochem Biophys. 1993;301:34–40.

    Article  PubMed  CAS  Google Scholar 

  4. Kish SJ, Shannak K, Rajput A, et al. Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson’s disease. J Neurochem. 1992;58:642–8.

    Article  PubMed  CAS  Google Scholar 

  5. Foster ER, Black KJ, Antenor-Dorsey JA, et al. Motor asymmetry and substantia nigra volume are related to spatial delayed response performance in Parkinson disease. Brain Cogn. 2008;67:1–10.

    Article  PubMed  Google Scholar 

  6. Hershey T, Wu J, Weaver PM. Unilateral vs. bilateral STN DBS effects on working memory and motor function in Parkinson disease. Exp Neurol. 2008;210:402–8.

    Article  PubMed  CAS  Google Scholar 

  7. Chuyan EN. Changes in motor asymmetry of low-intensive high-frequency electromagnetic radiation in normal conditions and under stress. Neurophysiology. 2005;37:164–8 [In Russian].

    Article  Google Scholar 

  8. Carlson JN, Stewens KD. Individual differences in ethanol self-administration following withdrawal are associated with asymmetric changes in dopamine and serotonin in the medial prefrontal cortex and amygdale. Alcohol Clin Exp Res. 2006;30:1678–92.

    Article  PubMed  CAS  Google Scholar 

  9. Tomer R, Goldshtein RZ, Wang GJ, et al. Incentive motivation is associated with striatal dopamine asymmetry. Biol Psychol. 2008;77:98–101.

    Article  PubMed  Google Scholar 

  10. Belikova MV, Kolesnikova EE. Changes in rat striatum dopamine content under aging and dopamine insufficiency. Probl Aging Longevity. 2006;15:187–91 [In Russian].

    CAS  Google Scholar 

  11. Budilin S, Midzianovskaia IS, Shchegolevskii NV, et al. Asymmetry in the dopamine content in the nucleus accumbens and the motor preference in rats. Zh Vyssh Nerv Deiat Im I P Pavlova. 2007;57:598–603 [In Russian].

    PubMed  CAS  Google Scholar 

  12. Tomer R, Aharon-Peretz J, Tsitrinbaum Z. Dopamine asymmetry interacts with medication to affect cognition in Parkinson’s disease. Neuropsychologia. 2007;45:357–67.

    Article  PubMed  Google Scholar 

  13. Vernaleken I, Weibrich C, Siessmeier T, et al. Asymmetry in dopamine D (2/3) receptors of caudate nucleus is lost with age. Neuroimage. 2007;34:870–8.

    Article  PubMed  Google Scholar 

  14. Bee D, Pallot DJ. Acute hypoxic ventilation, carotid body cell division and dopamine content during early hypoxia in rats. J Appl Physiol. 1995;79:1504–11.

    PubMed  CAS  Google Scholar 

  15. Nurse CA, Jackson A, Makintaire F, et al. Adaptation of O2 chemoreceptors to hypoxia in vitro. In: Women at altitude. Burlingron: Queen City Printers Inc.; 1997. p. 147–53.

    Google Scholar 

  16. Vrecko K, Storga D, Bikmayer JG, et al. NADH stimulates endogenous dopamine biosynthesis by enhancing the recycling of tetrahydrobiopterin in rat phaeochromocytoma cells. Biochem Biophys Acta. 1997;1361:59–65.

    Article  PubMed  CAS  Google Scholar 

  17. Serebrovskaya TV. Intermittent hypoxia research in the former Soviet Union and the commonwealth of the independent states (CIS): history and review of the concept and selective application. High Alt Med Biol. 2002;3:205–21.

    Article  PubMed  Google Scholar 

  18. Bove J, Prou D, Perier C, et al. Toxin-induced models of Parkinson’s disease. NeuroRx. 2005;2:484–94.

    Article  PubMed  Google Scholar 

  19. Oleshko NN. Morphofunctional study of interaction of glutamate-, choline- and dopamine-ergic systems in neostriatum. Ross Fiziol Zh Im I M Sechenova. 1997;1–2:96–101 [In Russian].

    Google Scholar 

  20. Jacobowith PM, Richardson JS. Method for the rapid determination of norepinephrine, dopamine, serotonin in the same brain region. Pharmacol Biochem Behav. 1979;8:515–9.

    Article  Google Scholar 

  21. Stal’naya ID, Garishvili TG. Method malondialdehyde evaluation with help of tiobarbituric acid. In: Orekhovich VN, editor. Modern methods in biochemistry. Moscow: Medicine; 1977. p. 66–7 [In Russian].

    Google Scholar 

  22. Chevari S, Chaba I, Sekei Y. The role of super oxide dismutase in oxidative processes in the cella and the method of its estimation in biological materials. Lab Delo. 1985;11:678–81. [In Russian].

    PubMed  Google Scholar 

  23. Korolyuk MA, Ivanova AI, Majorova IT, et al. Method of catalase activity examination. Lab Delo. 1988;1:16–9 [In Russian].

    Google Scholar 

  24. Calne DB, Reppard RF. Aging of nigrostriatal pathway in human. Can J Neurol Sci. 1987;14:424–7.

    PubMed  CAS  Google Scholar 

  25. Hornykiewicz O. Neurochimical patology and the ethiology of Parkinson’s disease: basic facts and hipotetical possibilities. Mt Sinai J Med. 1988;5:11–20.

    Google Scholar 

  26. Betarbet R, Sherer TB, Greenmyre JT. Animal models of Parkinson’s disease. Bioessays. 2002;24:308–18.

    Article  PubMed  CAS  Google Scholar 

  27. Kryzhanovski GN. Determinant structures in nervous system pathology. In: Generator mechanisms of neuropathological syndromes. Moscow; 1980. p. 360 [In Russian].

    Google Scholar 

  28. Kryzhanovski GN. General pathology of nervous system. Moscow; 1997, p. 352. [In Russian].

    Google Scholar 

  29. Chen J, Dinger B, Fidone SJ. Second messenger regulation of tyrosine hydroxilase gene expression in rat carotid body. Biol Signals. 1995;4:277–85.

    Article  PubMed  CAS  Google Scholar 

  30. Millhorn DE, Conforti L, Beitner-Johnson D, et al. Regulation of ionic conductances and gene expression by hypoxia in an oxygen sensitive cell line. Adv Exp Med Biol. 1996;410:135–42.

    Article  PubMed  CAS  Google Scholar 

  31. Raymond R, Millhorn DE. Regulation of tyrosine hydroxylase gene expression during hypoxia: role of Ca2+ and PKC. Kidney Int. 1997;51:536–41.

    Article  PubMed  CAS  Google Scholar 

  32. Lam SY, Tipoe GL, Long EC, et al. Differential expressions and roles of hypoxia-inducible factor-1alpha, -2alpha and -3alpha in the rat carotid body during chronic and intermittent hypoxia. Histol Histopathol. 2008;23:271–80.

    PubMed  CAS  Google Scholar 

  33. Haavik J, Toska K. Tyrosine hydroxilase and Parkinson’s disease. Mol Neurobiol. 1998;16:285–309.

    Article  PubMed  CAS  Google Scholar 

  34. Ponzio F, Brunello N, Algeri S. Catecholamine synthesis in brain of aging rat. J Neurochem. 1978;30:1617–20.

    Article  PubMed  CAS  Google Scholar 

  35. Tumer N, Larochelle JS. Tyrosine hydroxylase expression in rat adrenal medulla: influence of age and cold. Pharmacol Biochem Behav. 1995;51:775–80.

    Article  PubMed  CAS  Google Scholar 

  36. Lopez-Barneo J, Ortega-Saenz P, Pardal R, et al. Oxygen sensing in the carotid body. Ann N Y Acad Sci. 2009;1177:119–31.

    Article  PubMed  CAS  Google Scholar 

  37. Kolesnikova EE, Safronova OS, Serebrovskaya TV. Age-related peculiarities of breathing regulation and antioxidant enzymes under intermittent hypoxic training. J Physiol Pharmacol. 2003;54:20–4.

    PubMed  Google Scholar 

  38. Rizvi SI, Maurya PK. Alterations in antioxidant enzymes during aging in humans. Mol Biotechnol. 2007;37:58–61.

    Article  PubMed  CAS  Google Scholar 

  39. Gomes P, Simão S, Silva E, et al. Aging increases oxidative stress and renal expression of oxidant and antioxidant enzymes that are associated with an increased trend in systolic blood pressure. Oxid Med Cell Longev. 2009;2:138–45.

    Article  PubMed  Google Scholar 

  40. Carvalho C, Santos MS, Baldeiras I, et al. Chronic hypoxia potentiates age-related oxidative imbalance in brain vessels and synaptosomes. Curr Neurovasc Res. 2010;7:288–300.

    Article  PubMed  CAS  Google Scholar 

  41. Gautam N, Das S, Mahapatra SK, et al. Age associated oxidative damage in lymphocytes. Oxid Med Cell Longev. 2010;3:275–82.

    Article  PubMed  Google Scholar 

  42. Mann DMA, Yates PO. Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech Ageing Dev. 1983;21:193–203.

    Article  PubMed  CAS  Google Scholar 

  43. Chiueh CC, Krishna G, Tulsi P, et al. Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autooxidation in the caudate nucleus: effect of MPP+. Free Radic Biol Med. 1992;13:581–3.

    Article  PubMed  CAS  Google Scholar 

  44. Boldyrev AA. Dual role of free radical oxygen forms in ischemic brain. Neirochimiya. 1995;12:3–13 [In Russian].

    Google Scholar 

  45. Dexter DT, Holley AE, Flitter WD, et al. Parkinson’s disease increased levels of hydroxyperoxides in the Parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord. 1994;9:92–7.

    Article  PubMed  CAS  Google Scholar 

  46. Yoritaka A, Hattori N, Uchida K, et al. Immunohistochemucal detection of 4-hydroxynonenal protein adducts in Parkinson’s disease. Proc Natl Acad Sci USA. 1996;93:2696–701.

    Article  PubMed  CAS  Google Scholar 

  47. Serra JA, Domínguez RO, de Lustig ES, et al. Parkinson’s disease is associated with oxidative stress: comparison of peripheral antioxidant profiles in living Parkinson’s, Alzheimer’s and vascular dementia patients. J Neural Transm. 2001;108:1135–48.

    Article  PubMed  CAS  Google Scholar 

  48. Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson disease. Neurology. 1996;47:S161–70.

    Article  PubMed  CAS  Google Scholar 

  49. Martilla RG, Lorentz H, Rinne UK. Oxygen toxicity, protecting enzymes in Parkinson’s disease: increase of superoxide dismutase-like activity in the substantia nigra and basal nucleus. J Neurol Sci. 1988;86:321–31.

    Article  Google Scholar 

  50. Yoritaka A, Hattori N, Mori H, et al. An immunohostochemical study on manganese superoxide dismutase in Parkinson’s disease. J Neurol Sci. 1997;148:181–6.

    Article  PubMed  CAS  Google Scholar 

  51. Smith TS, Bennet Jr JP. Mitochondrial toxins in models of neurodegenerative diseases. I. In vivo brain hydroxyl radical production during systemic MPTP treatment or following microialysis infusion of methylpyridinum or azide ions. Brain Res. 1997;765:183–8.

    Article  PubMed  CAS  Google Scholar 

  52. Yu YP, Ju WP, Li ZG, et al. Acupuncture inhibits oxidative stress and rotational behavior in 6-hydroxydopamine lesioned rat. Brain Res. 2010;1336:58–65.

    Article  PubMed  CAS  Google Scholar 

  53. Gardner HW. Oxygen radical chemistry of polyunsaturated fatty acids. Free Radic Biol Med. 1989;7:65–86.

    Article  PubMed  CAS  Google Scholar 

  54. Piretti MV, Pagliuca G. Systematic isolation and identification of membrane lipid oxidation products. Free Radic Biol Med. 1989;7:219–21.

    Article  PubMed  CAS  Google Scholar 

  55. Davies KJA. Proteolytic systems as secondary antioxidant defenses. In: Chow CK, editor. Cellular antioxidant defense mechanisms. Boca Raton: CRC; 1988. p. 25–67.

    Google Scholar 

  56. Lindgren P, von Campenhausen S, Spottke E, et al. Cost of Parkinson’s disease in Europe. Eur J Neurol. 2005;12:68–73.

    Article  PubMed  Google Scholar 

  57. Koutsilieri E, Scheller S, Grunblatt E, et al. Free radicals in Parkinson’s disease. J Neurol. 2002;2:II1–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenia E. Kolesnikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Belikova, M.V., Kolesnikova, E.E., Serebrovskaya, T.V. (2012). Intermittent Hypoxia and Experimental Parkinson’s Disease. In: Xi, L., Serebrovskaya, T. (eds) Intermittent Hypoxia and Human Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-2906-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2906-6_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2905-9

  • Online ISBN: 978-1-4471-2906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics