Some Industrial Systems

  • Magdi S. Mahmoud
  • Yuanqing Xia


In this chapter, we discuss the input/output dynamical behavior of several industrial systems that are frequently employed in practice and examine the main features of each system. These systems include steam generation unit, small-power wind turbine, unmanned surface marine vehicle, industrial evaporation unit, multi-stage evaporation, distillation unit and falling film evaporator. The material sets forth the scene for implementing the information-based approach to control system design which starts with system identification methods.

In this chapter, the physical description of some industrial processes that are frequently employed in practice. It is well known that process dynamics and control is an inter-disciplinary area where the disciplines of process, control and information engineering are of major importance. Process engineering offers the basic knowledge about an application by developing rigorous dynamic process models and control engineering provides design tools and techniques to meet some prescribed requirements and information engineering facilitates the means for implementations. Process modeling is usually derived from the conservation balances for mass, component, energy and momentum (Roffel and Betlem, 2006).


Wind Turbine Distillation Tower Turbine Unit Live Steam Spend Liquor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdelazim, T., Malik, O.: Identification of nonlinear systems by Takagi–Sugeno fuzzy logic grey box modeling for real-time control. Control Eng. Pract. 13(12), 1489–1498 (2005) CrossRefGoogle Scholar
  2. 2.
    Aguirre, L.A.: A nonlinear correlation function for selecting the delay time in dynamical reconstructions. Phys. Lett. 203A(2–3), 88–94 (1995) Google Scholar
  3. 3.
    Aguirre, L.A., Donoso-Garcia, P.F., Santos-Filho, R.: Use of a priori information in the identification of global nonlinear models—A case study using a buck converter. IEEE Trans. Circuits Syst. I, Regul. Pap. 47(7), 1081–1085 (2000) CrossRefGoogle Scholar
  4. 4.
    Aguirre, L.A., Barroso, M.F.S., Saldanha, R.R., Mendes, E.M.A.M.: Imposing steady-state performance on identified nonlinear polynomial models by means of constrained parameter estimation. IEE Proc. Part D. Control Theory Appl. 151(2), 174–179 (2004) CrossRefGoogle Scholar
  5. 5.
    Aguirre, L.A., Coelho, M.C.S., Corrêa, M.V.: On the interpretation and practice of dynamical differences between Hammerstein and Wiener models. IEE Proc. Part D. Control Theory Appl. 152(4), 349–356 (2005) CrossRefGoogle Scholar
  6. 6.
    Astrom, K.J., Eykhoff, P.: System identification—A survey. Automatica 7(2), 123–162 (1971) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proc. 2nd Int. Conf. Genetic Algorithms Genetic Algorithms Their Appl., Mahwah, N.J., pp. 14–21 (1987) Google Scholar
  8. 8.
    Bakker, H.H.C., Marsh, C., Paramalingam, S., Chen, H.: Cascade controller design for concentration in a falling film evaporators. Food Control 17(5), 325–330 (2006) CrossRefGoogle Scholar
  9. 9.
    Barbosa, B.H.: Instrumentation, modelling, control and supervision of a hydraulic pumping system and turbine–generator module (in Portuguese). Master’s thesis, Sch. Elect. Eng., Federal Univ. Minas Gerais, Belo Horizonte, Brazil (2006) Google Scholar
  10. 10.
    Barroso, M.S.F., Takahashi, R.H.C., Aguirre, L.A.: Multi-objective parameter estimation via minimal correlation criterion. J. Process Control 17(4), 321–332 (2007) CrossRefGoogle Scholar
  11. 11.
    Billings, S.A., Voon, W.S.F.: Least squares parameter estimation algorithms for nonlinear systems. Int. J. Syst. Sci. 15(6), 601–615 (1984) MathSciNetMATHGoogle Scholar
  12. 12.
    Billings, S.A., Chen, S., Korenberg, M.J.: Identification of MIMO nonlinear systems using a forward-regression orthogonal estimator. Int. J. Control 49(6), 2157–2189 (1989) MathSciNetMATHGoogle Scholar
  13. 13.
    Bingulac, S., Sinha, N.K.: On the identification of continuous-time systems from the samples of input–output data. In: Proc. Seventh Int. Conf. on Mathematical and Computer Modeling, Chicago, IL, pp. 231–239 (1989) Google Scholar
  14. 14.
    Bucharles, A., Cassan, H., Roubertier, J.: Advanced parameter identification techniques for near real-time flight flutter test analysis. AIAA, Paper 90-1275, May 1990 Google Scholar
  15. 15.
    Chen, S., Billings, S.A., Luo, W.: Orthogonal least squares methods and their application to nonlinear system identification. Int. J. Control 50(5), 1873–1896 (1989) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Connally, P., Li, K., Irwing, G.W.: Prediction and simulation error based perceptron training: Solution space analysis and a novel combined training scheme. Neurocomputing 70, 819–827 (2007) CrossRefGoogle Scholar
  17. 17.
    Cooper, J.: Parameter estimation methods for the flight flutter testing. In: Proc. the 80th AGARD Structures and Materials Panel, CP-566, AGARD, Rotterdam, The Netherlands (1995) Google Scholar
  18. 18.
    Correa, M.V., Aguirre, L.A., Saldanha, R.R.: Using steady-state prior knowledge to constrain parameter estimates in nonlinear system identification. IEEE Trans. Circuits Syst. I, Regul. Pap. 49(9), 1376–1381 (2002) CrossRefGoogle Scholar
  19. 19.
    Cunningham, P., Canty, N., O’Mahony, T., O’Connor, B., O’Callagham, D.: System identification of a falling film evaporator in the dairy industry. In: Proc. of SYSID’94, Copenhagen, Denmark, vol. 1, pp. 234–239 (1994) Google Scholar
  20. 20.
    De Moor, B.L.R. (ed.): DaISy: Database for the Identification of Systems. Department of Electrical Engineering, ESAT/SISTA, K.U.Leuven, Belgium.
  21. 21.
    De Moor, B.L.R., Ljung, L., Zhu, Y., Van Overschee, P.: Comparison of three classes of identification methods. In: Proc. of SYSID’94, Copenhagen, Denmark, vol. 1, 175–180 (1994) Google Scholar
  22. 22.
    Draper, N.R., Smith, H.: Applied Regression Analysis, 3rd edn. Wiley, New York (1998) MATHGoogle Scholar
  23. 23.
    Ekawati, E., Bahri, P.A.: Controllability analysis of a five effects evaporator system. In: Proc. Foundations of Computer-Aided Process Operations, FOCAPO2003, pp. 417–420 (2003) Google Scholar
  24. 24.
    El-Sherief, H., Sinha, N.K.: Identification and modelling for linear multivariable discrete-time systems: A survey. J. Cybern. 9, 43–71 (1979) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    El-Sherief, H., Sinha, N.K.: Determination of the structure of a canonical model for the identification of linear multivariable systems. IEEE Trans. Syst. Man Cybern. SMC-12, 668–673 (1982) Google Scholar
  26. 26.
    Energy Efficiency and Renewable Energy, U.S. Department of Energy.
  27. 27.
    Favoreel, W., De Moor, B.L.R., Van Overschee, P.: Subspace state-space system identification for industrial processes. J. Process Control 10(2–3), 149–155 (2000) CrossRefGoogle Scholar
  28. 28.
    Ghiaus, C., Chicinas, A., Inard, C.: Grey-box identification of air-handling unit elements. Control Eng. Pract. 15(4), 421–433 (2007) CrossRefGoogle Scholar
  29. 29.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, New York (1989) MATHGoogle Scholar
  30. 30.
    Hsia, T.C.: On sampled-data approach to parameter identification of continuous-time linear systems. IEEE Trans. Autom. Control AC-17, 247–249 (1972) CrossRefGoogle Scholar
  31. 31.
    Hsia, T.: System Identification: Least-Squares Methods. Lexington Books, Lexington (1977) Google Scholar
  32. 32.
    Jakubek, S., Hametner, C., Keuth, N.: Total least squares in fuzzy system identification: An application to an industrial engine. Eng. Appl. Artif. Intell. 21, 1277–1288 (2008) CrossRefGoogle Scholar
  33. 33.
    Karimi, M., Jahanmiri, A.: Nonlinear modeling and cascade control design for multieffect falling film evaporator. Iran. J. Chem. Eng. 3(2) (2006) Google Scholar
  34. 34.
    Kehoe, M.W.: A historical overview of flight flutter testing, NASA TR 4720, Oct. 1995 Google Scholar
  35. 35.
    Leontaritis, I.J., Billings, S.A.: Input–output parametric models for nonlinear systems. Part II: Deterministic nonlinear system. Int. J. Control 41(2), 329–344 (1985) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Miranda, V., Simpson, R.: Modelling and simulation of an industrial multiple-effect evaporator: Tomato concentrate. J. Food Eng. 66, 203–210 (2005) CrossRefGoogle Scholar
  37. 37.
    Neilsen, K.M., Pedersen, T.S., Nielsen, J.F.D.: Simulation and control of multieffect evaporator Google Scholar
  38. 38.
    Nepomuceno, E.G., Takahashi, R.H.C., Aguirre, L.A.: Multiobjective parameter estimation: Affine information and least-squares formulation. Int. J. Control 80(6), 863–871 (2007) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Norgaard, M.: Neural network based system identification—TOOLBOX, Tech. Univ. Denmark, Lyngby, Tech. Rep. 97-E-851 (1997) Google Scholar
  40. 40.
    Ogata, K.: MATLAB for Control Engineers. Prentice-Hall, New York (2008) Google Scholar
  41. 41.
    Pan, Y., Lee, J.H.: Modified subspace identification for long-range prediction model for inferential control. Control Eng. Pract. 16(12), 1487–1500 (2008) CrossRefGoogle Scholar
  42. 42.
    Piroddi, L.: Simulation error minimization methods for NARX model identification. Int. J. Model. Identif. Control 3(4), 392–403 (2008) CrossRefGoogle Scholar
  43. 43.
    Piroddi, L., Spinelli, W.: An identification algorithm for polynomial NARX-models based on simulation error minimization. Int. J. Control 76(17), 1767–1781 (2003) MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Rangaiah, G., Saha, P., Tade, M.: Nonlinear model predictive control of an industrial four-stage evaporator system via simulation. Chem. Eng. J. 87, 285–299 (2002) CrossRefGoogle Scholar
  45. 45.
    Roffel, B., Betlem, B.: Process Dynamics and Control. Wiley, London (2006) Google Scholar
  46. 46.
    Sinha, N.K.: Estimation of transfer function of continuous-time systems from samples of input–output data. Proc. Inst. Electr. Eng. 119, 612–614 (1972) CrossRefGoogle Scholar
  47. 47.
    Sinha, N.K., Kuszta, B.: Modelling and Identification of Dynamic Systems. Von-Nostrand Reinhold, New York (1983) Google Scholar
  48. 48.
    Sinha, N.K., Rao, G.P. (eds.): Identification of Continuous-Time Systems. Kluwer Academic, Dordrecht (1991) MATHGoogle Scholar
  49. 49.
    Soderstrom, T., Stoica, P.: System Identification. Prentice-Hall, New York (1989) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Magdi S. Mahmoud
    • 1
  • Yuanqing Xia
    • 2
  1. 1.Department of Systems EngineeringKing Fahad Univ. of Petroleum & MineralsDhahranSaudi Arabia
  2. 2.Dept. Automatic ControlBeijing Institute of TechnologyBeijingChina, People’s Republic

Personalised recommendations