Power-Based Modelling

Part of the Advances in Industrial Control book series (AIC)


This chapter presents a systematic method to describe a large class of switched-mode power converters within the Brayton–Moser (BM) framework, a framework that has proven to be useful for analysis and control purposes. The approach forms an alternative to the switched Lagrangian and (port-)Hamiltonian formulations. The proposed methodology allows for the inclusion of often encountered devices like diodes, nonlinear (multi-port) resistors, and equivalent series resistors, a feature that does not seem feasible in the switched Lagrangian formulation. Additionally, and besides the fact that the BM equations allow for almost any type of nonlinear resistor, the framework constitutes a practical advantage since in most control applications the usual measured quantities are voltages and currents—instead of fluxes and charges as with the Lagrangian or (port-)Hamiltonian approaches. The application of the proposed framework to stability analysis, new passivity properties and control is briefly highlighted.


  1. 1.
    Brayton, R.K., Moser, J.K.: A theory of nonlinear networks I. Q. Appl. Math. 22(1), 1–33 (1964) MathSciNetGoogle Scholar
  2. 2.
    Desoer, C.A., Kuh, E.S.: Basic Circuit Theory. McGraw-Hill, New York (1969) Google Scholar
  3. 3.
    Dirksz, D.A.: Robust energy- and power-based control design: Port-Hamiltonian and Brayton–Moser systems. Ph.D. thesis, University of Groningen (2011) Google Scholar
  4. 4.
    Dirksz, D.A., Scherpen, J.M.A.: Power-based control: Canonical coordinate transformations, integral and adaptive control. Automatica (2012). doi: 10.1016/j.automatica.2012.03.003 MATHGoogle Scholar
  5. 5.
    Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H. (eds.): Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach. Springer, Berlin (2009) MATHGoogle Scholar
  6. 6.
    Escobar, G., Van der Schaft, A.J., Ortega, R.: A Hamiltonian viewpoint in the modeling of switching power converters. Automatica 35, 445–452 (1999) MATHCrossRefGoogle Scholar
  7. 7.
    Favache, A., Dochain, D.: Power-shaping control of reaction systems: The CSTR case. Automatica 46, 1877–1883 (2010) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fujimoto, K., Sugie, T.: Canonical transformation and stabilization of generalized Hamiltonian systems. Syst. Control Lett. 42(3), 217–227 (2001) MathSciNetCrossRefGoogle Scholar
  9. 9.
    García-Canseco, E., Jeltsema, D., Ortega, R., Scherpen, J.M.A.: Power shaping control of physical systems. Automatica 46, 127–132 (2010) MATHCrossRefGoogle Scholar
  10. 10.
    Hernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F., Escobar, G.: Adaptive PI stabilization of switched power converters. IEEE Trans. Control Syst. Technol. 18(3), 688–698 (2010) CrossRefGoogle Scholar
  11. 11.
    Hill, D., Moylan, P.: The stability of nonlinear dissipative systems. IEEE Trans. Autom. Control 21(5), 708–711 (1976) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Hiti, S., Borojević, D.: Control of front-end three-phase Boost rectifier. In: Proc. of the Applied Power Electronics Conference, Orlando, Florida, USA, pp. 927–933 (1994) Google Scholar
  13. 13.
    Jeltsema, D., Scherpen, J.M.A.: Tuning of passivity-preserving controllers for switched-mode power converters. IEEE Trans. Autom. Control 49(8), 1333–1344 (2004) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jeltsema, D., Scherpen, J.M.A.: On Brayton and Moser’s missing stability theorem. IEEE Trans. Circuits Syst. II 52(9), 550–552 (2005) CrossRefGoogle Scholar
  15. 15.
    Kazmierkowski, M., Krishnan, R., Blaabjerg, F. (eds.): Control in Power Electronics: Selected Problems. Academic Press, San Diego (2002) Google Scholar
  16. 16.
    Leonhard, W.: Control of Electrical Drives, 3rd edn. Springer, Berlin (2001) CrossRefGoogle Scholar
  17. 17.
    Moser, J.K.: Bistable systems of differential equations with applications to tunnel diode circuits. IBM J. Res. Dev. 5, 226–240 (1960) CrossRefGoogle Scholar
  18. 18.
    Ortega, R., Jeltsema, D., Scherpen, J.M.A.: Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Trans. Autom. Control 48(10), 1762–1767 (2003) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ortega, R., Loría, A., Nicklasson, P.J., Sira-Ramírez, H.: Passivity-Based Control of Euler-Lagrange Systems; Mechanical, Electrical and Electromechanical Applications. Springer, Berlin (1998) Google Scholar
  20. 20.
    Ortega, R., van der Schaft, A.J., Mareels, I., Maschke, B.M.: Putting energy back in control. IEEE Control Syst. Mag. 21(2), 18–33 (2001) CrossRefGoogle Scholar
  21. 21.
    Savant, C.J. Jr., Roden, M.S., Carpenter, G.L.: Electronic Design: Circuits and Systems, 2nd edn. Benjamin–Cummings Publishing Company, San Francisco (1991) Google Scholar
  22. 22.
    Scherpen, J.M.A., Jeltsema, D., Klaassens, J.B.: Lagrangian modeling of switching electrical networks. Syst. Control Lett. 48(5), 365–374 (2003) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Sira-Ramírez, H., de Nieto, M.D.: A Lagrangian approach to average modeling of pulse width-modulation controlled DC-to-DC power converters. IEEE Trans. Circuits Syst. I 43(5), 427 (1996) CrossRefGoogle Scholar
  24. 24.
    Stöhr, A.: Über gewisse nich notwendig lineare (n+1)-pole. Arch. Electron. Übertr. Tech. 7, 546–548 (1953) Google Scholar
  25. 25.
    Van der Schaft, A.J.: Open image in new window-Gain and Passivity Techniques in Nonlinear Control. Springer, Berlin (2000) MATHCrossRefGoogle Scholar
  26. 26.
    Weiss, L., Mathis, W., Trajkovic, L.: A generalization of Brayton–Moser’s mixed-potential function. IEEE Trans. Circuits Syst. I 45(4), 423–427 (1998) MATHCrossRefGoogle Scholar
  27. 27.
    Wells, D.A.: A power function for the determination of Lagrangian generalized forces. J. Appl. Phys. 16(9), 535–538 (1945) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Willems, J.C.: Dissipative dynamical system part i: General theory. Arch. Ration. Mech. Anal. 45(5), 321–351 (1972) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Delft Institute of Applied MathematicsDelft University of TechnologyDelftThe Netherlands
  2. 2.Faculty of Mathematics and Natural SciencesUniversity of GroningenGroningenThe Netherlands

Personalised recommendations