Skip to main content

Intermittent Hypoxia in Treatment of Bronchial Asthma in Childhood

  • Chapter
  • First Online:
Intermittent Hypoxia and Human Diseases

Abstract

According to the World Health Organization, bronchial asthma (BA) is a serious public health problem with over 300 million sufferers of all ages. In this chapter, we demonstrate the possibility to treat BA in childhood with intermittent hypoxia treatment/training (IHT) programs and provide clinical evidence, adverse effects, and latest experience in IHT implementation. Particularly, it was shown that 2-week IHT resulted in a significant decline in breath shortness and feelings of chest congestion in BA children (aged 9–13 years). The cough was diminished or disappeared, and the amount of sputum was reduced and passed more easily. The attacks of asphyxia disappeared or became more occasional. Considerable augmentation of ventilatory response to hypoxic stimuli was observed as well as a diminution of heart rate (HR) reactions to increased hypoxia and an attenuated fall of SaO2 under hypoxic conditions. Mitochondrial enzymes activity of immune cells such as succinate dehydrogenase (SDG) and alpha-glycerophosphate dehydrogenase (GPDG) increased significantly under IHT. Strong correlation between individual hypoxic sensitivity and enzymes activities was found. In conclusion, IHT represents a promising approach in prevention and treatment of bronchial asthma in childhood. The proper choice of the hypoxic dosage depending on individual’s reactivity must be titrated for each patient in order to avoid negative effects of hypoxia and to augment the favorable ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BA:

Bronchial asthma

CAT:

Catalase

COPD:

Chronic obstructive pulmonary disease

EPO:

Erythropoietin

GPDG:

Alpha-glycerophosphate dehydrogenase

GST:

Glutathione-s-transferase

HIF:

Hypoxia-inducible factor

HR:

Heart rate

HVR:

Hypoxic ventilatory response

IH:

Intermittent hypoxia

IHT:

Intermittent hypoxia training/treatment

MEAS:

Method of expert assessing scales

NO:

Nitric oxide

NOS:

Nitric oxide synthase

OSAS:

Obstructive sleep apnea syndrome

ROS:

Reactive oxygen species

SaO2 :

Arterial oxygen saturation

SDG:

Succinate dehydrogenase

Cu,Zn – SOD:

Cu,Zn-superoxide dismutase

V E :

Minute ventilation

References

  1. Anokhin MI, Geppe NA, Dairova RA. Effects of hypoxic stimulation observed in the animal experiments and in children with bronchial asthma. Fiziol Zh. 1992;38:33–9 [In Russian].

    PubMed  CAS  Google Scholar 

  2. Baker TL, Fuller DD, Zabka AGGS, et al. Respiratory plasticity: differential actions of continuous and episodic hypoxia and hypercapnia. Respir Physiol. 2001;129:25–35.

    Article  PubMed  CAS  Google Scholar 

  3. Bass JL, Corwin M, Gozal D, et al. The effect of chronic or intermittent hypoxia on cognition in childhood: a review of the evidence. Pediatrics. 2004;114:805–16.

    Article  PubMed  Google Scholar 

  4. Belikova VV. Correlation between clinical and cytochemical changes in bronchial asthma in children. Pediatriia. 1976;11:30–3 [In Russian].

    PubMed  Google Scholar 

  5. Berezovskiĭ VA, Levashov MI. Physiological premises and mechanisms of normalizing effect of normobaric hypoxia and inhalation therapy. Fiziol Zh. 1992;38:3–12 [In Russian].

    PubMed  Google Scholar 

  6. Berezovskii VA, Levashov MI. Introduction in orotherapy. Kiev: Academy of Hypoxia Problems of Russian Federation; 2000. p. 75 [In Russian].

    Google Scholar 

  7. Berezovskii VA, Levashov MI. The build-up of human reserve potential by exposure to intermittent normobaric hypoxia. Aviakosm Ekolog Med. 2000;34:39–43 [In Russian].

    PubMed  CAS  Google Scholar 

  8. Berezovskii VA, Serebrovskaia TV, Lipskii PI. Respiratory function in twins under different gas mixtures. Fiziol Zh. 1981;27:20–5 [In Russian].

    PubMed  CAS  Google Scholar 

  9. Bloom B, Cohen RA, Freeman G. Summary health statistics for U.S. children: National Health Interview Survey 2009. Vital Health Stat 10. 2010;1–82.

    Google Scholar 

  10. Borukaeva IK. Intermittent hypoxic training in the sanatorium and spa treatment for patients with chronic obstructive pulmonary disease. Vopr Kurortol Fizioter Lech Fiz Kult. 2007;5:21–4 [In Russian].

    PubMed  Google Scholar 

  11. Bousquet J, Mantzouranis E, Cruz AA. Uniform definition of asthma severity, control, and exacerbations: document presented for the World Health Organization Consultation on Severe Asthma. J Allergy Clin Immunol. 2010;126:926–38.

    Article  PubMed  Google Scholar 

  12. Brzecka A. Brain preconditioning and obstructive sleep apnea ­syndrome. Acta Neurobiol Exp (Wars). 2005;65:213–20.

    Google Scholar 

  13. Chizhov AI. Physiologic bases of the method to increase nonspecific resistance of the organism by adaptation to intermittent normobaric hypoxia. Fiziol Zh. 1992;38:13–7 [In Russian].

    PubMed  Google Scholar 

  14. Chizhov AI, Bludov AA. Efficiency of intermittent and resonance intermittent normobaric hypoxia therapy in patients with infection-dependent bronchial asthma. Vestn Ross Akad Med Nauk. 2000;9:48–50 [In Russian].

    PubMed  Google Scholar 

  15. Damon M, Cluzel M, Chanez P, et al. Phagocytosis induction of chemiluminescence and chemoattractant increased superoxide anion release from activated human alveolar macrophages in asthma. J Biolumin Chemilumin. 1989;4:279–86.

    Article  PubMed  CAS  Google Scholar 

  16. Daniliak IG, Kogan AK, Bolevich S. The generation of active forms of oxygen by the blood leukocytes, lipid peroxidation and antiperoxide protection in bronchial asthma patients. Ter Arkh. 1992;64:54–7 [In Russian].

    PubMed  CAS  Google Scholar 

  17. Dewhirst MW. Intermittent hypoxia furthers the rationale for hypoxia-inducible factor-1 targeting. Cancer Res. 2007;67:854–5.

    Article  PubMed  CAS  Google Scholar 

  18. Donenko YI. Comparison of intermittent normobaric hypoxic therapy and hypobaric therapy in treatment of chronic nonspecific lung diseases. In: Intermittent hypoxic training – effectiveness and mechanisms of action. Kiev: Institute of Physical Culture; 1992. p. 65–8 [In Russian].

    Google Scholar 

  19. Eckes L. Altitude adaptation. Part III. Altitude acclimatization as a problem of human biology. Gegenbaurs Morphol Jahrb. 1976;122:535–69 [In German].

    PubMed  CAS  Google Scholar 

  20. Ehrenburg IV, Kordykinskaya II. Effectiveness of the use of intermittent normobaric hypoxia in treatment of chronic obstructive lung diseases. In: Intemittent hypoxic training – effectiveness, mechanisms of action. Kiev: Institute of Physical Culture; 1992. p. 96–8 [In Russian].

    Google Scholar 

  21. Fesenko ME, Lisyana TO. Approach to employment of hypoxic stimulation for treatment of lingering and relapsing bronchitis in children of early age. Fiziol Zh. 1992;38:31–3 [In Russian].

    PubMed  CAS  Google Scholar 

  22. Fursova ZK, Balika IuD, Abubakirova AM. Dynamics of the activity of redox enzymes in peripheral blood lymphocytes of the newborn with a history of chronic intrauterine hypoxia. Akush Ginekol (Mosk). 1995;4:29–31 [In Russian].

    Google Scholar 

  23. Gerasimov SV. Lipid peroxidation and antioxidant defense in patients with bronchial asthma. Ukr Med Chasopys. 2000;1:86–94 [In Ukrainian].

    Google Scholar 

  24. Gladwin MT, Kato GJ. Cardiopulmonary complications of sickle cell disease: role of nitric oxide and haemolytic anemia. Hematology Am Soc Hematol Educ Program. 2005;51–7.

    Google Scholar 

  25. Gonchar OO, Steshenko MM, Mankovska IM, et al. Correction of mitochondrial dysfunction in rat myocardium under hypoxia. Zagalna Patoligia ta Patologichna Phyziologia. 2010;3:44–8 [In Ukrainian].

    Google Scholar 

  26. Gordon E, Lazarus SC. Management of chronic obstructive pulmonary disease: moving beyond the asthma algorithm. J Allergy Clin Immunol. 2009;124:873–80.

    Article  PubMed  Google Scholar 

  27. Gordan JD, Simon MC. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev. 2007;17:71–7.

    Article  PubMed  CAS  Google Scholar 

  28. Hanta I, Kocabas A, Canacankatan N, et al. Oxidant–antioxidant balance in patients with COPD. Lung. 2006;184:51–5.

    Article  PubMed  CAS  Google Scholar 

  29. Jones SL, Herbison P, Cowan JO, et al. Exhaled NO and assessment of anti-inflammatory effects of inhaled steroid: dose–response relationship. Eur Respir J. 2002;20:601–8.

    Article  PubMed  CAS  Google Scholar 

  30. Karash YM, Strelkov RB, Chizhov AY. Normobaric hypoxia in treatment, prophylaxis and rehabilitation. Moscow: Meditsina; 1988 [In Russian].

    Google Scholar 

  31. Katayama K. Effect of intermittent hypoxia on hypoxic ventilatory response. In: Xi L, Serebrovskaya TV, editors. Intermittent hypoxia: from molecular mechanisms to clinical applications. New York: Nova; 2009. p. 245–59.

    Google Scholar 

  32. Katayama K, Sato Y, Morotome Y, et al. Intermittent hypoxia increases ventilation and SaO2 during hypoxic exercise and hypoxic chemosensitivity. J Appl Physiol. 2001;90:1431–40.

    PubMed  CAS  Google Scholar 

  33. Kiernan MC, Bullpitt P, Chan JH. Mitochondrial dysfunction and rod-like lesions associated with administration of beta2 adrenoceptor agonist formoterol. Neuromuscul Disord. 2004;14:375–7.

    Article  PubMed  Google Scholar 

  34. Kirkham FJ, Datta AK. Hypoxic adaptation during development: relation to pattern of neurological presentation and cognitive disability. Dev Sci. 2006;9:411–27.

    Article  PubMed  Google Scholar 

  35. Kolchinskaya AZ, Hatsukov BH, Zakusilo MP. Oxygen insufficiency: destructive and constructive actions. Nalchik: Kabardino-Balkaria Scientific Center; 1999 [In Russian].

    Google Scholar 

  36. Konga DB, Kim Y, Hong SC, et al. Oxidative stress and antioxidant defenses in asthmatic murine model exposed to printer emissions and environmental tobacco smoke. J Environ Pathol Toxicol Oncol. 2009;28:325–40.

    Article  PubMed  CAS  Google Scholar 

  37. Korkushko OV, Serebrovskaya TV, Shatilo VB, et al. Selection of the optimal modes for intermittent hypoxia training in medical practice and sports medicine. Methodical recommendations. Kiev Health Ministry; 2010 [In Ukrainian].

    Google Scholar 

  38. Kowalski J, Gutkowski P, Serebrovskaya T. Beneficial either detrimental consequences for respiration and hemodynamics. Vestn Hyg Epidemiol. 2007;11:9–13.

    Google Scholar 

  39. Kulberg AY. Regulation of the immune response. Moscow: Nauka; 1997. p. 148–57 [In Russian].

    Google Scholar 

  40. Kurhalyuk NM, Serebrovskaya TV. Intermittent hypoxic training influences on antioxidant enzymes activity, processes of lipid peroxidation under acute hypoxia and nitric oxide donor treatment. Med Chem. 2001;3:69–71.

    Google Scholar 

  41. Kurhalyuk NM, Serebrovskaya TV, Kolesnikova EE, et al. Exogenous L-arginine modulates the effects of acute and intermittent hypoxia on liver mitochondrial and microsomal oxidation. Fiziol Zh. 2002;48:67–73.

    CAS  Google Scholar 

  42. Louis M, Punjabi NM. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. J Appl Physiol. 2009;106:1538–44.

    Article  PubMed  CAS  Google Scholar 

  43. Lukyanova LD. Molecular, metabolic and functional mechanisms of individual resistance to hypoxia. In: Sharma BK, Takeda N, Ganguly NK, et al., editors. Adaptation biology and medicine. New Delhi: Narosa Publishing House; 1997. p. 236–50.

    Google Scholar 

  44. Lukyanova LD, Dudchenko AM, Tsybina TA, et al. Effect of intermittent normobaric hypoxia on kinetic properties of mitochondrial enzymes. Bull Exp Biol Med. 2007;144:795–801.

    Article  PubMed  CAS  Google Scholar 

  45. Lukyanova LD, Germanova EL, Kopaladze RA. Development of resistance of an organism under various conditions of hypoxic preconditioning: role of the hypoxic period and reoxygenation. Bull Exp Biol Med. 2009;147:400–4.

    Article  PubMed  CAS  Google Scholar 

  46. Lysenko GI, Serebrovskaya TV, Karaban IN, et al. Use of gradually increasing normobaric hypoxia in medical practice. Methodical recommendations. Kiev: Ukrainian Ministry of Health Care; 1998 [In Russian].

    Google Scholar 

  47. Mahamed S, Mitchell G. Is there a link between intermittent hypoxia-induced respiratory plasticity and obstructive sleep apnoea? Exp Physiol. 2007;92:27–37.

    Article  PubMed  CAS  Google Scholar 

  48. Mallet RT, Ryou M-G, Manukhina EB, et al. β-Adrenergic signaling and ROS: pivotal roles in intermittent, normobaric hypoxia-induced cardioprotection. In: Xi L, Serebrovskaya TV, editors. Intermittent hypoxia: from molecular mechanisms to clinical applications. New York: Nova; 2009. p. 151–74.

    Google Scholar 

  49. Man’kovskaia IN, Vavilova GL, Kharlamova ON, et al. Activity of the cell membrane marker enzymes in rats under adaptation to hypoxia. Ukr Biochem J. 1997;69:79–87 [In Russian].

    Google Scholar 

  50. Mankovskaya IN. Peculiarities of lipid peroxidation realization mechanisms in intermittent hypoxic hypoxia. Hypoxia Med J. 1993;4:8–11 [In Russian].

    Google Scholar 

  51. Manukhina EB, Downey HF, Mallet RT. Role of nitric oxide in ­cardiovascular adaptation to intermittent hypoxia. Exp Biol Med. 2006;231:343–65.

    CAS  Google Scholar 

  52. Manukhina EB, Mashina SY, Smirin BV, et al. Role of nitric oxide in adaptation to hypoxia and adaptive defense. Physiol Res. 2000;49:89–97.

    PubMed  CAS  Google Scholar 

  53. Meerson FZ. Adaptation to intermittent hypoxia: mechanisms of protective effects. Hypoxia Med J. 1993;3:2–8 [In Russian].

    Google Scholar 

  54. Meerson FZ, Frolov BA, Volianik MN, et al. The effect of adaptation to the periodic action of hypoxia on the indices of the immunity system and on the course of allergic diseases. Patol Fiziol Eksp Ter. 1990;3:16–21 [In Russian].

    PubMed  Google Scholar 

  55. Moroz LA, Sukhorukov VV, Kravchenko LF, et al. Significance of a complex of laboratory methods of study in the differential diagnosis of various forms of bronchial asthma. Med Tr Prom Ekol. 1994;2:32–4 [In Russian].

    PubMed  Google Scholar 

  56. Nesvitalova KV, Gonchar OA, Drevitskaya TI, et al. Changes in mRNA and protein expression of antioxidant enzymes as markers of the interval hypoxic training effectiveness in children with bronchial asthma. Fiziol Zh. 2011;57(6):13–7 [In Ukrainian].

    Google Scholar 

  57. Prabhakar NR, Fields RD, Baker T, et al. Intermittent hypoxia: cell to system. Am J Physiol. 2001;281:L524–8.

    CAS  Google Scholar 

  58. Prasad K, Gupta JB. Relaxant effect of oxygen free radicals on rabbit tracheal smooth muscle. Pulm Pharmacol Ther. 2002;15:375–84.

    Article  PubMed  CAS  Google Scholar 

  59. Ragozin ON. Effectiveness of intermittent normobaric hypoxia in patients with bronchial asthma in various modes of chronotherapy. Vopr Kurortol Fizioter Lech Fiz Kult. 2002;2:8–10 [In Russian].

    PubMed  Google Scholar 

  60. Ragozin ON, Balykin MV, Charikova EI, et al. The analysis of rhythm spectrum of respiratory and cardiovascular parameters in bronchial asthma patients under normobaric hypoxitherapy. Fiziol Zh. 2001;47:36–9 [In Russian].

    Google Scholar 

  61. Razumovskiĭ AE, Komissarova IA, Shatalov NN, et al. Effect of atmospheric pressure on leukocyte enzyme activity in bronchial asthma. Sov Med. 1980;12:19–22 [In Russian].

    PubMed  Google Scholar 

  62. Redzhebova OK, Chizhov AI. Results of utilization of intermittent normobaric hypoxia in patients with bronchial asthma and chronic obstructive bronchitis. Fiziol Zh. 1992;38:39–42 [In Russian].

    PubMed  CAS  Google Scholar 

  63. Rice L, Alfrey CP. The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations. Cell Physiol Biochem. 2005;15:245–50.

    Article  PubMed  CAS  Google Scholar 

  64. Safronova OS, Serebrovskaya TV, Hordiĭ SK. Pro- and antioxidant system during the adaptation to intermittent hypoxia in healthy subjects and patients with bronchial asthma. Exper Clin Physiol Biochem. 1999;4:61–6 [In Russian].

    Google Scholar 

  65. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 2000;88:1474–80.

    PubMed  CAS  Google Scholar 

  66. Serebrovs’ka TV, Safronova OS, Hordiĭ SK. Free-radical processes under different conditions of body oxygen allowance. Fiziol Zh. 1999;45:92–103 [In Ukrainian].

    PubMed  Google Scholar 

  67. Serebrovska TV, Lopata VA, Roy VV, et al. Device for breathing with hypoxic mixtures “Hypoxytron”. 2009. Patent 44179, MПК A61M 16/00; Ukraine, 25 Sept 2009, bulletin № 18 [In Ukrainian].

    Google Scholar 

  68. Serebrovskaia TV. Hereditary defect of sensitivity to hypoxia in normal sensitivity to hypercapnia. Patol Fiziol Eksp Ter. 1982;4:80–3.

    PubMed  Google Scholar 

  69. Serebrovskaia TV, Man’kovskaia IN, Lysenko GI, et al. A method for intermittent hypoxic exposures in the combined treatment of bronchial asthma patients. Lik Sprava. 1998;6:104–8 [In Ukrainian].

    PubMed  Google Scholar 

  70. Serebrovskaia ZA, Serebrovskaia TV, Afonina GB. Chemilum­inescence, blood lipid peroxidation and neutrophil activity during the hypoxic training of persons subjected to ionizing radiation exposure. Radiats Biol Radioecol. 1996;36:394–9.

    PubMed  CAS  Google Scholar 

  71. Serebrovskaya TV. Intermittent hypoxia research in the former Soviet Union and the Commonwealth of Independent States (CIS): history and review of the concept and selected applications. High Alt Med Biol. 2002;3:205–21.

    Article  PubMed  Google Scholar 

  72. Serebrovskaya TV, Karaban IN, Kolesnikova EE, et al. Human hypoxic ventilatory response with blood dopamine content under intermittent hypoxic training. Can J Physiol Pharmacol. 1999;77:967–73.

    Article  PubMed  CAS  Google Scholar 

  73. Serebrovskaya TV, Lopata VA. Apparatus for breathing with hypoxic gaseous mixtures. 2010. Patent International Application to all countries of PCT # PCT/UA 2010/000071, 7 Oct 2010.

    Google Scholar 

  74. Serebrovskaya TV, Nikolsky IS, Nikolska VV, et al. Intermittent hypoxia mobilizes hematopoietic progenitors and augments cellular and humoral elements of innate immunity in adult men. High Alt Med Biol. 2011;12:243–52.

    Article  PubMed  CAS  Google Scholar 

  75. Serebrovskaya TV, Serebrovskaya ZA, Afonina G. Effect of intermittent hypoxic training on human respiration, free radical processes and immune system. In: Ueda G et al., editors. High altitude medicine. Matsumoto: Shinshu University Press; 1992. p. 77–82.

    Google Scholar 

  76. Serebrovskaya TV, Swanson RJ, Kolesnikova EE. Intermittent hypoxia: mechanisms of action and some applications to bronchial asthma treatment. J Physiol Pharmacol. 2003;54:35–41.

    PubMed  Google Scholar 

  77. Serebrovsky A, Serebrovska T. Models and algorithms for the assessment of intermittent hypoxia application safety and efficacy in medical practice. In: Hypoxia and consequences: from molecule to malady. 2009. Book of abstracts, Session II, abstract #25, New York, 12–14 Mar 2009.

    Google Scholar 

  78. Tsvetkova AM, Tkatchouk EN. “Hypoxia user” – the opportunity of individual programming of interval hypoxic training. In: Hypoxia, mechanisms, adaptation, correction. BEBIM, Moscow; 1999. p. 83–4 [In Russian].

    Google Scholar 

  79. Vinnitskaya RS, Davidov EG, Ctruchkov PV. Hypoxic and hypercapnic gas mixtures in complex treatment and rehabilitation of patients with chronic obstructive diseases. In: Intermittent hypoxic training, effectiveness, and mechanisms of action. Kiev: Institute of Physical Culture; 1992. p. 62–4 [In Russian].

    Google Scholar 

  80. Vogtel M, Michels A. Role of intermittent hypoxia in the treatment of bronchial asthma and chronic obstructive pulmonary disease. Curr Opin Allergy Clin Immunol. 2010;10:206–13.

    Article  PubMed  Google Scholar 

  81. Zhong H, Belardinelli L, Maa T, et al. Synergy between A2B adenosine receptors and hypoxia in activating human lung fibroblasts. Am J Respir Cell Mol Biol. 2005;32:2–8.

    Article  PubMed  CAS  Google Scholar 

  82. Zietkowski Z, Bodzenta-Lukaszyk A. Nitric oxide in bronchial asthma. Pol Merkur Lekarski. 2002;12:519–21 [In Polish].

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana V. Serebrovskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Serebrovskaya, T.V., Bakunovsky, A.N., Nesvitailova, K.V., Mankovska, I.N. (2012). Intermittent Hypoxia in Treatment of Bronchial Asthma in Childhood. In: Xi, L., Serebrovskaya, T. (eds) Intermittent Hypoxia and Human Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-2906-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2906-6_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2905-9

  • Online ISBN: 978-1-4471-2906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics