Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

In this chapter, the numerical time integration methods for switched electronic circuits are described with a focus on the event-capturing time-stepping schemes based on the complementarity theory. After briefly introducing the strengths and weaknesses of various simulation approaches (hybrid, regularised and non-smooth), the mathematical nature of solutions for dynamical complementarity systems are discussed in view of numerical time-integration. Then the formulation of the time-stepping methods via complementarity will be described. For each class of solutions, a suitable method is provided, and its properties are illustrated on simple electrical circuits. Some implementation details are then explained. Especially, the complementarity solvers that are used at each time-step are described recalling the main families of available solvers. Some insights on the software implementation are also given. Finally, numerical applications and examples on more realistic circuits are considered. We will mainly focus on the architecture of a direct current–direct current (DC–DC) buck power converter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A set K is called a cone if for any xK and any scalar a≥0, axK.

  2. 2.

    The dual cone K of the cone K is the set K ={y | yx≥0 ∀xK}.

  3. 3.

    This is not required with the Siconos algorithms that find a consistent initial solution from scratch.

  4. 4.

    For Ngspice, it implied a slight modification of the source code since no standard option is provided to do it.

  5. 5.

    http://www.plexim.com/.

References

  1. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Acary, V., Brogliato, B.: Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems. Syst. Control Lett. 59(5), 284–295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Acary, V., Pérignon, F.: Siconos: A software platform for modeling, simulation, analysis and control of nonsmooth dynamical systems. Simul. News Eur. 17(3–4), 19–26 (2007)

    Google Scholar 

  4. Acary, V., Brogliato, B., Goeleven, D.: Higher order Moreau’s sweeping process: Mathematical formulation and numerical simulation. Math. Program. 113(1), 133–217 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Acary, V., Bonnefon, O., Brogliato, B.: Improved circuit simulator. Patent number 09/02605 (2009)

    Google Scholar 

  6. Acary, V., Bonnefon, O., Brogliato, B.: Time-stepping numerical simulation of switched circuits with the nonsmooth dynamical systems approach. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29(7), 1042–1055 (2010)

    Article  Google Scholar 

  7. Acary, V., Brogliato, B., Orlov, Y.: Chattering-free digital sliding-mode control with state observer and disturbance rejection. IEEE Trans. Autom. Control (2011). doi:10.1109/TAC.2011.2174676. The Research Report RR-7326, INRIA (2010) is available as a preprint at http://hal.inria.fr/inria-00494417/PDF/RR-7326.pdf

    Google Scholar 

  8. Acary, V., Bonnefon, O., Brogliato, B.: Nonsmooth Modeling and Simulation for Switched Circuits. Lecture Notes in Electrical Engineering, vol. 69. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  9. Bächle, S., Ebert, F.: Element-based topological index reduction for differential-algebraic equations in circuit simulation. Technical Report Preprint 05-246 (Matheon), Inst. f. Mathematik, TU Berlin (2005)

    Google Scholar 

  10. Bächle, S., Ebert, F.: Graph theoretical algorithms for index reduction in circuit simulation. Technical Report Preprint 05-245 (Matheon), Inst. f. Mathematik, TU Berlin (2005)

    Google Scholar 

  11. Bastien, J., Schatzman, M.: Numerical precision for differential inclusions with uniqueness. Math. Model. Numer. Anal. 36(3), 427–460 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Billups, S.C., Dirkse, S.P., Ferris, M.C.: A comparison of large scale mixed complementarity problem solvers. Comput. Optim. Appl. 7, 3–25 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Biolek, D., Dobes, J.: Computer simulation of continuous-time and switched circuits: Limitations of SPICE-family programs and pending issues. In: Proc. of the International Conference Radioelektronika, Brno, Czech Republic, pp. 1–11 (2007)

    Chapter  Google Scholar 

  14. Brogliato, B., Goeleven, D.: Well-posedness, stability and invariance results for a class of multivalued Lur’e dynamical systems. Nonlinear Anal. 74(1), 195–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brogliato, B., Thibault, L.: Well-posedness results for non-autonomous complementarity systems. J. Convex Anal. 17(3–4), 961–990 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Camlibel, M.K., Heemels, W.P.M.H., Schumacher, J.M.: Consistency of a time-stepping method for a class of piecewise-linear networks. IEEE Trans. Circuits Syst. I 49(3), 349–357 (2002)

    Article  MathSciNet  Google Scholar 

  17. Camlibel, M.K., Heemels, W.P.M.H., Schumacher, J.M.: On linear passive complementarity systems. Eur. J. Control 8(3), 220–237 (2002)

    Article  Google Scholar 

  18. Camlibel, M.K., Heemels, W.P.M.H., van der Schaft, A.J., Schumacher, J.M.: Switched networks and complementarity. IEEE Trans. Circuits Syst. I 50(8), 1036–1046 (2003)

    Article  Google Scholar 

  19. Cao, M., Ferris, M.C.: A pivotal method for affine variational inequalities. Math. Oper. Res. 21(1), 44–64 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chung, H.S.H., Ioinovici, A.: Fast computer aided simulation of switching power regulators based on progressive analysis of the switches’ state. IEEE Trans. Power Electron. 9(2), 206–212 (1994)

    Article  Google Scholar 

  21. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  22. Cottle, R.W., Pang, J., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  23. Elmqvist, H., Mattsson, S.E., Otter, M.: Object-oriented and hybrid modeling in Modelica. J. Eur. Syst. Autom. 35(4), 395–404 (2001)

    Google Scholar 

  24. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vols. I & II. Springer, New York (2003)

    Google Scholar 

  25. Frasca, R., Camlibel, M.K., Goknar, I.C., Vasca, F.: State discontinuity analysis of linear switched systems via energy function optimization. In: Proc. of the IEEE International Symposium on Circuits and Systems, Seattle, Washington, USA, pp. 540–543 (2008)

    Google Scholar 

  26. Frasca, R., Camlibel, M.K., Goknar, I.C., Iannelli, L., Vasca, F.: Linear passive networks with ideal switches: Consistent initial conditions and state discontinuities. IEEE Trans. Circuits Syst. I 57(12), 3138–3151 (2010)

    Article  MathSciNet  Google Scholar 

  27. Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53(1–3), 99–110 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Greenhalgh, S., Acary, V., Brogliato, B.: Preservation of the dissipativity properties of a class of nonsmooth dynamical systems with the (θ,γ)-algorithm. Research Report RR-7632, INRIA (2011). URL http://hal.inria.fr/inria-00596961/en

  29. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-algebraic Problems, 2nd edn. Series in Computational Mathematics, vol. 14. Springer, London (1996)

    MATH  Google Scholar 

  30. Han, L., Tiwari, A., Camlibel, K., Pang, J.S.: Convergence of time-stepping schemes for passive and extended linear complementarity systems. SIAM J. Numer. Anal. 47(5), 3768–3796 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Heemels, W.P.M.H., Camlibel, M.K., Schumacher, J.M.: A time-stepping method for relay systems. In: Proc. of the IEEE Conference on Decision and Control, Sydney, Australia, pp. 461–466 (2000)

    Google Scholar 

  32. Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Linear complementarity systems. SIAM J. Appl. Math. 60, 1234–1269 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Heidelberg (1993)

    Google Scholar 

  34. Iannelli, L., Vasca, F., Camlibel, M.K.: Complementarity and passivity for piecewise linear feedback systems. In: Proc. of the IEEE Conference on Decision and Control, San Diego, California, USA, pp. 4212–4217 (2006)

    Chapter  Google Scholar 

  35. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, London (1995)

    MATH  Google Scholar 

  36. Leenaerts, D.M.W., Bokhoven, W.M.V.: Piecewise Linear Modeling and Analysis. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  37. Leenarts, D.M.: On linear dynamic complementarity systems. IEEE Trans. Circuits Syst. I 46(8), 1022–1026 (1999)

    Article  Google Scholar 

  38. Luca, T.D., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Program. 75(3), 407–439 (1996)

    Article  MATH  Google Scholar 

  39. Maffezzoni, P., Codecasa, L., D’Amore, D.: Event-driven time-domain simulation of closed-loop switched circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(11), 2413–2426 (2006)

    Article  Google Scholar 

  40. Marques, M.D.P.M.: Differential Inclusions in Nonsmooth Mechanical Problems. Shocks and Dry Friction. Progress in Nonlinear Differential Equations and Their Applications, vol. 9. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  41. Mayaram, K., Lee, D.C., Moinian, D.A., Roychowdhury, J.: Computer-aided circuit analysis tools for RFIC simulation: Algorithms, features, and limitations. IEEE Trans. Circuits Syst. II 47(4), 274–286 (2000)

    Article  Google Scholar 

  42. Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26, 347–374 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  43. Moreau, J.J.: Bounded variation in time. In: Moreau, J.J., Panagiotopoulos, P.D., Strang, G. (eds.) Topics in Nonsmooth Mechanics, pp. 1–74. Birkhäuser, Basel (1988)

    Google Scholar 

  44. Pang, J.S., Stewart, D.: Differential variational inequalities. Math. Program. 113(2), 345–424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pogromski, A.Y., Heemels, W.P.M.H., Nijmeijer, H.: On solution concepts and well-posedness of linear relay systems. Automatica 39, 2139–2147 (2003)

    Article  Google Scholar 

  46. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  47. Sargent, R.W.H.: An efficient implementation of the Lemke algorithm and its extension to deal with upper an lower bounds. Math. Program. Stud. 7, 36–54 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  48. van Bokhoven, W.M.G.: Piecewise linear analysis and modelling. Ph.D. thesis, Technical University of Eindhoven, TU/e (1981)

    Google Scholar 

  49. van Bokhoven, W.M.G., Jess, J.A.G.: Some new aspects of P and P 0 matrices and their application to networks with ideal diodes. In: Proc. of the IEEE International Symposium on Circuits and Systems, New York, USA, pp. 806–810 (1978)

    Google Scholar 

  50. van Eijndhoven, W.M.G.: A piecewise linear simulator for large scale integrated circuits. Ph.D. thesis, Technical University of Eindhoven, TU/e (1984)

    Google Scholar 

  51. van Stiphout, M.T.: Plato—a piecewise linear analysis for mixed-level circuit simulation. Ph.D. thesis, Technical University of Eindhoven, TU/e (1990)

    Google Scholar 

  52. Vandenberghe, L., Moor, B.L.D., Vandewalle, J.: The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits. IEEE Trans. Circuits Syst. 36(11), 1382–1391 (1989)

    Article  Google Scholar 

  53. Yuan, F., Opal, A.: Computer methods for switched circuits. IEEE Trans. Circuits Syst. I 50(8), 1013–1024 (2003)

    Article  Google Scholar 

  54. Zhu, D.L., Marcotte, P.: Modified descents methods for solving the monotone variational inequality problem. Oper. Res. Lett. 14(2), 111–120 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhu, D.L., Marcotte, P.: An extended descent framework for monotone variational inequalities. J. Optim. Theory Appl. 80(2), 349–366 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to warmly thank Pascal Denoyelle for his contribution in the earlier version of this work and his two main co-workers on this project Olivier Bonnefon and Bernard Brogliato. The authors acknowledge Michael Ferris (University Wisconsin–Madison) for providing us with the PATH solver. Part of this work has been supported by the ANR project VAL-AMS (ANR-06-SETI-018-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Acary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Acary, V. (2012). Time-Stepping via Complementarity. In: Vasca, F., Iannelli, L. (eds) Dynamics and Control of Switched Electronic Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2885-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2885-4_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2884-7

  • Online ISBN: 978-1-4471-2885-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics