Epidemiology of Prostate Cancer

  • Ankur M. Manvar
  • Raj S. Pruthi
  • Eric M. Wallen
  • Matthew E. Nielsen


In the USA and worldwide, prostate cancer is the most commonly diagnosed non-dermatologic cancer in men and remains the second most common cause of cancer death in men in the developed world. In a lifetime, prostate cancer will affect approximately 1 in 5 American men [1].


Prostate Cancer Prostate Cancer Risk Prostate Cancer Incidence Prostate Cancer Case Prostate Cancer Mortality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stanford J, Stephenson R, Coyle L, et al. Prostate cancer trends 1973–1995, SEER program. National Cancer Institute. NIH Pub. 1998;99:60.Google Scholar
  2. 2.
    Farkas A, Schneider D, Perrotti M, Cummings KB, Ward WS. National trends in the epidemiology of prostate cancer, 1973 to 1994: evidence for the effectiveness of prostate-specific antigen screening. Urology. 1998;52(3):444–8; discussion 448–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Potosky AL, Miller BA, Albertsen PC, Kramer BS. The role of increasing detection in the rising incidence of prostate cancer. JAMA. 1995;273(7):548–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.PubMedCrossRefGoogle Scholar
  5. 5.
    Farwell WR, Linder JA, Jha AK. Trends in prostate-specific antigen testing from 1995 through 2004. Arch Intern Med. 2007;167(22):2497–502.PubMedCrossRefGoogle Scholar
  6. 6.
    Society AC. Cancer facts and figures 2005. Am Cancer Soc. 2005:24.Google Scholar
  7. 7.
    Institute NC. SEER cancer statistics review, 1975–2007. Accessed Nov–Dec 2010.
  8. 8.
    Reiter R, de Kernion J. Epidemiology, etiology and prevention of prostate cancer. In: Walsem R, Vaughn W, editors. Campbell’s urology. 8th ed. Philadelphia: Saunders; 2002.Google Scholar
  9. 9.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.PubMedCrossRefGoogle Scholar
  10. 10.
    Hsing AW, Tsao L, Devesa SS. International trends and patterns of prostate cancer incidence and mortality. Int J Cancer. 2000;85(1):60–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Ries L, Eisner M, Kosary C, et al. SEER cancer statistics review, 1975–2001. Accessed Nov 2010.Google Scholar
  12. 12.
    Cetin K, Beebe-Dimmer JL, Fryzek JP, Markus R, Carducci MA. Recent time trends in the epidemiology of stage IV prostate cancer in the United States: analysis of data from the Surveillance, Epidemiology, and End Results Program. Urology. 2010;75(6):1396–404.PubMedCrossRefGoogle Scholar
  13. 13.
    Hankey BF, Feuer EJ, Clegg LX, et al. Cancer surveillance series: interpreting trends in prostate cancer–part I: evidence of the effects of screening in recent prostate cancer incidence, mortality, and survival rates. J Natl Cancer Inst. 1999;91(12):1017–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Newcomer LM, Stanford JL, Blumenstein BA, Brawer MK. Temporal trends in rates of prostate cancer: declining incidence of advanced stage disease, 1974 to 1994. J Urol. 1997;158(4):1427–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Shimizu H, Ross RK, Bernstein L, Yatani R, Henderson BE, Mack TM. Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles county. Br J Cancer. 1991;63(6):963–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1999. CA Cancer J Clin. 1999;49(1):8–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Gordis L. Measuring the occurrence of disease. In: Epidemiology. Philadelphia: W.B. Saunders Company; 1996.Google Scholar
  18. 18.
    Klein E. Prostate cancer overdiagnosis and overtreatment. Analysis of US mortality and SEER incidence. Trends in the PSA and pre-PSA eras. In: Stephenson R, editor. Management of prostate cancer. 2nd ed. Totowa: Humana Press; 2004.CrossRefGoogle Scholar
  19. 19.
    Chu KC, Tarone RE, Freeman HP. Trends in prostate cancer mortality among black men and white men in the United States. Cancer. 2003;97(6):1507–16.PubMedCrossRefGoogle Scholar
  20. 20.
    Smart CR. The results of prostate carcinoma screening in the U.S. As reflected in the surveillance, epidemiology, and end results program. Cancer. 1997;80(9):1835–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Gann PH. Interpreting recent trends in prostate cancer incidence and mortality. Epidemiology. 1997;8(2):117–20.PubMedGoogle Scholar
  22. 22.
    Garland FC, Garland CF, Gorham ED, Young JF. Geographic variation in breast cancer mortality in the United States: a hypothesis involving exposure to solar radiation. Prev Med. 1990;19(6): 614–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Bolla M, Gonzalez D, Warde P, et al. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N Engl J Med. 1997;337(5):295–300.PubMedCrossRefGoogle Scholar
  24. 24.
    Baade PD, Coory MD, Aitken JF. International trends in prostate-cancer mortality: the decrease is continuing and spreading. Cancer Causes Control. 2004;15(3):237–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Oliver SE, Gunnell D, Donovan JL. Comparison of trends in prostate-cancer mortality in England and Wales and the USA. Lancet. 2000;355(9217):1788–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Threlfall TJ, English DR, Rouse IL. Prostate cancer in Western Australia: trends in incidence and mortality from 1985 to 1996. Med J Aust. 1998;169(1):21–4.PubMedGoogle Scholar
  27. 27.
    Horner M, Ries L, Krapcho M, et al. SEER cancer statistics review, 1975–2006. Accessed Nov 2010.Google Scholar
  28. 28.
    Godley PA, Schenck AP, Amamoo MA, et al. Racial differences in mortality among Medicare recipients after treatment for localized prostate cancer. J Natl Cancer Inst. 2003;95(22):1702–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Bach PB, Schrag D, Brawley OW, Galaznik A, Yakren S, Begg CB. Survival of blacks and whites after a cancer diagnosis. JAMA. 2002;287(16):2106–13.PubMedCrossRefGoogle Scholar
  30. 30.
    Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics, 2003. CA Cancer J Clin. 2003;53(1):5–26.PubMedCrossRefGoogle Scholar
  31. 31.
    Scher H, Issac J, Zelefsky M. Prostate cancer. In: Abeloff M, Armitage J, Licher A, editors. Clinical oncology. 2nd ed. New York: Churchill Livingstone; 2000.Google Scholar
  32. 32.
    Sakr WA, Haas GP, Cassin BF, Pontes JE, Crissman JD. The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol. 1993;150(2 Pt 1):379–85.PubMedGoogle Scholar
  33. 33.
    Bratt O. Hereditary prostate cancer: clinical aspects. J Urol. 2002;168(3):906–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Gronberg H. Prostate cancer epidemiology. Lancet. 2003;361(9360):859–64.PubMedCrossRefGoogle Scholar
  35. 35.
    Monroe KR, Yu MC, Kolonel LN, et al. Evidence of an X-linked or recessive genetic component to prostate cancer risk. Nat Med. 1995;1(8):827–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Page WF, Braun MM, Partin AW, Caporaso N, Walsh P. Heredity and prostate cancer: a study of World War II veteran twins. Prostate. 1997;33(4):240–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith JR, Freije D, Carpten JD, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science. 1996;274(5291):1371–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Whittemore AS, Wu AH, Kolonel LN, et al. Family history and prostate cancer risk in black, white, and Asian men in the United States and Canada. Am J Epidemiol. 1995;141(8):732–40.PubMedGoogle Scholar
  39. 39.
    Carter BS, Bova GS, Beaty TH, et al. Hereditary prostate cancer: epidemiologic and clinical features. J Urol. 1993;150(3):797–802.PubMedGoogle Scholar
  40. 40.
    Cooney KA, McCarthy JD, Lange E, et al. Prostate cancer susceptibility locus on chromosome 1q: a confirmatory study. J Natl Cancer Inst. 1997;89(13):955–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Gronberg H, Isaacs SD, Smith JR, et al. Characteristics of prostate cancer in families potentially linked to the hereditary prostate cancer 1 (HPC1) locus. JAMA. 1997;278(15):1251–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Cancer risks in BRCA2 mutation carriers. The breast cancer linkage consortium. J Natl Cancer Inst. 1999;91(15):1310–6.Google Scholar
  43. 43.
    Thompson D, Easton DF. Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst. 2002;94(18):1358–65.PubMedCrossRefGoogle Scholar
  44. 44.
    Mitra AV, Bancroft EK, Barbachano Y, et al. Targeted prostate cancer screening in men with mutations in BRCA1 and BRCA2 detects aggressive prostate cancer: preliminary analysis of the results of the IMPACT study. BJU Int. 2010;107(1):28–39.PubMedCrossRefGoogle Scholar
  45. 45.
    Tryggvadottir L, Vidarsdottir L, Thorgeirsson T, et al. Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst. 2007;99(12):929–35.PubMedCrossRefGoogle Scholar
  46. 46.
    Narod SA, Neuhausen S, Vichodez G, et al. Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer. 2008;99(2):371–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Clegg LX, Li FP, Hankey BF, Chu K, Edwards BK. Cancer survival among US whites and minorities: a SEER (Surveillance, Epidemiology, and End Results) Program population-based study. Arch Intern Med. 2002;162(17):1985–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Yager JD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol. 1996;36:203–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med. 2003;349(4):366–81.PubMedCrossRefGoogle Scholar
  51. 51.
    Di Paolo OA, Teitel CH, Nowell S, Coles BF, Kadlubar FF. Expression of cytochromes P450 and glutathione S-transferases in human prostate, and the potential for activation of heterocyclic amine carcinogens via acetyl-coA-, PAPS- and ATP-dependent pathways. Int J Cancer. 2005;117(1):8–13.PubMedCrossRefGoogle Scholar
  52. 52.
    Nock NL, Bock C, Neslund-Dudas C, et al. Polymorphisms in glutathione S-transferase genes increase risk of prostate cancer biochemical recurrence differentially by ethnicity and disease severity. Cancer Causes Control. 2009;20:1915–26.PubMedCrossRefGoogle Scholar
  53. 53.
    Herschman HR. Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem. 1991;60:281–319.PubMedCrossRefGoogle Scholar
  54. 54.
    Gupta S, Srivastava M, Ahmad N, Bostwick DG, Mukhtar H. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate. 2000;42(1):73–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Freedland SJ, Terris MK, Presti Jr JC, et al. Obesity and biochemical outcome following radical prostatectomy for organ confined disease with negative surgical margins. J Urol. 2004;172(2):520–4.PubMedCrossRefGoogle Scholar
  56. 56.
    O’Malley RL, Taneja SS. Obesity and prostate cancer. Can J Urol. 2006;13 Suppl 2:11–7.PubMedGoogle Scholar
  57. 57.
    Freedland SJ, Aronson WJ, Kane CJ, et al. Impact of obesity on biochemical control after radical prostatectomy for clinically localized prostate cancer: a report by the Shared Equal Access Regional Cancer Hospital database study group. J Clin Oncol. 2004;22(3):446–53.PubMedCrossRefGoogle Scholar
  58. 58.
    Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Willett WC. Height, body weight, and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 1997;6(8):557–63.PubMedGoogle Scholar
  59. 59.
    Gann PH, Hennekens CH, Ma J, Longcope C, Stampfer MJ. Prospective study of sex hormone levels and risk of prostate cancer. J Natl Cancer Inst. 1996;88(16):1118–26.PubMedCrossRefGoogle Scholar
  60. 60.
    Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70.PubMedCrossRefGoogle Scholar
  61. 61.
    Cioffi JA, Shafer AW, Zupancic TJ, et al. Novel B219/OB receptor isoforms: possible role of leptin in hematopoiesis and reproduction. Nat Med. 1996;2(5):585–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Somasundar P, Frankenberry KA, Skinner H, et al. Prostate cancer cell proliferation is influenced by leptin. J Surg Res. 2004;118(1):71–82.PubMedCrossRefGoogle Scholar
  63. 63.
    Nazian SJ, Cameron DF. Temporal relation between leptin and various indices of sexual maturation in the male rat. J Androl. 1999;20(4):487–91.PubMedGoogle Scholar
  64. 64.
    Daughaday WH. The possible autocrine/paracrine and endocrine roles of insulin-like growth factors of human tumors. Endocrinology. 1990;127(1):1–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Angelloz-Nicoud P, Binoux M. Autocrine regulation of cell proliferation by the insulin-like growth factor (IGF) and IGF binding protein-3 protease system in a human prostate carcinoma cell line (PC-3). Endocrinology. 1995;136(12):5485–92.PubMedCrossRefGoogle Scholar
  66. 66.
    Cohen P, Peehl DM, Lamson G, Rosenfeld RG. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins in primary cultures of prostate epithelial cells. J Clin Endocrinol Metab. 1991;73(2):401–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Stattin P, Bylund A, Rinaldi S, et al. Plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study. J Natl Cancer Inst. 2000;92(23):1910–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Hsing AW, McLaughlin JK, Schuman LM, et al. Diet, tobacco use, and fatal prostate cancer: results from the Lutheran Brotherhood Cohort Study. Cancer Res. 1990;50(21):6836–40.PubMedGoogle Scholar
  69. 69.
    Hiatt RA, Armstrong MA, Klatsky AL, Sidney S. Alcohol consumption, smoking, and other risk factors and prostate cancer in a large health plan cohort in California (United States). Cancer Causes Control. 1994;5(1):66–72.PubMedCrossRefGoogle Scholar
  70. 70.
    Harvei S, Bjerve KS, Tretli S, Jellum E, Robsahm TE, Vatten L. Prediagnostic level of fatty acids in serum phospholipids: omega-3 and omega-6 fatty acids and the risk of prostate cancer. Int J Cancer. 1997;71(4):545–51.PubMedCrossRefGoogle Scholar
  71. 71.
    Luo J, Zha S, Gage WR, et al. Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res. 2002;62(8):2220–6.PubMedGoogle Scholar
  72. 72.
    Bylund A, Zhang JX, Bergh A, et al. Rye bran and soy protein delay growth and increase apoptosis of human LNCaP prostate adenocarcinoma in nude mice. Prostate. 2000;42(4):304–14.PubMedCrossRefGoogle Scholar
  73. 73.
    Shirai T, Asamoto M, Takahashi S, Imaida K. Diet and prostate cancer. Toxicology. 2002;181–182:89–94.PubMedCrossRefGoogle Scholar
  74. 74.
    Chan JM, Stampfer MJ, Ma J, Gann PH, Gaziano JM, Giovannucci EL. Dairy products, calcium, and prostate cancer risk in the physicians’ health study. Am J Clin Nutr. 2001;74(4):549–54.PubMedGoogle Scholar
  75. 75.
    Giovannucci E. Dietary influences of 1,25(OH)2 vitamin D in relation to prostate cancer: a hypothesis. Cancer Causes Control. 1998;9(6):567–82.PubMedCrossRefGoogle Scholar
  76. 76.
    Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC. A prospective study of tomato products, lycopene, and prostate cancer risk. J Natl Cancer Inst. 2002;94(5):391–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Chen L, Stacewicz-Sapuntzakis M, Duncan C, et al. Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a whole-food intervention. J Natl Cancer Inst. 2001;93(24):1872–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Klein EA. Selenium: epidemiology and basic science. J Urol. 2004;171(2 Pt 2):S50–3; discussion S53.PubMedCrossRefGoogle Scholar
  79. 79.
    Redman C, Scott JA, Baines AT, et al. Inhibitory effect of selenomethionine on the growth of three selected human tumor cell lines. Cancer Lett. 1998;125(1–2):103–10.PubMedCrossRefGoogle Scholar
  80. 80.
    Clark LC, Dalkin B, Krongrad A, et al. Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial. Br J Urol. 1998;81(5):730–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Heinonen OP, Albanes D, Virtamo J, et al. Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. J Natl Cancer Inst. 1998;90(6):440–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Duffield-Lillico AJ, Dalkin BL, Reid ME, et al. Selenium supplementation, baseline plasma selenium status and incidence of prostate cancer: an analysis of the complete treatment period of the Nutritional Prevention of Cancer Trial. BJU Int. 2003;91(7):608–12.PubMedCrossRefGoogle Scholar
  83. 83.
    Yang CS, Landau JM, Huang MT, Newmark HL. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr. 2001;21:381–406.PubMedCrossRefGoogle Scholar
  84. 84.
    Thompson IM, Tangen CM, Goodman PJ, Lucia MS, Klein EA. Chemoprevention of prostate cancer. J Urol. 2009;182(2):499–507; discussion 508.PubMedCrossRefGoogle Scholar
  85. 85.
    Giovannucci E, Tosteson TD, Speizer FE, Ascherio A, Vessey MP, Colditz GA. A retrospective cohort study of vasectomy and prostate cancer in US men. JAMA. 1993;269(7):878–82.PubMedCrossRefGoogle Scholar
  86. 86.
    Kampa M, Hatzoglou A, Notas G, et al. Wine antioxidant polyphenols inhibit the proliferation of human prostate cancer cell lines. Nutr Cancer. 2000;37(2):223–33.PubMedCrossRefGoogle Scholar
  87. 87.
    Schoonen WM, Salinas CA, Kiemeney LA, Stanford JL. Alcohol consumption and risk of prostate cancer in middle-aged men. Int J Cancer. 2005;113(1):133–40.PubMedCrossRefGoogle Scholar
  88. 88.
    Hanchette CL, Schwartz GG. Geographic patterns of prostate cancer mortality. Evidence for a protective effect of ultraviolet radiation. Cancer. 1992;70(12):2861–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Holick MF, Vitamin D. And sunlight: strategies for cancer prevention and other health benefits. Clin J Am Soc Nephrol. 2008;3(5):1548–54.PubMedCrossRefGoogle Scholar
  90. 90.
    McKenna MJ. Differences in vitamin D status between countries in young adults and the elderly. Am J Med. 1992;93(1):69–77.PubMedCrossRefGoogle Scholar
  91. 91.
    Woo TC, Choo R, Jamieson M, Chander S, Vieth R. Pilot study: potential role of vitamin D (cholecalciferol) in patients with PSA relapse after definitive therapy. Nutr Cancer. 2005;51(1):32–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Dennis LK, Lynch CF, Torner JC. Epidemiologic association between prostatitis and prostate cancer. Urology. 2002;60(1):78–83.PubMedCrossRefGoogle Scholar
  93. 93.
    Key T. Risk factors for prostate cancer. Cancer Surv. 1995;23:63–77.PubMedGoogle Scholar
  94. 94.
    Dennis LK, Dawson DV, Resnick MI. Vasectomy and the risk of prostate cancer: a meta-analysis examining vasectomy status, age at vasectomy, and time since vasectomy. Prostate Cancer Prostatic Dis. 2002;5(3):193–203.PubMedCrossRefGoogle Scholar
  95. 95.
    Rosenblatt KA, Wicklund KG, Stanford JL. Sexual factors and the risk of prostate cancer. Am J Epidemiol. 2001;153(12):1152–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Hayes RB, Pottern LM, Strickler H, et al. Sexual behaviour, STDs and risks for prostate cancer. Br J Cancer. 2000;82(3):718–25.PubMedCrossRefGoogle Scholar
  97. 97.
    Ross RK, Deapen DM, Casagrande JT, Paganini-Hill A, Henderson BE. A cohort study of mortality from cancer of the prostate in Catholic priests. Br J Cancer. 1981;43(2):233–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Cancel-Tassin G, Cussenot O. Genetic susceptibility to prostate cancer. BJU Int. 2005;96(9):1380–5.PubMedCrossRefGoogle Scholar
  99. 99.
    So AI, Hurtado-Coll A, Gleave ME. Androgens and prostate cancer. World J Urol. 2003;21(5):325–37.PubMedCrossRefGoogle Scholar
  100. 100.
    Tut TG, Ghadessy FJ, Trifiro MA, Pinsky L, Yong EL. Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J Clin Endocrinol Metab. 1997;82(11):3777–82.PubMedCrossRefGoogle Scholar
  101. 101.
    Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 1994;22(15):3181–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics. 1992;12(2):241–53.PubMedCrossRefGoogle Scholar
  103. 103.
    Irvine RA, Yu MC, Ross RK, Coetzee GA. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res. 1995;55(9):1937–40.PubMedGoogle Scholar
  104. 104.
    Giovannucci E, Stampfer MJ, Krithivas K, et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA. 1997;94(7):3320–3.PubMedCrossRefGoogle Scholar
  105. 105.
    Richter E, Srivastava S, Dobi A. Androgen receptor and prostate cancer. Prostate Cancer Prostatic Dis. 2007;10(2):114–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Rahman M, Miyamoto H, Chang C. Androgen receptor coregulators in prostate cancer: mechanisms and clinical implications. Clin Cancer Res. 2004;10(7):2208–19.PubMedCrossRefGoogle Scholar
  107. 107.
    Carey AH, Waterworth D, Patel K, et al. Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17. Hum Mol Genet. 1994;3(10):1873–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Gsur A, Bernhofer G, Hinteregger S, et al. A polymorphism in the CYP17 gene is associated with prostate cancer risk. Int J Cancer. 2000;87(3):434–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Habuchi T, Liqing Z, Suzuki T, et al. Increased risk of prostate cancer and benign prostatic hyperplasia associated with a CYP17 gene polymorphism with a gene dosage effect. Cancer Res. 2000;60(20):5710–3.PubMedGoogle Scholar
  110. 110.
    Makridakis N, Ross RK, Pike MC, et al. A prevalent missense substitution that modulates activity of prostatic steroid 5alpha-reductase. Cancer Res. 1997;57(6):1020–2.PubMedGoogle Scholar
  111. 111.
    Allen NE, Forrest MS, Key TJ. The association between polymorphisms in the CYP17 and 5alpha-reductase (SRD5A2) genes and serum androgen concentrations in men. Cancer Epidemiol Biomarkers Prev. 2001;10(3):185–9.PubMedGoogle Scholar
  112. 112.
    Roddam AW, Allen NE, Appleby P, Key TJ. Endogenous sex hormones and prostate cancer: a collaborative analysis of 18 prospective studies. J Natl Cancer Inst. 2008;100(3):170–83.PubMedCrossRefGoogle Scholar
  113. 113.
    Platz EA, Leitzmann MF, Rifai N, et al. Sex steroid hormones and the androgen receptor gene CAG repeat and subsequent risk of prostate cancer in the prostate-specific antigen era. Cancer Epidemiol Biomarkers Prev. 2005;14(5):1262–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Weiss JM, Huang WY, Rinaldi S, et al. Endogenous sex hormones and the risk of prostate cancer: a prospective study. Int J Cancer. 2008;122(10):2345–50.PubMedCrossRefGoogle Scholar
  115. 115.
    Travis RC, Key TJ, Allen NE, et al. Serum androgens and prostate cancer among 643 cases and 643 controls in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2007;121(6):1331–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Ross RK, Pike MC, Coetzee GA, et al. Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Res. 1998;58(20):4497–504.PubMedGoogle Scholar
  117. 117.
    Castagnetta LA, Miceli MD, Sorci CM, et al. Growth of LNCaP human prostate cancer cells is stimulated by estradiol via its own receptor. Endocrinology. 1995;136(5):2309–19.PubMedCrossRefGoogle Scholar
  118. 118.
    Hiramatsu M, Maehara I, Orikasa S, Sasano H. Immunolocalization of oestrogen and progesterone receptors in prostatic hyperplasia and carcinoma. Histopathology. 1996;28(2):163–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Jacobsen BK, Knutsen SF, Fraser GE. Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States). Cancer Causes Control. 1998;9(6):553–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Setchell K, Adlercreutz H. Mammalian lignans and phyto-oestrogens. Recent studies on their formation, metabolism and biological role in health and disease. In: Rowland I, editor. Role of the gut flora in toxicity and cancer. London: Academic; 1988.Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Ankur M. Manvar
    • 1
  • Raj S. Pruthi
    • 2
  • Eric M. Wallen
    • 2
  • Matthew E. Nielsen
    • 3
  1. 1.Department of SurgeryBrigham and Women’s HospitalBostonUSA
  2. 2.Department of SurgeryUniversity of North CarolinaChapel HillUSA
  3. 3.Division of Urology, Department of SurgeryUNC Lineberger Comprehensive Cancer CenterChapel HillUSA

Personalised recommendations