Skip to main content
  • 3254 Accesses

Abstract

In this chapter, we discuss the input/output dynamical behavior of several industrial systems that are frequently employed in practice and examine the main features of each system. These systems include steam generation unit, small-power wind turbine, unmanned surface marine vehicle, industrial evaporation unit, multi-stage evaporation, distillation unit and falling film evaporator. The material sets forth the scene for implementing the information-based approach to control system design which starts with system identification methods.

In this chapter, the physical description of some industrial processes that are frequently employed in practice. It is well known that process dynamics and control is an inter-disciplinary area where the disciplines of process, control and information engineering are of major importance. Process engineering offers the basic knowledge about an application by developing rigorous dynamic process models and control engineering provides design tools and techniques to meet some prescribed requirements and information engineering facilitates the means for implementations. Process modeling is usually derived from the conservation balances for mass, component, energy and momentum (Roffel and Betlem, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelazim, T., Malik, O.: Identification of nonlinear systems by Takagi–Sugeno fuzzy logic grey box modeling for real-time control. Control Eng. Pract. 13(12), 1489–1498 (2005)

    Article  Google Scholar 

  2. Aguirre, L.A.: A nonlinear correlation function for selecting the delay time in dynamical reconstructions. Phys. Lett. 203A(2–3), 88–94 (1995)

    Google Scholar 

  3. Aguirre, L.A., Donoso-Garcia, P.F., Santos-Filho, R.: Use of a priori information in the identification of global nonlinear models—A case study using a buck converter. IEEE Trans. Circuits Syst. I, Regul. Pap. 47(7), 1081–1085 (2000)

    Article  Google Scholar 

  4. Aguirre, L.A., Barroso, M.F.S., Saldanha, R.R., Mendes, E.M.A.M.: Imposing steady-state performance on identified nonlinear polynomial models by means of constrained parameter estimation. IEE Proc. Part D. Control Theory Appl. 151(2), 174–179 (2004)

    Article  Google Scholar 

  5. Aguirre, L.A., Coelho, M.C.S., Corrêa, M.V.: On the interpretation and practice of dynamical differences between Hammerstein and Wiener models. IEE Proc. Part D. Control Theory Appl. 152(4), 349–356 (2005)

    Article  Google Scholar 

  6. Astrom, K.J., Eykhoff, P.: System identification—A survey. Automatica 7(2), 123–162 (1971)

    Article  MathSciNet  Google Scholar 

  7. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proc. 2nd Int. Conf. Genetic Algorithms Genetic Algorithms Their Appl., Mahwah, N.J., pp. 14–21 (1987)

    Google Scholar 

  8. Bakker, H.H.C., Marsh, C., Paramalingam, S., Chen, H.: Cascade controller design for concentration in a falling film evaporators. Food Control 17(5), 325–330 (2006)

    Article  Google Scholar 

  9. Barbosa, B.H.: Instrumentation, modelling, control and supervision of a hydraulic pumping system and turbine–generator module (in Portuguese). Master’s thesis, Sch. Elect. Eng., Federal Univ. Minas Gerais, Belo Horizonte, Brazil (2006)

    Google Scholar 

  10. Barroso, M.S.F., Takahashi, R.H.C., Aguirre, L.A.: Multi-objective parameter estimation via minimal correlation criterion. J. Process Control 17(4), 321–332 (2007)

    Article  Google Scholar 

  11. Billings, S.A., Voon, W.S.F.: Least squares parameter estimation algorithms for nonlinear systems. Int. J. Syst. Sci. 15(6), 601–615 (1984)

    MathSciNet  MATH  Google Scholar 

  12. Billings, S.A., Chen, S., Korenberg, M.J.: Identification of MIMO nonlinear systems using a forward-regression orthogonal estimator. Int. J. Control 49(6), 2157–2189 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Bingulac, S., Sinha, N.K.: On the identification of continuous-time systems from the samples of input–output data. In: Proc. Seventh Int. Conf. on Mathematical and Computer Modeling, Chicago, IL, pp. 231–239 (1989)

    Google Scholar 

  14. Bucharles, A., Cassan, H., Roubertier, J.: Advanced parameter identification techniques for near real-time flight flutter test analysis. AIAA, Paper 90-1275, May 1990

    Google Scholar 

  15. Chen, S., Billings, S.A., Luo, W.: Orthogonal least squares methods and their application to nonlinear system identification. Int. J. Control 50(5), 1873–1896 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Connally, P., Li, K., Irwing, G.W.: Prediction and simulation error based perceptron training: Solution space analysis and a novel combined training scheme. Neurocomputing 70, 819–827 (2007)

    Article  Google Scholar 

  17. Cooper, J.: Parameter estimation methods for the flight flutter testing. In: Proc. the 80th AGARD Structures and Materials Panel, CP-566, AGARD, Rotterdam, The Netherlands (1995)

    Google Scholar 

  18. Correa, M.V., Aguirre, L.A., Saldanha, R.R.: Using steady-state prior knowledge to constrain parameter estimates in nonlinear system identification. IEEE Trans. Circuits Syst. I, Regul. Pap. 49(9), 1376–1381 (2002)

    Article  Google Scholar 

  19. Cunningham, P., Canty, N., O’Mahony, T., O’Connor, B., O’Callagham, D.: System identification of a falling film evaporator in the dairy industry. In: Proc. of SYSID’94, Copenhagen, Denmark, vol. 1, pp. 234–239 (1994)

    Google Scholar 

  20. De Moor, B.L.R. (ed.): DaISy: Database for the Identification of Systems. Department of Electrical Engineering, ESAT/SISTA, K.U.Leuven, Belgium. http://www.esat.kuleuven.ac.be/sista/daisy

  21. De Moor, B.L.R., Ljung, L., Zhu, Y., Van Overschee, P.: Comparison of three classes of identification methods. In: Proc. of SYSID’94, Copenhagen, Denmark, vol. 1, 175–180 (1994)

    Google Scholar 

  22. Draper, N.R., Smith, H.: Applied Regression Analysis, 3rd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  23. Ekawati, E., Bahri, P.A.: Controllability analysis of a five effects evaporator system. In: Proc. Foundations of Computer-Aided Process Operations, FOCAPO2003, pp. 417–420 (2003)

    Google Scholar 

  24. El-Sherief, H., Sinha, N.K.: Identification and modelling for linear multivariable discrete-time systems: A survey. J. Cybern. 9, 43–71 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. El-Sherief, H., Sinha, N.K.: Determination of the structure of a canonical model for the identification of linear multivariable systems. IEEE Trans. Syst. Man Cybern. SMC-12, 668–673 (1982)

    Google Scholar 

  26. Energy Efficiency and Renewable Energy, U.S. Department of Energy. www.energy.gov

  27. Favoreel, W., De Moor, B.L.R., Van Overschee, P.: Subspace state-space system identification for industrial processes. J. Process Control 10(2–3), 149–155 (2000)

    Article  Google Scholar 

  28. Ghiaus, C., Chicinas, A., Inard, C.: Grey-box identification of air-handling unit elements. Control Eng. Pract. 15(4), 421–433 (2007)

    Article  Google Scholar 

  29. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  30. Hsia, T.C.: On sampled-data approach to parameter identification of continuous-time linear systems. IEEE Trans. Autom. Control AC-17, 247–249 (1972)

    Article  Google Scholar 

  31. Hsia, T.: System Identification: Least-Squares Methods. Lexington Books, Lexington (1977)

    Google Scholar 

  32. Jakubek, S., Hametner, C., Keuth, N.: Total least squares in fuzzy system identification: An application to an industrial engine. Eng. Appl. Artif. Intell. 21, 1277–1288 (2008)

    Article  Google Scholar 

  33. Karimi, M., Jahanmiri, A.: Nonlinear modeling and cascade control design for multieffect falling film evaporator. Iran. J. Chem. Eng. 3(2) (2006)

    Google Scholar 

  34. Kehoe, M.W.: A historical overview of flight flutter testing, NASA TR 4720, Oct. 1995

    Google Scholar 

  35. Leontaritis, I.J., Billings, S.A.: Input–output parametric models for nonlinear systems. Part II: Deterministic nonlinear system. Int. J. Control 41(2), 329–344 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  36. Miranda, V., Simpson, R.: Modelling and simulation of an industrial multiple-effect evaporator: Tomato concentrate. J. Food Eng. 66, 203–210 (2005)

    Article  Google Scholar 

  37. Neilsen, K.M., Pedersen, T.S., Nielsen, J.F.D.: Simulation and control of multieffect evaporator

    Google Scholar 

  38. Nepomuceno, E.G., Takahashi, R.H.C., Aguirre, L.A.: Multiobjective parameter estimation: Affine information and least-squares formulation. Int. J. Control 80(6), 863–871 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Norgaard, M.: Neural network based system identification—TOOLBOX, Tech. Univ. Denmark, Lyngby, Tech. Rep. 97-E-851 (1997)

    Google Scholar 

  40. Ogata, K.: MATLAB for Control Engineers. Prentice-Hall, New York (2008)

    Google Scholar 

  41. Pan, Y., Lee, J.H.: Modified subspace identification for long-range prediction model for inferential control. Control Eng. Pract. 16(12), 1487–1500 (2008)

    Article  Google Scholar 

  42. Piroddi, L.: Simulation error minimization methods for NARX model identification. Int. J. Model. Identif. Control 3(4), 392–403 (2008)

    Article  Google Scholar 

  43. Piroddi, L., Spinelli, W.: An identification algorithm for polynomial NARX-models based on simulation error minimization. Int. J. Control 76(17), 1767–1781 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rangaiah, G., Saha, P., Tade, M.: Nonlinear model predictive control of an industrial four-stage evaporator system via simulation. Chem. Eng. J. 87, 285–299 (2002)

    Article  Google Scholar 

  45. Roffel, B., Betlem, B.: Process Dynamics and Control. Wiley, London (2006)

    Google Scholar 

  46. Sinha, N.K.: Estimation of transfer function of continuous-time systems from samples of input–output data. Proc. Inst. Electr. Eng. 119, 612–614 (1972)

    Article  Google Scholar 

  47. Sinha, N.K., Kuszta, B.: Modelling and Identification of Dynamic Systems. Von-Nostrand Reinhold, New York (1983)

    Google Scholar 

  48. Sinha, N.K., Rao, G.P. (eds.): Identification of Continuous-Time Systems. Kluwer Academic, Dordrecht (1991)

    MATH  Google Scholar 

  49. Soderstrom, T., Stoica, P.: System Identification. Prentice-Hall, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mahmoud, M.S., Xia, Y. (2012). Some Industrial Systems. In: Applied Control Systems Design. Springer, London. https://doi.org/10.1007/978-1-4471-2879-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2879-3_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2878-6

  • Online ISBN: 978-1-4471-2879-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics