Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Switched systems provide a tempting modelling framework for power electronics converters. At a certain level of abstraction, switched models are able to capture some interesting properties of the converters behaviour while ignoring irrelevant details. Switched models of power converter have rich dynamical behaviour, so the formal analysis of these systems could be difficult. An effective widely used approach to circumvent some of these difficulties is the averaging technique. In this chapter, the formal approaches proposed in the literature to deal with the averaging of switched systems are presented. The general averaging over a moving time window, the dithering and the dynamic phasor models are recast and compared by considering models for various type of power converters as a common framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here and below, we denote by |⋅| the standard Euclidean norm on ℝn.

References

  1. Almér, S., Jönsson, U.: Dynamic phasor analysis of pulse modulated systems. In: Proc. of the IEEE Conference on Decision and Control, New Orleans, Louisiana, USA, pp. 3252–3259 (2007)

    Google Scholar 

  2. Almér, S., Jönsson, U.: Harmonic analysis of pulse-width modulated systems. Automatica 45, 851–862 (2009)

    Article  MATH  Google Scholar 

  3. Bainov, D.D., Milusheva, S.D.: Justification of the averaging method for a system of functional-differential equation with variable structure and impulses. Appl. Math. Optim. 16(1), 19–36 (1987)

    Article  MathSciNet  Google Scholar 

  4. Bogoliuboff, N.N., Mitropolskii, Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillators. Gordon & Breach, New York (1961)

    Google Scholar 

  5. Caliskan, V.A., Verghese, G.C., Stanković, A.M.: Multifrequency averaging of DC/DC converters. IEEE Trans. Power Electron. 14(1), 124–132 (1999)

    Article  Google Scholar 

  6. Donchev, T., Slalov, I.: On the limit of the solution set of singularly perturbed control differential inclusions. In: Proc. of the IEEE Conference on Decision and Control, Phoenix, Arizona, USA, pp. 3340–3345 (1999)

    Google Scholar 

  7. Ezzine, J., Haddad, A.H.: Error bounds in the averaging of hybrid systems. IEEE Trans. Autom. Control 34(11), 1188–1192 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hale, J.K.: Ordinary Differential Equations. Krieger, Huntington (1980)

    MATH  Google Scholar 

  9. Iannelli, L., Johansson, K.H., Jönsson, U., Vasca, F.: Averaging of nonsmooth systems using dither. Automatica 42(4), 669–676 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iannelli, L., Johansson, K.H., Jönsson, U., Vasca, F.: Subtleties in the averaging of a class of hybrid systems with applications to power converters. Control Eng. Pract. 18, 961–975 (2008)

    Article  Google Scholar 

  11. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Reading (2002)

    MATH  Google Scholar 

  12. Khapaev, M.M.: On the method of averaging and on certain problems connected with averaging. Differ. Equ. 2(5), 310–314 (1966)

    MathSciNet  MATH  Google Scholar 

  13. Lehman, B., Bass, R.: Extensions of averaging theory for power electronics systems. IEEE Trans. Power Electron. 11(4), 542–553 (1996)

    Article  Google Scholar 

  14. Liberzon, D.: Switching in System and Control, 1st edn. Birkhäuser, Boston (2003)

    Book  Google Scholar 

  15. Liu, S.J., Krstic, M.: Continuous-time stochastic averaging on the infinite interval for locally Lipschitz systems. SIAM J. Control Optim. 48(5), 3589–3622 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mohan, N., Undeland, T.M., Robbins, W.P.: Power Electronics: Converters, Applications and Design, 3rd edn. Wiley, New York (2002)

    Google Scholar 

  17. Mossaheb, S.: Application of a method of averaging to the study of dither in non-linear systems. Int. J. Control 38(3), 557–576 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Porfiri, M., Roberson, D.G., Stilwell, D.J.: Fast switching analysis of linear switched systems using exponential splitting. SIAM J. Control Optim. 47(5), 2582–2597 (2008)

    Article  MathSciNet  Google Scholar 

  19. Sanders, S.R., Noworolski, J.M., Liu, X.Z., Verghese, G.C.: Generalized averaging method for power conversion circuit. IEEE Trans. Power Electron. 6(2), 251–259 (1991)

    Article  Google Scholar 

  20. Sedghi, B., Srinivasav, B., Longchamp, R.: Control of hybrid systems via dehybridization. In: Proc. of the American Control Conference, Anchorage, Alaska, USA, pp. 692–697 (2002)

    Google Scholar 

  21. Sethna, P.R.: Method of averaging for systems bounded for positive time. J. Math. Anal. Appl. 41, 621–631 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, J., Michell, D.M., Greuel, M.F., Krein, P.T., Bass, R.M.: Averaged modeling of PWM converters operating in discontinuous conduction mode. IEEE Trans. Power Electron. 16(4), 482–492 (2001)

    Article  Google Scholar 

  23. Teel, A., Moreau, L., Nešić, D.: Input-to-state set stability of pulse width modulated systems with disturbances. Syst. Control Lett. 51(1), 23–32 (2004)

    Article  MATH  Google Scholar 

  24. van der Schaft, A., Schumacher, H.: An Introduction to Hybrid Dynamical Systems. Lecture Notes in Control and Information Science, vol. 251. Springer, London (2000)

    MATH  Google Scholar 

  25. Wang, W., Nešić, D.: Input-to-state set stability and averaging of linear fast switching systems. IEEE Trans. Autom. Control 55(5), 1274–1279 (2010)

    Article  Google Scholar 

  26. Zames, G., Shneydor, N.A.: Dither in non-linear systems. IEEE Trans. Autom. Control 21(5), 660–667 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zames, G., Shneydor, N.A.: Structural stabilization and quenching by dither in non-linear systems. IEEE Trans. Autom. Control 22(3), 352–361 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Pedicini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Pedicini, C., Iannelli, L., Vasca, F., Jönsson, U. (2012). Averaging for Power Converters. In: Vasca, F., Iannelli, L. (eds) Dynamics and Control of Switched Electronic Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2885-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2885-4_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2884-7

  • Online ISBN: 978-1-4471-2885-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics