Skip to main content

Murine Models of Prostate Cancer

  • Chapter
  • First Online:
  • 2986 Accesses

Abstract

Preclinical investigation of prostate cancer (CaP) has been greatly assisted by the availability of animal models which enable experimentation in physiologic tissue microenvironments that cannot be recapitulated by current in vitro platforms. Such modeling is necessary to study carcinogenesis steps requiring interaction between the cancer cell and microenvironment, such as local invasion, circulatory transit/dissemination, lodging and survival of tumor cells at secondary tissue sites, and tumorigenesis itself. Animal models thus provide invaluable preclinical tools for elucidating molecular mechanisms of CaP carcinogenesis and testing novel CaP therapies. This chapter reviews different approaches to murine modeling of CaP and summarizes various models with respect to their histology, androgen sensitivity, invasiveness, metastatic potential, molecular profiles and preclinical discoveries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cunha GR, Donjacour AA, Cooke PS, et al. The endocrinology and developmental biology of the prostate. Endocr Rev. 1987;8:338.

    Article  PubMed  CAS  Google Scholar 

  2. Sugimura Y, Cunha GR, Donjacour AA. Morphogenesis of ductal networks in the mouse prostate. Biol Reprod. 1986;34:961.

    Article  PubMed  CAS  Google Scholar 

  3. Shirai T, Takahashi S, Cui L, et al. Experimental prostate carcinogenesis - rodent models. Mutat Res. 2000;462:219.

    Article  PubMed  CAS  Google Scholar 

  4. Pollard M. Spontaneous prostate adenocarcinomas in aged germfree Wistar rats. J Natl Cancer Inst. 1973;51:1235.

    PubMed  CAS  Google Scholar 

  5. Pollard M. Lobund-Wistar rat model of prostate cancer in man. Prostate. 1998;37:1.

    Article  PubMed  CAS  Google Scholar 

  6. Pugh TD, Chang C, Uemura H, et al. Prostatic localization of spontaneous early invasive carcinoma in Lobund-Wistar rats. Cancer Res. 1994;54:5766.

    PubMed  CAS  Google Scholar 

  7. Suckow MA, Wheeler J, Yan M. PAIII prostate tumors express prostate specific antigen (PSA) in Lobund-Wistar rats. Can J Vet Res. 2009;73:39.

    PubMed  Google Scholar 

  8. Pollard M. Prevention of prostate-related cancers in Lobund-Wistar rats. Prostate. 1999;39:305.

    Article  PubMed  CAS  Google Scholar 

  9. Chan SY. Androgen and glucocorticoid receptors in the Pollard prostate adenocarcinoma cell lines. Prostate. 1980;1:53.

    Article  PubMed  CAS  Google Scholar 

  10. Pollard M. Dihydrotestosterone prevents spontaneous adenocarcinomas in the prostate-seminal vesicle in aging L-W rats. Prostate. 1998;36:168.

    Article  PubMed  CAS  Google Scholar 

  11. Pollard M, Snyder DL, Luckert PH. Dihydrotestosterone does not induce prostate adenocarcinoma in L-W rats. Prostate. 1987;10:325.

    Article  PubMed  CAS  Google Scholar 

  12. Pollard M, Suckow MA. Dietary prevention of hormone refractory prostate cancer in Lobund-Wistar rats: a review of studies in a relevant animal model. Comp Med. 2006;56:461.

    PubMed  CAS  Google Scholar 

  13. Isaacs JT. The aging ACI/Seg versus Copenhagen male rat as a model system for the study of prostatic carcinogenesis. Cancer Res. 1984;44:5785.

    PubMed  CAS  Google Scholar 

  14. Shain SA, McCullough B, Segaloff A. Spontaneous adenocarcinomas of the ventral prostate of aged A X C rats. J Natl Cancer Inst. 1975;55:177.

    PubMed  CAS  Google Scholar 

  15. Homma Y, Kaneko M, Kondo Y, et al. Inhibition of rat prostate carcinogenesis by a 5alpha-reductase inhibitor, FK143. J Natl Cancer Inst. 1997;89:803.

    Article  PubMed  CAS  Google Scholar 

  16. Ward JM, Reznik G, Stinson SF, et al. Histogenesis and morphology of naturally occurring prostatic carcinoma in the ACI/segHapBR rat. Lab Invest. 1980;43:517.

    PubMed  CAS  Google Scholar 

  17. Varma VA, Austin GE. Morphologic characterization of early prostatic carcinomas in the ACI rat: a light and electron microscopic study. Exp Mol Pathol. 1990;52:202.

    Article  PubMed  CAS  Google Scholar 

  18. Shain SA, Boesel RW, Kalter SS, et al. AXC rat prostatic adenocarcinoma: characterization of cells in culture. Adv Exp Med Biol. 1981;138:337.

    Article  PubMed  CAS  Google Scholar 

  19. Shain SA, Huot RI, Gorelic LS, et al. Biochemical and morphological characterization of clonal AXC rat prostate cancer cells. Cancer Res. 1984;44:2033.

    PubMed  CAS  Google Scholar 

  20. Huot RI, Shain SA. Differential androgen modulation of AXC/SSh rat prostate cancer cell proliferation in vitro and its antagonism by antiandrogen. Cancer Res. 1986;46:3775.

    PubMed  CAS  Google Scholar 

  21. Kondo Y, Homma Y, Aso Y, et al. Promotional effect of two-generation exposure to a high-fat diet on prostate carcinogenesis in ACI/Seg rats. Cancer Res. 1994;54:6129.

    PubMed  CAS  Google Scholar 

  22. Homma Y, Kondo Y, Kaneko M, et al. Promotion of carcinogenesis and oxidative stress by dietary cholesterol in rat prostate. Carcinogenesis. 2004;25:1011.

    Article  PubMed  CAS  Google Scholar 

  23. Yamashita S, Suzuki S, Nomoto T, et al. Linkage and microarray analyses of susceptibility genes in ACI/Seg rats: a model for prostate cancers in the aged. Cancer Res. 2005;65:2610.

    Article  PubMed  CAS  Google Scholar 

  24. Dunning WF. Prostate cancer in the rat. Natl Cancer Inst Monogr. 1963;12:351.

    PubMed  CAS  Google Scholar 

  25. Noble RL. The development of prostatic adenocarcinoma in Nb rats following prolonged sex hormone administration. Cancer Res. 1977;37:1929.

    PubMed  CAS  Google Scholar 

  26. Reznik G, Hamlin 2nd MH, Ward JM, et al. Prostatic hyperplasia and neoplasia in aging F344 rats. Prostate. 1981;2:261.

    Article  PubMed  CAS  Google Scholar 

  27. Pollard M, Luckert PH. Prostate cancer in a Sprague-Dawley rat. Prostate. 1985;6:389.

    Article  PubMed  CAS  Google Scholar 

  28. Pollard M, Luckert PH. Autochthonous prostate adenocarcinomas in Lobund-Wistar rats: a model system. Prostate. 1987;11:219.

    Article  PubMed  CAS  Google Scholar 

  29. McCormick DL, Rao KV, Dooley L, et al. Influence of N-methyl-N-nitrosourea, testosterone, and N-(4-hydroxyphenyl)-all-trans-retinamide on prostate cancer induction in Wistar-Unilever rats. Cancer Res. 1998;58:3282.

    PubMed  CAS  Google Scholar 

  30. Noble RL. Prostate carcinoma of the Nb rat in relation to hormones. Int Rev Exp Pathol. 1982;23:113.

    PubMed  CAS  Google Scholar 

  31. Drago JR. The induction of NB rat prostatic carcinomas. Anticancer Res. 1984;4:255.

    PubMed  CAS  Google Scholar 

  32. Leav I, Ho SM, Ofner P, et al. Biochemical alterations in sex hormone-induced hyperplasia and dysplasia of the dorsolateral prostates of noble rats. J Natl Cancer Inst. 1988;80:1045.

    Article  PubMed  CAS  Google Scholar 

  33. Wientjes G, Smith J, Miller R, et al. Noble PRST-1 Ca prostate adenocarcinoma study on noble rats: preliminary study on new androgen sensitive tumor. In Vivo. 1989;3:335.

    PubMed  CAS  Google Scholar 

  34. Drago JR. Chemotherapeutic treatment of the Nb rat adenocarcinoma androgen-insensitive tumor III. J Surg Oncol. 1982;21:264.

    Article  PubMed  CAS  Google Scholar 

  35. Drago JR, Murray C. Control of metastases in the Nb rat prostatic adenocarcinoma model. J Androl. 1984;5:265.

    PubMed  CAS  Google Scholar 

  36. Drago JR, Worgul T, Gershwin ME. Combination chemotherapy in a prostate tumor model: Nb rat prostatic adenocarcinoma model. J Surg Oncol. 1981;16:353.

    Article  PubMed  CAS  Google Scholar 

  37. Pollard M, Luckert PH, Snyder D. Prevention and treatment of experimental prostate cancer in Lobund-Wistar rats. I. Effects of estradiol, dihydrotestosterone, and castration. Prostate. 1989; 15:95.

    Article  PubMed  CAS  Google Scholar 

  38. Bentel JM, Pickering MA, Pollard M, et al. Androgen receptor expression in primary prostate cancers of Lobund-Wistar rats and in tumor-derived cell lines. In Vitro Cell Dev Biol Anim. 1999;35:655.

    Article  PubMed  CAS  Google Scholar 

  39. Bosland MC, Prinsen MK. Induction of dorsolateral prostate adenocarcinomas and other accessory sex gland lesions in male Wistar rats by a single administration of N-methyl-N-nitrosourea, 7,12-dimethylbenz(a)anthracene, and 3,2′-dimethyl-4-aminobiphenyl after sequential treatment with cyproterone acetate and testosterone propionate. Cancer Res. 1990;50:691.

    PubMed  CAS  Google Scholar 

  40. Bosland MC, Prinsen MK, Dirksen TJ, et al. Characterization of adenocarcinomas of the dorsolateral prostate induced in Wistar rats by N-methyl-N-nitrosourea, 7,12-dimethylbenz(a)anthracene, and 3,2′-dimethyl-4-aminobiphenyl, following sequential treatment with cyproterone acetate and testosterone propionate. Cancer Res. 1990;50:700.

    PubMed  CAS  Google Scholar 

  41. McCormick DL, Rao KV, Johnson WD, et al. Null activity of selenium and vitamin e as cancer chemopreventive agents in the rat prostate. Cancer Prev Res (Phila). 2010;3:381.

    Article  CAS  Google Scholar 

  42. Liao Z, Wang S, Boileau TW, et al. Increased phospho-AKT is associated with loss of the androgen receptor during the progression of N-methyl-N-nitrosourea-induced prostate carcinogenesis in rats. Prostate. 2005;64:186.

    Article  PubMed  CAS  Google Scholar 

  43. Banudevi S, Elumalai P, Arunkumar R, et al. Chemopreventive effects of zinc on prostate carcinogenesis induced by N-methyl-N-nitrosourea and testosterone in adult male Sprague-Dawley rats. J Cancer Res Clin Oncol. 2010;137:677.

    Article  PubMed  CAS  Google Scholar 

  44. Sarkar DK, Boyadjieva NI, Chen CP, et al. Cyclic adenosine monophosphate differentiated beta-endorphin neurons promote immune function and prevent prostate cancer growth. Proc Natl Acad Sci U S A. 2008;105:9105.

    Article  PubMed  CAS  Google Scholar 

  45. Maekawa A, Matsuoka C, Onodera H, et al. Organ-specific carcinogenicity of N-methyl-N-nitrosourea in F344 and ACI/N rats. J Cancer Res Clin Oncol. 1985;109:178.

    Article  PubMed  CAS  Google Scholar 

  46. Pollard M, Wolter W, Sun L. Prevention of induced prostate-related cancer by soy protein isolate/isoflavone-supplemented diet in Lobund-Wistar rats. In Vivo. 2000;14:389.

    PubMed  CAS  Google Scholar 

  47. Sukumar S, Armstrong B, Bruyntjes JP, et al. Frequent activation of the Ki-ras oncogene at codon 12 in N-methyl-N-nitrosourea-induced rat prostate adenocarcinomas and neurogenic sarcomas. Mol Carcinog. 1991;4:362.

    Article  PubMed  CAS  Google Scholar 

  48. McCormick DL, Johnson WD, Bosland MC, et al. Chemoprevention of rat prostate carcinogenesis by soy isoflavones and by Bowman-Birk inhibitor. Nutr Cancer. 2007;57:184.

    Article  PubMed  CAS  Google Scholar 

  49. Arunkumar A, Vijayababu MR, Venkataraman P, et al. Chemoprevention of rat prostate carcinogenesis by diallyl disulfide, an organosulfur compound of garlic. Biol Pharm Bull. 2006;29:375.

    Article  PubMed  CAS  Google Scholar 

  50. Wilson MJ, Lindgren BR, Sinha AA. The effect of dietary supplementation with limonene or myo-inositol on the induction of neoplasia and matrix metalloproteinase and plasminogen activator activities in accessory sex organs of male Lobund-Wistar rats. Exp Mol Pathol. 2008;85:83.

    Article  PubMed  CAS  Google Scholar 

  51. Bisson JF, Nejdi A, Rozan P, et al. Effects of long-term administration of a cocoa polyphenolic extract (Acticoa powder) on cognitive performances in aged rats. Br J Nutr. 2008;100:94.

    Article  PubMed  CAS  Google Scholar 

  52. Narayanan NK, Nargi D, Horton L, et al. Inflammatory processes of prostate tissue microenvironment drive rat prostate carcinogenesis: preventive effects of celecoxib. Prostate. 2009;69:133.

    Article  PubMed  CAS  Google Scholar 

  53. Ito N, Shirai T, Tagawa Y, et al. Variation in tumor yield in the prostate and other target organs of the rat in response to varied dosage and duration of administration of 3,2′-dimethyl-4-aminobiphenyl. Cancer Res. 1988;48:4629.

    PubMed  CAS  Google Scholar 

  54. Shirai T, Nakamura A, Fukushima S, et al. Different carcinogenic responses in a variety of organs, including the prostate, of five different rat strains given 3,2′-dimethyl-4-aminobiphenyl. Carcinogenesis. 1990;11:793.

    Article  PubMed  CAS  Google Scholar 

  55. Shirai T, Takahashi S, Mori T, et al. Immunohistochemically demonstrated androgen receptor expression in the rat prostate during carcinogenesis induced by 3,2′-dimethyl-4-aminobiphenyl with or without testosterone. Urol Oncol. 1995;1:263.

    Article  PubMed  CAS  Google Scholar 

  56. Yamauchi A, Kawai K, Tsukamoto S, et al. Persistence of prostatic intraepithelial neoplasia after effective chemoprevention of microscopic prostate cancer with antiandrogen in a rat model. J Urol. 2006;175:348.

    Article  PubMed  CAS  Google Scholar 

  57. Takai K, Kakizoe T, Tanaka Y, et al. Trial to induce prostatic cancer in ACI/Seg rats treated with a combination of 3,2′-dimethyl-4-aminobiphenyl and ethinyl estradiol. Jpn J Cancer Res. 1991;82:286.

    Article  PubMed  CAS  Google Scholar 

  58. Shirai T, Tamano S, Kato T, et al. Induction of invasive carcinomas in the accessory sex organs other than the ventral prostate of rats given 3,2′-dimethyl-4-aminobiphenyl and testosterone propionate. Cancer Res. 1991;51:1264.

    PubMed  CAS  Google Scholar 

  59. Yaono M, Tamano S, Mori T, et al. Lobe specific effects of testosterone and estrogen on 3,2′-dimethyl-4-aminobiphenyl-induced rat prostate carcinogenesis. Cancer Lett. 2000;150:33.

    Article  PubMed  CAS  Google Scholar 

  60. Shirai T, Imaida K, Masui T, et al. Effects of testosterone, dihydrotestosterone and estrogen on 3,2′-dimethyl-4-aminobiphenyl-induced rat prostate carcinogenesis. Int J Cancer. 1994;57:224.

    Article  PubMed  CAS  Google Scholar 

  61. Shirai T, Sakata T, Fukushima S, et al. Rat prostate as one of the target organs for 3,2′-dimethyl-4-aminobiphenyl-induced carcinogenesis: effects of dietary ethinyl estradiol and methyltestosterone. Jpn J Cancer Res. 1985;76:803.

    PubMed  CAS  Google Scholar 

  62. Akaza H, Tsukamoto S, Morita T, et al. Promoting effects of antiandrogenic agents on rat ventral prostate carcinogenesis induced by 3,2′-dimethyl-4-aminobiphenyl (DMAB). Prostate Cancer Prostatic Dis. 2000;3:115.

    Article  PubMed  CAS  Google Scholar 

  63. Iwasaki S, Kato K, Mori T, et al. Development of androgen-independent carcinomas from androgen-dependent preneoplastic lesions in the male accessory sex organs of rats treated with 3,2′-dimethyl-4-aminobiphenyl and testosterone propionate. Jpn J Cancer Res. 1999;90:23.

    Article  PubMed  CAS  Google Scholar 

  64. Nakanishi H, Takeuchi S, Kato K, et al. Establishment and characterization of three androgen-independent, metastatic carcinoma cell lines from 3,2′-dimethyl-4-aminobiphenyl-induced prostatic tumors in F344 rats. Jpn J Cancer Res. 1996;87:1218.

    Article  PubMed  CAS  Google Scholar 

  65. Yamashita S, Takahashi S, McDonell N, et al. Methylation silencing of transforming growth factor-beta receptor type II in rat prostate cancers. Cancer Res. 2008;68:2112.

    Article  PubMed  CAS  Google Scholar 

  66. Masui T, Shirai T, Imaida K, et al. Ki-ras mutations with frequent normal allele loss versus absence of p53 mutations in rat prostate and seminal vesicle carcinomas induced with 3,2′-dimethyl-4-aminobiphenyl. Mol Carcinog. 1995;13:21.

    Article  PubMed  CAS  Google Scholar 

  67. Kohno H, Suzuki R, Sugie S, et al. Dietary supplementation with silymarin inhibits 3,2′-dimethyl-4-aminobiphenyl-induced prostate carcinogenesis in male F344 rats. Clin Cancer Res. 2005;11:4962.

    Article  PubMed  CAS  Google Scholar 

  68. Mori T, Imaida K, Tamano S, et al. Beef tallow, but not perilla or corn oil, promotion of rat prostate and intestinal carcinogenesis by 3,2′-dimethyl-4-aminobiphenyl. Jpn J Cancer Res. 2001;92:1026.

    Article  PubMed  CAS  Google Scholar 

  69. Onozawa M, Kawamori T, Baba M, et al. Effects of a soybean isoflavone mixture on carcinogenesis in prostate and seminal vesicles of F344 rats. Jpn J Cancer Res. 1999;90:393.

    Article  PubMed  CAS  Google Scholar 

  70. Tsukamoto S, Akaza H, Onozawa M, et al. A five-alpha reductase inhibitor or an antiandrogen prevents the progression of microscopic prostate carcinoma to macroscopic carcinoma in rats. Cancer. 1998;82:531.

    Article  PubMed  CAS  Google Scholar 

  71. Pour PM, Stepan K. Induction of prostatic carcinomas and lower urinary tract neoplasms by combined treatment of intact and castrated rats with testosterone propionate and N-nitrosobis(2-oxopropyl)amine. Cancer Res. 1987;47:5699.

    PubMed  CAS  Google Scholar 

  72. Newhall KR, Isaacs JT, Wright Jr GL. Dunning rat prostate tumors and cultured cell lines fail to express human prostate carcinoma-associated antigens. Prostate. 1990;17:317.

    Article  PubMed  CAS  Google Scholar 

  73. Markland Jr FS, Lee L. Characterization and comparison of the estrogen and androgen receptors from the R-3327 rat prostatic adenocarcinoma. J Steroid Biochem. 1979;10:13.

    Article  PubMed  CAS  Google Scholar 

  74. Smolev JK, Heston WD, Scott WW, et al. Characterization of the Dunning R3327H prostatic adenocarcinoma: an appropriate animal model for prostatic cancer. Cancer Treat Rep. 1977;61:273.

    PubMed  CAS  Google Scholar 

  75. Isaacs JT, Isaacs WB, Feitz WF, et al. Establishment and characterization of seven Dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers. Prostate. 1986;9:261.

    Article  PubMed  CAS  Google Scholar 

  76. Isaacs JT, Heston WD, Weissman RM, et al. Animal models of the hormone-sensitive and -insensitive prostatic adenocarcinomas, Dunning R-3327-H, R-3327-HI, and R-3327-AT. Cancer Res. 1978;38:4353.

    PubMed  CAS  Google Scholar 

  77. Sestili MA, Norris JS, Smith RG. Isolation and characterization of a cloned cell line R3327H-G8-A1 derived from the dunning R3327H rat adenocarcinoma. Cancer Res. 1983;43:2167.

    PubMed  CAS  Google Scholar 

  78. Lee C, Murphy GP, Chu TM. Purification and characterization of acid phosphatase from Dunning R3327H prostatic adenocarcinoma. Cancer Res. 1980;40:1245.

    PubMed  CAS  Google Scholar 

  79. Garde SV, Sheth AR, Porter AT, et al. A comparative study on expression of prostatic inhibin peptide, prostate acid phosphatase and prostate specific antigen in androgen independent human and rat prostate carcinoma cell lines. Cancer Lett. 1993;70:159.

    Article  PubMed  CAS  Google Scholar 

  80. Tennant TR, Kim H, Sokoloff M, et al. The Dunning model. Prostate. 2000;43:295.

    Article  PubMed  CAS  Google Scholar 

  81. Oltean S, Febbo PG, Garcia-Blanco MA. Dunning rat prostate adenocarcinomas and alternative splicing reporters: powerful tools to study epithelial plasticity in prostate tumors in vivo. Clin Exp Metastasis. 2008;25:611.

    Article  PubMed  CAS  Google Scholar 

  82. Pfundt R, Smit F, Jansen C, et al. Identification of androgen-responsive genes that are alternatively regulated in androgen-dependent and androgen-independent rat prostate tumors. Genes Chromosomes Cancer. 2005;43:273.

    Article  PubMed  CAS  Google Scholar 

  83. Kauffman EC, Robinson VL, Stadler WM, et al. Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. J Urol. 2003;169:1122.

    Article  PubMed  Google Scholar 

  84. Oltean S, Sorg BS, Albrecht T, et al. Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proc Natl Acad Sci U S A. 2006;103:14116.

    Article  PubMed  CAS  Google Scholar 

  85. Zhang M, Coen JJ, Suzuki Y, et al. Survivin is a potential mediator of prostate cancer metastasis. Int J Radiat Oncol Biol Phys. 2010;78:1095.

    Article  PubMed  CAS  Google Scholar 

  86. Blount LV, Cooke 3rd DB. Point mutations in the Ki-ras2 gene of codon 12 in the Dunning R-3327 Prostatic Adenocarcinoma system. Prostate. 1996;28:44.

    Article  PubMed  CAS  Google Scholar 

  87. Isaacs JT, Coffey DS. Adaptation versus selection as the mechanism responsible for the relapse of prostatic cancer to androgen ablation therapy as studied in the Dunning R-3327-H adenocarcinoma. Cancer Res. 1981;41:5070.

    PubMed  CAS  Google Scholar 

  88. Redding TW, Schally AV. Inhibition of prostate tumor growth in two rat models by chronic administration of D-Trp6 analogue of luteinizing hormone-releasing hormone. Proc Natl Acad Sci U S A. 1981;78:6509.

    Article  PubMed  CAS  Google Scholar 

  89. English HF, Heitjan DF, Lancaster S, et al. Beneficial effects of androgen-primed chemotherapy in the Dunning R3327 G model of prostatic cancer. Cancer Res. 1991;51:1760.

    PubMed  CAS  Google Scholar 

  90. George DJ, Dionne CA, Jani J, et al. Sustained in vivo regression of Dunning H rat prostate cancers treated with combinations of androgen ablation and Trk tyrosine kinase inhibitors, CEP-751 (KT-6587) or CEP-701 (KT-5555). Cancer Res. 1999;59:2395.

    PubMed  CAS  Google Scholar 

  91. Isaacs JT. Relationship between tumor size and curability of prostatic cancer by combined chemo-hormonal therapy in rats. Cancer Res. 1989;49:6290.

    PubMed  CAS  Google Scholar 

  92. Kaminski JM, Hanlon AL, Joon DL, et al. Effect of sequencing of androgen deprivation and radiotherapy on prostate cancer growth. Int J Radiat Oncol Biol Phys. 2003;57:24.

    Article  PubMed  CAS  Google Scholar 

  93. Xu Y, Dalrymple SL, Becker RE, et al. Pharmacologic basis for the enhanced efficacy of dutasteride against prostatic cancers. Clin Cancer Res. 2006;12:4072.

    Article  PubMed  CAS  Google Scholar 

  94. Zechmann CM, Woenne EC, Brix G, et al. Impact of stroma on the growth, microcirculation, and metabolism of experimental prostate tumors. Neoplasia. 2007;9:57.

    Article  PubMed  CAS  Google Scholar 

  95. Morton RA, Isaacs JT, Isaacs WB. Differential effects of growth factor antagonists on neoplastic and normal prostatic cells. Prostate. 1990;17:327.

    Article  PubMed  CAS  Google Scholar 

  96. Saffrin R, Chou P, Ray V, et al. Suramin as adjuvant therapy with radical prostatectomy. Prostate. 1996;28:325.

    Article  PubMed  CAS  Google Scholar 

  97. Small EJ, Meyer M, Marshall ME, et al. Suramin therapy for patients with symptomatic hormone-refractory prostate cancer: results of a randomized phase III trial comparing suramin plus hydrocortisone to placebo plus hydrocortisone. J Clin Oncol. 2000;18:1440.

    PubMed  CAS  Google Scholar 

  98. Vogelzang NJ, Karrison T, Stadler WM, et al. A Phase II trial of suramin monthly x 3 for hormone-refractory prostate carcinoma. Cancer. 2004;100:65.

    Article  PubMed  CAS  Google Scholar 

  99. Getzenberg RH, Light BW, Lapco PE, et al. Vitamin D inhibition of prostate adenocarcinoma growth and metastasis in the Dunning rat prostate model system. Urology. 1997;50:999.

    Article  PubMed  CAS  Google Scholar 

  100. Lindshield BL, Ford NA, Canene-Adams K, et al. Selenium, but not lycopene or vitamin E, decreases growth of transplantable dunning R3327-H rat prostate tumors. PLoS One. 2010;5:e10423.

    Article  PubMed  CAS  Google Scholar 

  101. Siler U, Barella L, Spitzer V, et al. Lycopene and vitamin E interfere with autocrine/paracrine loops in the Dunning prostate cancer model. FASEB J. 2004;18:1019.

    PubMed  CAS  Google Scholar 

  102. Canene-Adams K, Lindshield BL, Wang S, et al. Combinations of tomato and broccoli enhance antitumor activity in dunning r3327-h prostate adenocarcinomas. Cancer Res. 2007;67:836.

    Article  PubMed  CAS  Google Scholar 

  103. Claflin AJ, McKinney EC, Fletcher MA. The Dunning R3327 prostate adenocarcinoma in the Fischer-Copenhagen F1 rat: a useful model for immunological studies. Oncology. 1977;34:105.

    Article  PubMed  CAS  Google Scholar 

  104. Sharma N, Luo J, Kirschmann DA, et al. A novel immunological model for the study of prostate cancer. Cancer Res. 1999;59:2271.

    PubMed  CAS  Google Scholar 

  105. Joseph IB, Isaacs JT. Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents. J Natl Cancer Inst. 1998;90:1648.

    Article  PubMed  CAS  Google Scholar 

  106. Tjota A, Zhang YQ, Piedmonte MR, et al. Adoptive immunotherapy using lymphokine-activated killer cells and recombinant interleukin-2 in preventing and treating spontaneous pulmonary metastases of syngeneic Dunning rat prostate tumor. J Urol. 1991;146:177.

    PubMed  CAS  Google Scholar 

  107. Junco JA, Peschke P, Zuna I, et al. Immunotherapy of prostate cancer in a murine model using a novel GnRH based vaccine candidate. Vaccine. 2007;25:8460.

    Article  PubMed  CAS  Google Scholar 

  108. Moody DB, Robinson JC, Ewing CM, et al. Interleukin-2 transfected prostate cancer cells generate a local antitumor effect in vivo. Prostate. 1994;24:244.

    Article  PubMed  CAS  Google Scholar 

  109. Halin S, Rudolfsson SH, Van Rooijen N, et al. Extratumoral macrophages promote tumor and vascular growth in an orthotopic rat prostate tumor model. Neoplasia. 2009;11:177.

    PubMed  CAS  Google Scholar 

  110. Vieweg J, Boczkowski D, Roberson KM, et al. Efficient gene transfer with adeno-associated virus-based plasmids complexed to cationic liposomes for gene therapy of human prostate cancer. Cancer Res. 1995;55:2366.

    PubMed  CAS  Google Scholar 

  111. Henry JM, Isaacs JT. Relationship between tumor size and the curability of metastatic prostatic cancer by surgery alone or in combination with adjuvant chemotherapy. J Urol. 1988;139:1119.

    PubMed  CAS  Google Scholar 

  112. Joon DL, Hasegawa M, Sikes C, et al. Supraadditive apoptotic response of R3327-G rat prostate tumors to androgen ablation and radiation. Int J Radiat Oncol Biol Phys. 1997;38:1071.

    Article  PubMed  CAS  Google Scholar 

  113. Bischof JC, Smith D, Pazhayannur PV, et al. Cryosurgery of ­dunning AT-1 rat prostate tumor: thermal, biophysical, and ­viability response at the cellular and tissue level. Cryobiology. 1997;34:42.

    Article  PubMed  CAS  Google Scholar 

  114. Chapelon JY, Margonari J, Vernier F, et al. In vivo effects of high-intensity ultrasound on prostatic adenocarcinoma Dunning R3327. Cancer Res. 1992;52:6353.

    PubMed  CAS  Google Scholar 

  115. Debus J, Spoo J, Jenne J, et al. Sonochemically induced radicals generated by pulsed high-energy ultrasound in vitro and in vivo. Ultrasound Med Biol. 1999;25:301.

    Article  PubMed  CAS  Google Scholar 

  116. Oosterhof GO, Cornel EB, Smits GA, et al. Influence of high-intensity focused ultrasound on the development of metastases. Eur Urol. 1997;32:91.

    PubMed  CAS  Google Scholar 

  117. Paparel P, Curiel L, Chesnais S, et al. Synergistic inhibitory effect of high-intensity focused ultrasound combined with chemotherapy on Dunning adenocarcinoma. BJU Int. 2005;95:881.

    Article  PubMed  Google Scholar 

  118. Standish BA, Lee KK, Jin X, et al. Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study. Cancer Res. 2008;68:9987.

    Article  PubMed  CAS  Google Scholar 

  119. Xiao Z, Halls S, Dickey D, et al. Fractionated versus standard continuous light delivery in interstitial photodynamic therapy of dunning prostate carcinomas. Clin Cancer Res. 2007;13:7496.

    Article  PubMed  CAS  Google Scholar 

  120. Johannsen M, Thiesen B, Gneveckow U, et al. Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. Prostate. 2006;66:97.

    Article  PubMed  CAS  Google Scholar 

  121. Johannsen M, Thiesen B, Jordan A, et al. Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate. 2005;64:283.

    Article  PubMed  Google Scholar 

  122. Chang CF, Pollard M. In vitro propagation of prostate adenocarcinoma cells from rats. Invest Urol. 1977;14:331.

    PubMed  CAS  Google Scholar 

  123. Pollard M, Luckert PH. Effects of dichloromethylene diphosphonate on the osteolytic and osteoplastic effects of rat prostate adenocarcinoma cells. J Natl Cancer Inst. 1985;75:949.

    PubMed  CAS  Google Scholar 

  124. Koutsilieris M, Polychronakos C. Proteinolytic activity against IGF-binding proteins involved in the paracrine interactions between prostate adenocarcinoma cells and osteoblasts. Anticancer Res. 1992;12:905.

    PubMed  CAS  Google Scholar 

  125. Koutsilieris M. Skeletal metastases in advanced prostate cancer: cell biology and therapy. Crit Rev Oncol Hematol. 1995;18:51.

    Article  PubMed  CAS  Google Scholar 

  126. Shain SA, McCullough B, Nitchuk WM. Primary and transplantable adenocarcinomas of the A times C rat ventral prostate gland: morphologic characterization and examination of C19-steroid metabolism by early-passage tumors. J Natl Cancer Inst. 1979;62:313.

    PubMed  CAS  Google Scholar 

  127. Zhao L, Futakuchi M, Suzuki S, et al. Kinetics of marked development of lung metastasis of rat prostatic carcinomas transplanted in syngeneic rats. Clin Exp Metastasis. 2005;22:309.

    Article  PubMed  CAS  Google Scholar 

  128. Kawai N, Ito A, Nakahara Y, et al. Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune-response induction in transplanted syngeneic rats. Prostate. 2005;64:373.

    Article  PubMed  CAS  Google Scholar 

  129. Lynch CC, Hikosaka A, Acuff HB, et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell. 2005;7:485.

    Article  PubMed  CAS  Google Scholar 

  130. Drago JR, Maurer RE, Gershwin ME, et al. The effect of 5-fluorouracil and adriamycin on heterotransplantation of Noble rat prostatic tumors in congenitally athymic (nude) mice. Cancer. 1979;44:424.

    Article  PubMed  CAS  Google Scholar 

  131. Drago JR, Lombard J. Nb rat prostate adenocarcinoma model: evaluation of the subrenal capsular assay system. J Surg Oncol. 1985;28:270.

    Article  PubMed  CAS  Google Scholar 

  132. Ellis WJ, Vessella RL, Buhler KR, et al. Characterization of a novel androgen-sensitive, prostate-specific antigen-producing prostatic carcinoma xenograft: LuCaP 23. Clin Cancer Res. 1996;2:1039.

    PubMed  CAS  Google Scholar 

  133. Lopez-Barcons LA. Human prostate cancer heterotransplants: a review on this experimental model. Asian J Androl. 2010;12:509.

    Article  PubMed  Google Scholar 

  134. Thalmann GN, Sikes RA, Wu TT, et al. LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate. 2000;44:91.

    Article  PubMed  CAS  Google Scholar 

  135. Troyer DA, Tang Y, Bedolla R, et al. Characterization of PacMetUT1, a recently isolated human prostate cancer cell line. Prostate. 2008;68:883.

    Article  PubMed  CAS  Google Scholar 

  136. Webber MM, Quader ST, Kleinman HK, et al. Human cell lines as an in vitro/in vivo model for prostate carcinogenesis and progression. Prostate. 2001;47:1.

    Article  PubMed  CAS  Google Scholar 

  137. Weijerman PC, Zhang Y, Shen J, et al. Expression of prostatic factors measured by reverse transcription polymerase chain reaction in human papillomavirus type 18 deoxyribonucleic acid immortalized prostate cell lines. Urology. 1998;51:657.

    Article  PubMed  CAS  Google Scholar 

  138. Wang Y, Revelo MP, Sudilovsky D, et al. Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate. 2005;64:149.

    Article  PubMed  CAS  Google Scholar 

  139. Schroeder FH, Okada K, Jellinghaus W, et al. Human prostatic adenoma and carcinoma. Transplantation of cultured cells and primary tissue fragments in “nude” mice. Invest Urol. 1976;13:395.

    PubMed  CAS  Google Scholar 

  140. Jones MA, Williams G, Davies AJ. Value of xenografts in the investigation of prostatic function: preliminary communication. J R Soc Med. 1980;73:708.

    PubMed  CAS  Google Scholar 

  141. Reid LM, Minato N, Gresser I, et al. Influence of anti-mouse interferon serum on the growth and metastasis of tumor cells persistently infected with virus and of human prostatic tumors in athymic nude mice. Proc Natl Acad Sci U S A. 1981;78:1171.

    Article  PubMed  CAS  Google Scholar 

  142. Huss WJ, Gray DR, Werdin ES, et al. Evidence of pluripotent human prostate stem cells in a human prostate primary xenograft model. Prostate. 2004;60:77.

    Article  PubMed  Google Scholar 

  143. Presnell SC, Werdin ES, Maygarden S, et al. Establishment of short-term primary human prostate xenografts for the study of prostate biology and cancer. Am J Pathol. 2001;159:855.

    Article  PubMed  CAS  Google Scholar 

  144. Lubaroff DM, Cohen MB, Schultz LD, et al. Survival of human prostate carcinoma, benign hyperplastic prostate tissues, and IL-2-activated lymphocytes in scid mice. Prostate. 1995;27:32.

    Article  PubMed  CAS  Google Scholar 

  145. Gray DR, Huss WJ, Yau JM, et al. Short-term human prostate primary xenografts: an in vivo model of human prostate cancer vasculature and angiogenesis. Cancer Res. 2004;64:1712.

    Article  PubMed  CAS  Google Scholar 

  146. van Weerden WM, de Ridder CM, Verdaasdonk CL, et al. Development of seven new human prostate tumor xenograft models and their histopathological characterization. Am J Pathol. 1996;149:1055.

    PubMed  Google Scholar 

  147. Klein KA, Reiter RE, Redula J, et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat Med. 1997;3:402.

    Article  PubMed  CAS  Google Scholar 

  148. Rubin MA, Putzi M, Mucci N, et al. Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer. Clin Cancer Res. 2000;6:1038.

    PubMed  CAS  Google Scholar 

  149. Kleinman HK, McGarvey ML, Liotta LA, et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry. 1982;21:6188.

    Article  PubMed  CAS  Google Scholar 

  150. Fridman R, Giaccone G, Kanemoto T, et al. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci U S A. 1990;87:6698.

    Article  PubMed  CAS  Google Scholar 

  151. Fridman R, Kibbey MC, Royce LS, et al. Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with Matrigel. J Natl Cancer Inst. 1991;83:769.

    Article  PubMed  CAS  Google Scholar 

  152. Lim DJ, Liu XL, Sutkowski DM, et al. Growth of an androgen-sensitive human prostate cancer cell line, LNCaP, in nude mice. Prostate. 1993;22:109.

    Article  PubMed  CAS  Google Scholar 

  153. Pretlow TG, Wolman SR, Micale MA, et al. Xenografts of primary human prostatic carcinoma. J Natl Cancer Inst. 1993;85:394.

    Article  PubMed  CAS  Google Scholar 

  154. McCulloch DR, Opeskin K, Thompson EW, et al. BM18: a novel androgen-dependent human prostate cancer xenograft model derived from a bone metastasis. Prostate. 2005;65:35.

    Article  PubMed  Google Scholar 

  155. Hoehn W, Walther R, Hermanek P. Human prostatic adenocarcinoma: comparative experimental treatment of the tumor line PC 82 in nude mice. Prostate. 1982;3:193.

    Article  PubMed  CAS  Google Scholar 

  156. Hoehn W, Schroeder FH, Reimann JF, et al. Human prostatic adenocarcinoma: some characteristics of a serially transplantable line in nude mice (PC 82). Prostate. 1980;1:95.

    Article  PubMed  CAS  Google Scholar 

  157. van Steenbrugge GJ, van Dongen JJ, Reuvers PJ, et al. Transplantable human prostatic carcinoma (PC-82) in athymic nude mice: I. Hormone dependence and the concentration of androgens in plasma and tumor tissue. Prostate. 1987;11:195.

    Article  PubMed  Google Scholar 

  158. van Weerden WM, van Kreuningen A, Elissen NM, et al. Castration-induced changes in morphology, androgen levels, and proliferative activity of human prostate cancer tissue grown in athymic nude mice. Prostate. 1993;23:149.

    Article  PubMed  Google Scholar 

  159. Ito YZ, Mashimo S, Nakazato Y, et al. Hormone dependency of a serially transplantable human prostatic cancer (HONDA) in nude mice. Cancer Res. 1985;45:5058.

    PubMed  CAS  Google Scholar 

  160. Hoehn W, Wagner M, Riemann JF, et al. Prostatic adenocarcinoma PC EW, a new human tumor line transplantable in nude mice. Prostate. 1984;5:445.

    Article  PubMed  CAS  Google Scholar 

  161. de Pinieux G, Legrier ME, Poirson-Bichat F, et al. Clinical and experimental progression of a new model of human prostate cancer and therapeutic approach. Am J Pathol. 2001;159:753.

    Article  PubMed  Google Scholar 

  162. Wainstein MA, He F, Robinson D, et al. CWR22: androgen-dependent xenograft model derived from a primary human prostatic carcinoma. Cancer Res. 1994;54:6049.

    PubMed  CAS  Google Scholar 

  163. Ito YZ, Nakazato Y. A new serially transplantable human prostatic cancer (HONDA) in nude mice. J Urol. 1984;132:384.

    PubMed  CAS  Google Scholar 

  164. Corey E, Quinn JE, Buhler KR, et al. LuCaP 35: a new model of prostate cancer progression to androgen independence. Prostate. 2003;55:239.

    Article  PubMed  CAS  Google Scholar 

  165. Yoshida T, Kinoshita H, Segawa T, et al. Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res. 2005;65:9611.

    Article  PubMed  CAS  Google Scholar 

  166. Marques RB, Erkens-Schulze S, de Ridder CM, et al. Androgen receptor modifications in prostate cancer cells upon long-termandrogen ablation and antiandrogen treatment. Int J Cancer. 2005;117:221.

    Article  PubMed  CAS  Google Scholar 

  167. Nagabhushan M, Miller CM, Pretlow TP, et al. CWR22: the first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar. Cancer Res. 1996;56:3042.

    PubMed  CAS  Google Scholar 

  168. Thin TH, Wang L, Kim E, et al. Isolation and characterization of androgen receptor mutant, AR(M749L), with hypersensitivity to 17-beta estradiol treatment. J Biol Chem. 2003;278:7699.

    Article  PubMed  CAS  Google Scholar 

  169. Welsh JB, Sapinoso LM, Su AI, et al. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 2001;61:5974.

    PubMed  CAS  Google Scholar 

  170. Kaighn ME, Narayan KS, Ohnuki Y, et al. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 1979;17:16.

    PubMed  CAS  Google Scholar 

  171. Stone KR, Mickey DD, Wunderli H, et al. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer. 1978;21:274.

    Article  PubMed  CAS  Google Scholar 

  172. Horoszewicz JS, Leong SS, Kawinski E, et al. LNCaP model of human prostatic carcinoma. Cancer Res. 1983;43:1809.

    PubMed  CAS  Google Scholar 

  173. van Haaften-Day C, Raghavan D, Russell P, et al. Xenografted small cell undifferentiated cancer of prostate: possible common origin with prostatic adenocarcinoma. Prostate. 1987;11:271.

    Article  PubMed  Google Scholar 

  174. Jelbart ME, Russell PJ, Russell P, et al. Site-specific growth of the prostate xenograft line UCRU-PR-2. Prostate. 1989;14:163.

    Article  PubMed  CAS  Google Scholar 

  175. Pinthus JH, Waks T, Schindler DG, et al. WISH-PC2: a unique xenograft model of human prostatic small cell carcinoma. Cancer Res. 2000;60:6563.

    PubMed  CAS  Google Scholar 

  176. Corey E, Quinn JE, Emond MJ, et al. Inhibition of androgen-independent growth of prostate cancer xenografts by 17beta-estradiol. Clin Cancer Res. 2002;8:1003.

    PubMed  CAS  Google Scholar 

  177. Danielpour D, Kadomatsu K, Anzano MA, et al. Development and characterization of nontumorigenic and tumorigenic epithelial cell lines from rat dorsal-lateral prostate. Cancer Res. 1994;54:3413.

    PubMed  CAS  Google Scholar 

  178. Cunha GR. Epithelio-mesenchymal interactions in primordial gland structures which become responsive to androgenic stimulation. Anat Rec. 1972;172:179.

    Article  PubMed  CAS  Google Scholar 

  179. Thompson TC, Timme TL, Kadmon D, et al. Genetic predisposition and mesenchymal-epithelial interactions in ras  +  myc-induced carcinogenesis in reconstituted mouse prostate. Mol Carcinog. 1993;7:165.

    Article  PubMed  CAS  Google Scholar 

  180. Thompson TC, Southgate J, Kitchener G, et al. Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell. 1989;56:917.

    Article  PubMed  CAS  Google Scholar 

  181. Thompson TC, Timme TL, Park SH, et al. Mouse prostate reconstitution model system: a series of in vivo and in vitro models for benign and malignant prostatic disease. Prostate. 2000;43:248.

    Article  PubMed  CAS  Google Scholar 

  182. Thompson TC, Park SH, Timme TL, et al. Loss of p53 function leads to metastasis in ras  +  myc-initiated mouse prostate cancer. Oncogene. 1995;10:869.

    PubMed  CAS  Google Scholar 

  183. Baley PA, Yoshida K, Qian W, et al. Progression to androgen insensitivity in a novel in vitro mouse model for prostate cancer. J Steroid Biochem Mol Biol. 1995;52:403.

    Article  PubMed  CAS  Google Scholar 

  184. Hall SJ, Thompson TC. Spontaneous but not experimental metastatic activities differentiate primary tumor-derived vs metastasis-derived mouse prostate cancer cell lines. Clin Exp Metastasis. 1997;15:630.

    Article  PubMed  CAS  Google Scholar 

  185. Yang G, Truong LD, Timme TL, et al. Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res. 1998;4:1873.

    PubMed  CAS  Google Scholar 

  186. Yang G, Truong LD, Wheeler TM, et al. Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res. 1999;59:5719.

    PubMed  CAS  Google Scholar 

  187. Ellwood-Yen K, Graeber TG, Wongvipat J, et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell. 2003;4:223.

    Article  PubMed  CAS  Google Scholar 

  188. Zhang X, Lee C, Ng PY, et al. Prostatic neoplasia in transgenic mice with prostate-directed overexpression of the c-myc oncoprotein. Prostate. 2000;43:278.

    Article  PubMed  CAS  Google Scholar 

  189. Winter SF, Cooper AB, Greenberg NM. Models of metastatic prostate cancer: a transgenic perspective. Prostate Cancer Prostatic Dis. 2003;6:204.

    Article  PubMed  CAS  Google Scholar 

  190. Maroulakou IG, Anver M, Garrett L, et al. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc Natl Acad Sci U S A. 1994;91:11236.

    Article  PubMed  CAS  Google Scholar 

  191. Shibata MA, Ward JM, Devor DE, et al. Progression of prostatic intraepithelial neoplasia to invasive carcinoma in C3(1)/SV40 large T antigen transgenic mice: histopathological and molecular biological alterations. Cancer Res. 1996;56:4894.

    PubMed  CAS  Google Scholar 

  192. Calvo A, Xiao N, Kang J, et al. Alterations in gene expression profiles during prostate cancer progression: functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors. Cancer Res. 2002;62:5325.

    PubMed  CAS  Google Scholar 

  193. Greenberg NM, DeMayo F, Finegold MJ, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A. 1995;92:3439.

    Article  PubMed  CAS  Google Scholar 

  194. Gingrich JR, Barrios RJ, Morton RA, et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res. 1996;56:4096.

    PubMed  CAS  Google Scholar 

  195. Kaplan-Lefko PJ, Chen TM, Ittmann MM, et al. Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate. 2003;55:219.

    Article  PubMed  Google Scholar 

  196. Gingrich JR, Barrios RJ, Kattan MW, et al. Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res. 1997;57:4687.

    PubMed  CAS  Google Scholar 

  197. Gupta S, Hastak K, Ahmad N, et al. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci U S A. 2001;98:10350.

    Article  PubMed  CAS  Google Scholar 

  198. Klein RD. The use of genetically engineered mouse models of prostate cancer for nutrition and cancer chemoprevention research. Mutat Res. 2005;576:111.

    Article  PubMed  CAS  Google Scholar 

  199. Foster BA, Gingrich JR, Kwon ED, et al. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res. 1997;57:3325.

    PubMed  CAS  Google Scholar 

  200. Kasper S, Sheppard PC, Yan Y, et al. Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab Invest. 1998;78:i.

    PubMed  CAS  Google Scholar 

  201. Masumori N, Thomas TZ, Chaurand P, et al. A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res. 2001;61:2239.

    PubMed  CAS  Google Scholar 

  202. Asamoto M, Hokaiwado N, Cho YM, et al. Prostate carcinomas developing in transgenic rats with SV40 T antigen expression under probasin promoter control are strictly androgen dependent. Cancer Res. 2001;61:4693.

    PubMed  CAS  Google Scholar 

  203. Haram KM, Peltier HJ, Lu B, et al. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy. Prostate. 2008;68:1517.

    Article  PubMed  CAS  Google Scholar 

  204. Kaplan PJ, Mohan S, Cohen P, et al. The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Cancer Res. 1999;59:2203.

    PubMed  CAS  Google Scholar 

  205. Goc A, Al-Husein B, Kochuparambil ST, et al. PI3 kinase integrates Akt and MAP kinase signaling pathways in the regulation of prostate cancer. Int J Oncol. 2011;38:267.

    PubMed  CAS  Google Scholar 

  206. Foster BA, Kaplan PJ, Greenberg NM. Characterization of the FGF axis and identification of a novel FGFR1iiic isoform during prostate cancer progression in the TRAMP model. Prostate Cancer Prostatic Dis. 1999;2:76.

    Article  PubMed  CAS  Google Scholar 

  207. Nguewa PA, Calvo A. Use of transgenic mice as models for prostate cancer chemoprevention. Curr Mol Med. 2010;10:705.

    Article  PubMed  CAS  Google Scholar 

  208. Caporali A, Davalli P, Astancolle S, et al. The chemopreventive action of catechins in the TRAMP mouse model of prostate carcinogenesis is accompanied by clusterin over-expression. Carcinogenesis. 2004;25:2217.

    Article  PubMed  CAS  Google Scholar 

  209. Wang L, Zhang J, Zhang Y, et al. Lobe-specific lineages of carcinogenesis in the transgenic adenocarcinoma of mouse prostate and their responses to chemopreventive selenium. Prostate. 2011;71:1429–40.

    Article  PubMed  CAS  Google Scholar 

  210. Konijeti R, Henning S, Moro A, et al. Chemoprevention of prostate cancer with lycopene in the TRAMP model. Prostate. 2010;70:1547.

    Article  PubMed  CAS  Google Scholar 

  211. Raina K, Singh RP, Agarwal R, et al. Oral grape seed extract inhibits prostate tumor growth and progression in TRAMP mice. Cancer Res. 2007;67:5976.

    Article  PubMed  CAS  Google Scholar 

  212. Venkateswaran V, Klotz LH, Ramani M, et al. A combination of micronutrients is beneficial in reducing the incidence of prostate cancer and increasing survival in the Lady transgenic model. Cancer Prev Res (Phila). 2009;2:473.

    Article  CAS  Google Scholar 

  213. Venkateswaran V, Fleshner NE, Sugar LM, et al. Antioxidants block prostate cancer in lady transgenic mice. Cancer Res. 2004;64:5891.

    Article  PubMed  CAS  Google Scholar 

  214. Bruxvoort KJ, Charbonneau HM, Giambernardi TA, et al. Inactivation of Apc in the mouse prostate causes prostate carcinoma. Cancer Res. 2007;67:2490.

    Article  PubMed  CAS  Google Scholar 

  215. Yu X, Wang Y, Jiang M, et al. Activation of beta-Catenin in mouse prostate causes HGPIN and continuous prostate growth after castration. Prostate. 2009;69:249.

    Article  PubMed  CAS  Google Scholar 

  216. Di Cristofano A, Pesce B, Cordon-Cardo C, et al. Pten is essential for embryonic development and tumour suppression. Nat Genet. 1998;19:348.

    Article  PubMed  Google Scholar 

  217. Podsypanina K, Ellenson LH, Nemes A, et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A. 1999;96:1563.

    Article  PubMed  CAS  Google Scholar 

  218. Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4:209.

    Article  PubMed  CAS  Google Scholar 

  219. Majumder PK, Yeh JJ, George DJ, et al. Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proc Natl Acad Sci U S A. 2003;100:7841.

    Article  PubMed  CAS  Google Scholar 

  220. Scherl A, Li JF, Cardiff RD, et al. Prostatic intraepithelial neoplasia and intestinal metaplasia in prostates of probasin-RAS transgenic mice. Prostate. 2004;59:448.

    Article  PubMed  CAS  Google Scholar 

  221. Downing SR, Russell PJ, Jackson P. Alterations of p53 are common in early stage prostate cancer. Can J Urol. 2003;10:1924.

    PubMed  Google Scholar 

  222. Elgavish A, Wood PA, Pinkert CA, et al. Transgenic mouse with human mutant p53 expression in the prostate epithelium. Prostate. 2004;61:26.

    Article  PubMed  CAS  Google Scholar 

  223. Hill R, Song Y, Cardiff RD, et al. Heterogeneous tumor evolution initiated by loss of pRb function in a preclinical prostate cancer model. Cancer Res. 2005;65:10243.

    Article  PubMed  CAS  Google Scholar 

  224. Zhang X, Chen MW, Ng A, et al. Abnormal prostate development in C3(1)-bcl-2 transgenic mice. Prostate. 1997;32:16.

    Article  PubMed  Google Scholar 

  225. Cordon-Cardo C, Koff A, Drobnjak M, et al. Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. J Natl Cancer Inst. 1998;90:1284.

    Article  PubMed  CAS  Google Scholar 

  226. Voelkel-Johnson C, Voeks DJ, Greenberg NM, et al. Genomic instability-based transgenic models of prostate cancer. Carcinogenesis. 2000;21:1623.

    Article  PubMed  CAS  Google Scholar 

  227. Shim EH, Johnson L, Noh HL, et al. Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res. 2003;63:1583.

    PubMed  CAS  Google Scholar 

  228. DiGiovanni J, Kiguchi K, Frijhoff A, et al. Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice. Proc Natl Acad Sci U S A. 2000;97:3455.

    Article  PubMed  CAS  Google Scholar 

  229. Li Z, Szabolcs M, Terwilliger JD, et al. Prostatic intraepithelial neoplasia and adenocarcinoma in mice expressing a probasin-Neu oncogenic transgene. Carcinogenesis. 2006;27:1054.

    Article  PubMed  CAS  Google Scholar 

  230. Song Z, Wu X, Powell WC, et al. Fibroblast growth factor 8 isoform B overexpression in prostate epithelium: a new mouse model for prostatic intraepithelial neoplasia. Cancer Res. 2002;62:5096.

    PubMed  CAS  Google Scholar 

  231. Foster BA, Evangelou A, Gingrich JR, et al. Enforced expression of FGF-7 promotes epithelial hyperplasia whereas a dominant negative FGFR2iiib promotes the emergence of neuroendocrine phenotype in prostate glands of transgenic mice. Differentiation. 2002;70:624.

    Article  PubMed  CAS  Google Scholar 

  232. Freeman KW, Gangula RD, Welm BE, et al. Conditional activation of fibroblast growth factor receptor (FGFR) 1, but not FGFR2, in prostate cancer cells leads to increased osteopontin induction, extracellular signal-regulated kinase activation, and in vivo proliferation. Cancer Res. 2003;63:6237.

    PubMed  CAS  Google Scholar 

  233. Stanbrough M, Leav I, Kwan PW, et al. Prostatic intraepithelial neoplasia in mice expressing an androgen receptor transgene in prostate epithelium. Proc Natl Acad Sci U S A. 2001;98:10823.

    Article  PubMed  CAS  Google Scholar 

  234. Eddy EM, Washburn TF, Bunch DO, et al. Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility. Endocrinology. 1996;137:4796.

    Article  PubMed  CAS  Google Scholar 

  235. Krege JH, Hodgin JB, Couse JF, et al. Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci U S A. 1998;95:15677.

    Article  PubMed  CAS  Google Scholar 

  236. Huang J, Powell WC, Khodavirdi AC, et al. Prostatic intraepithelial neoplasia in mice with conditional disruption of the retinoid X receptor alpha allele in the prostate epithelium. Cancer Res. 2002;62:4812.

    PubMed  CAS  Google Scholar 

  237. Lohnes D, Kastner P, Dierich A, et al. Function of retinoic acid receptor gamma in the mouse. Cell. 1993;73:643.

    Article  PubMed  CAS  Google Scholar 

  238. Abdulkadir SA, Magee JA, Peters TJ, et al. Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Mol Cell Biol. 2002;22:1495.

    Article  PubMed  CAS  Google Scholar 

  239. Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, et al. Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 1999;13:966.

    Article  PubMed  CAS  Google Scholar 

  240. Tomlins SA, Laxman B, Varambally S, et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. 2008;10:177.

    Article  PubMed  CAS  Google Scholar 

  241. Zhou Z, Flesken-Nikitin A, Corney DC, et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 2006;66:7889.

    Article  PubMed  CAS  Google Scholar 

  242. Di Cristofano A, De Acetis M, Koff A, et al. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet. 2001;27:222.

    Article  PubMed  CAS  Google Scholar 

  243. Kim MJ, Cardiff RD, Desai N, et al. Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci U S A. 2002;99:2884.

    Article  PubMed  CAS  Google Scholar 

  244. Zhong C, Saribekyan G, Liao CP, et al. Cooperation between FGF8b overexpression and PTEN deficiency in prostate tumorigenesis. Cancer Res. 2006;66:2188.

    Article  PubMed  CAS  Google Scholar 

  245. Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436:725.

    Article  PubMed  CAS  Google Scholar 

  246. Garabedian EM, Humphrey PA, Gordon JI. A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proc Natl Acad Sci U S A. 1998;95:15382.

    Article  PubMed  CAS  Google Scholar 

  247. Perez-Stable C, Altman NH, Mehta PP, et al. Prostate cancer progression, metastasis, and gene expression in transgenic mice. Cancer Res. 1997;57:900.

    PubMed  CAS  Google Scholar 

  248. Klezovitch O, Chevillet J, Mirosevich J, et al. Hepsin promotes prostate cancer progression and metastasis. Cancer Cell. 2004;6:185.

    Article  PubMed  CAS  Google Scholar 

  249. Shaker MR, Yang G, Timme TL, et al. Dietary 4-HPR suppresses the development of bone metastasis in vivo in a mouse model of prostate cancer progression. Clin Exp Metastasis. 2000;18:429.

    Article  PubMed  CAS  Google Scholar 

  250. Holleran JL, Miller CJ, Culp LA. Tracking micrometastasis to multiple organs with lacZ-tagged CWR22R prostate carcinoma cells. J Histochem Cytochem. 2000;48:643.

    Article  PubMed  CAS  Google Scholar 

  251. Tsingotjidou AS, Ahluwalia R, Zhang X, et al. A metastatic human prostate cancer model using intraprostatic implantation of tumor produced by PC-3 neolacZ transfected cells. Int J Oncol. 2003;23:1569.

    PubMed  Google Scholar 

  252. Dolman CS, Mueller BM, Lode HN, et al. Suppression of human prostate carcinoma metastases in severe combined immunodeficient mice by interleukin 2 immunocytokine therapy. Clin Cancer Res. 1998;4:2551.

    PubMed  CAS  Google Scholar 

  253. Gomes Jr RR, Buttke P, Paul EM, et al. Osteosclerotic prostate cancer metastasis to murine bone are enhanced with increased bone formation. Clin Exp Metastasis. 2009;26:641.

    Article  PubMed  CAS  Google Scholar 

  254. Thalmann GN, Anezinis PE, Chang SM, et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 1994;54:2577.

    PubMed  CAS  Google Scholar 

  255. Wu TT, Sikes RA, Cui Q, et al. Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer. 1998;77:887.

    Article  PubMed  CAS  Google Scholar 

  256. Pettaway CA, Pathak S, Greene G, et al. Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res. 1996;2:1627.

    PubMed  CAS  Google Scholar 

  257. Jenkins DE, Yu SF, Hornig YS, et al. In vivo monitoring of tumor relapse and metastasis using bioluminescent PC-3M-luc-C6 cells in murine models of human prostate cancer. Clin Exp Metastasis. 2003;20:745.

    Article  PubMed  Google Scholar 

  258. Haq M, Goltzman D, Tremblay G, et al. Rat prostate adenocarcinoma cells disseminate to bone and adhere preferentially to bone marrow-derived endothelial cells. Cancer Res. 1992;52:4613.

    PubMed  CAS  Google Scholar 

  259. Shukeir N, Arakelian A, Chen G, et al. A synthetic 15-mer peptide (PCK3145) derived from prostate secretory protein can reduce tumor growth, experimental skeletal metastases, and malignancy-associated hypercalcemia. Cancer Res. 2004;64:5370.

    Article  PubMed  CAS  Google Scholar 

  260. Achbarou A, Kaiser S, Tremblay G, et al. Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Res. 1994;54:2372.

    PubMed  CAS  Google Scholar 

  261. Geldof AA, Rao BR. Prostatic tumor (R3327) skeletal metastasis. Prostate. 1990;16:279.

    Article  PubMed  CAS  Google Scholar 

  262. Shevrin DH, Kukreja SC, Ghosh L, et al. Development of skeletal metastasis by human prostate cancer in athymic nude mice. Clin Exp Metastasis. 1988;6:401.

    Article  PubMed  CAS  Google Scholar 

  263. Corey E, Quinn JE, Bladou F, et al. Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate. 2002;52:20.

    Article  PubMed  Google Scholar 

  264. Liepe K, Geidel H, Haase M, et al. New model for the induction of osteoblastic bone metastases in rat. Anticancer Res. 2005;25:1067.

    PubMed  CAS  Google Scholar 

  265. Kawai N, Futakuchi M, Yoshida T, et al. Effect of heat therapy using magnetic nanoparticles conjugated with cationic liposomes on prostate tumor in bone. Prostate. 2008;68:784.

    Article  PubMed  Google Scholar 

  266. Nemeth JA, Harb JF, Barroso Jr U, et al. Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res. 1999;59:1987.

    PubMed  CAS  Google Scholar 

  267. Tsingotjidou AS, Zotalis G, Jackson KR, et al. Development of an animal model for prostate cancer cell metastasis to adult human bone. Anticancer Res. 2001;21:971.

    PubMed  CAS  Google Scholar 

  268. Yonou H, Yokose T, Kamijo T, et al. Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Res. 2001;61:2177.

    PubMed  CAS  Google Scholar 

  269. Banerjee S, Hussain M, Wang Z, et al. In vitro and in vivo molecular evidence for better therapeutic efficacy of ABT-627 and taxotere combination in prostate cancer. Cancer Res. 2007;67:3818.

    Article  PubMed  CAS  Google Scholar 

  270. Deng X, He G, Levine A, et al. Adenovirus-mediated expression of TIMP-1 and TIMP-2 in bone inhibits osteolytic degradation by human prostate cancer. Int J Cancer. 2008;122:209.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Kauffman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Kauffman, E.C., Ng, C.K., Rinker-Schaeffer, C. (2013). Murine Models of Prostate Cancer. In: Tewari, A. (eds) Prostate Cancer: A Comprehensive Perspective. Springer, London. https://doi.org/10.1007/978-1-4471-2864-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2864-9_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2863-2

  • Online ISBN: 978-1-4471-2864-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics