Skip to main content

Molecular Biology and Prostate Cancer

  • Chapter
  • First Online:
  • 3095 Accesses

Abstract

Recent years have seen significant advances in the technology available to study prostate cancer (PCa). Identification of processes that are frequently deranged in PCa has led to improved understanding of the pathogenesis and molecular biology of PCa. While much remains poorly understood, aberrant processes which render cancer cells susceptible to the effects of drugs have been identified; and attempts to manipulate these factors for therapeutic effect in patients are described as are cellular processes of importance in PCa.

Demonstration of overactivity of specific signaling pathways in PCa and high-throughput development of drugs to target them have led to a large number of candidate therapeutic agents, many of which have demonstrated biological effects in cell culture and animal models. Clinical trials testing the effectiveness of these agents and these developments are summarized here demonstrating the impact of translational research.

Novel biomarkers have also been described which may prove useful in particular settings such as in aiding diagnosis and early detection of disease. Our current understanding of the pathology of PCa metastases to bone is also described with reference to current and investigational therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rubinstein JC, Sznol M, Pavlick AC, et al. Incidence of the V600K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032. J Transl Med. 2010;8:67.

    PubMed  Google Scholar 

  2. Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.

    PubMed  CAS  Google Scholar 

  3. Bollag G, Hirth P, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467(7315):596–9.

    PubMed  CAS  Google Scholar 

  4. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363(2):166–76.

    PubMed  CAS  Google Scholar 

  5. Waters DJ, Sakr WA, Hayden DW, et al. Workgroup 4: spontaneous prostate carcinoma in dogs and nonhuman primates. Prostate. 1998;36(1):64–7.

    PubMed  CAS  Google Scholar 

  6. Blando J, Portis M, Benavides F, et al. PTEN deficiency is fully penetrant for prostate adenocarcinoma in C57BL/6 mice via mTOR-dependent growth. Am J Pathol. 2009;174(5):1869–79.

    PubMed  CAS  Google Scholar 

  7. van Weerden WM, Romijn JC. Use of nude mouse xenograft models in prostate cancer research. Prostate. 2000;43(4):263–71.

    PubMed  Google Scholar 

  8. Hortobagyi GN. Trastuzumab in the treatment of breast cancer. N Engl J Med. 2005;353(16):1734–6.

    PubMed  CAS  Google Scholar 

  9. Gera JF, Mellinghoff IK, Shi Y, et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem. 2004;279(4):2737–46.

    PubMed  CAS  Google Scholar 

  10. Kremer CL, Klein RR, Mendelson J, et al. Expression of mTOR signaling pathway markers in prostate cancer progression. Prostate. 2006;66(11):1203–12.

    PubMed  CAS  Google Scholar 

  11. Mousses S, Wagner U, Chen Y, et al. Failure of hormone therapy in prostate cancer involves systematic restoration of androgen responsive genes and activation of rapamycin sensitive signaling. Oncogene. 2001;20(46):6718–23.

    PubMed  CAS  Google Scholar 

  12. Morgan TM, Koreckij TD, Corey E. Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets. 2009;9(2):237–49.

    PubMed  CAS  Google Scholar 

  13. Gupta AK, Cerniglia GJ, Mick R, et al. Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. Int J Radiat Oncol Biol Phys. 2003;56(3):846–53.

    PubMed  CAS  Google Scholar 

  14. Amato RJ, Jac J, Mohammad T, Saxena S. Pilot study of rapamycin in patients with hormone-refractory prostate cancer. Clin Genitourin Cancer. 2008;6(2):97–102.

    PubMed  CAS  Google Scholar 

  15. Posadas EM, Gulley J, Arlen PM, et al. A phase II study of perifosine in androgen independent prostate cancer. Cancer Biol Ther. 2005;4(10):1133–7.

    PubMed  CAS  Google Scholar 

  16. Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem. 2000;275(15):11397–403.

    PubMed  CAS  Google Scholar 

  17. Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, et al. Roles for Nkx3.1 In prostate development and cancer. Genes Dev. 1999;13(8):966–77.

    PubMed  CAS  Google Scholar 

  18. Li Y, Malaeb BS, Li ZZ, et al. Telomerase enzyme inhibition (TEI) and cytolytic therapy in the management of androgen independent osseous metastatic prostate cancer. Prostate. 2010;70(6):616–29.

    PubMed  CAS  Google Scholar 

  19. Bova GS, MacGrogan D, Levy A, Pin SS, Bookstein R, Isaacs WB. Physical mapping of chromosome 8p22 markers and their homozygous deletion in a metastatic prostate cancer. Genomics. 1996;35(1):46–54.

    PubMed  CAS  Google Scholar 

  20. Saric T, Brkanac Z, Troyer DA, et al. Genetic pattern of prostate cancer progression. Int J Cancer. 1999;81(2):219–24.

    PubMed  CAS  Google Scholar 

  21. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    PubMed  CAS  Google Scholar 

  22. Grignon DJ, Caplan R, Sarkar FH, et al. p53 status and prognosis of locally advanced prostatic adenocarcinoma: a study based on RTOG 8610. J Natl Cancer Inst. 1997;89(2):158–65.

    PubMed  CAS  Google Scholar 

  23. Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer. 2009;9(12):862–73.

    PubMed  CAS  Google Scholar 

  24. Leite KR, Franco MF, Srougi M, et al. Abnormal expression of MDM2 in prostate carcinoma. Mod Pathol. 2001;14(5):428–36.

    PubMed  CAS  Google Scholar 

  25. Tovar C, Rosinski J, Filipovic Z, et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci U S A. 2006;103(6):1888–93.

    PubMed  CAS  Google Scholar 

  26. Logan IR, McNeill HV, Cook S, Lu X, Lunec J, Robson CN. Analysis of the MDM2 antagonist nutlin-3 in human prostate cancer cells. Prostate. 2007;67(8):900–6.

    PubMed  CAS  Google Scholar 

  27. Mu Z, Hachem P, Agrawal S, Pollack A. Antisense MDM2 sensitizes prostate cancer cells to androgen deprivation, radiation, and the combination. Int J Radiat Oncol Biol Phys. 2004;58(2):336–43.

    PubMed  CAS  Google Scholar 

  28. Chiu CP, Harley CB. Replicative senescence and cell immortality: the role of telomeres and telomerase. Proc Soc Exp Biol Med. 1997;214(2):99–106.

    PubMed  CAS  Google Scholar 

  29. Yoshida R, Kiyozuka Y, Ichiyoshi H, et al. Change in telomerase activity during human colorectal carcinogenesis. Anticancer Res. 1999;19(3B):2167–72.

    PubMed  CAS  Google Scholar 

  30. Guo C, Armbruster BN, Price DT, Counter CM. In vivo regulation of hTERT expression and telomerase activity by androgen. J Urol. 2003;170(2 Pt 1):615–8.

    PubMed  CAS  Google Scholar 

  31. Moehren U, Papaioannou M, Reeb CA, et al. Wild-type but not mutant androgen receptor inhibits expression of the hTERT telomerase subunit: a novel role of AR mutation for prostate cancer development. FASEB J. 2008;22(4):1258–67.

    PubMed  CAS  Google Scholar 

  32. Marian CO, Wright WE, Shay JW. The effects of telomerase inhibition on prostate tumor-initiating cells. Int J Cancer. 2010;127(2):321–31.

    PubMed  CAS  Google Scholar 

  33. Uchida K, Masumori N, Takahashi A, et al. Murine androgen-independent neuroendocrine carcinoma promotes metastasis of human prostate cancer cell line LNCaP. Prostate. 2006;66(5):536–45.

    PubMed  CAS  Google Scholar 

  34. Sun Y, Niu J, Huang J. Neuroendocrine differentiation in prostate cancer. Am J Transl Res. 2009;1(2):148–62.

    PubMed  CAS  Google Scholar 

  35. Dizeyi N, Bjartell A, Hedlund P, Tasken KA, Gadaleanu V, Abrahamsson PA. Expression of serotonin receptors 2B and 4 in human prostate cancer tissue and effects of their antagonists on prostate cancer cell lines. Eur Urol. 2005;47(6):895–900.

    PubMed  CAS  Google Scholar 

  36. Kang BH, Siegelin MD, Plescia J, et al. Preclinical characterization of mitochondria-targeted small molecule hsp90 inhibitors, gamitrinibs, in advanced prostate cancer. Clin Cancer Res. 2010;16(19):4779–88.

    PubMed  CAS  Google Scholar 

  37. Leav I, Plescia J, Goel HL, et al. Cytoprotective mitochondrial chaperone TRAP-1 as a novel molecular target in localized and metastatic prostate cancer. Am J Pathol. 2010;176(1):393–401.

    PubMed  CAS  Google Scholar 

  38. Trougakos IP, Gonos ES. Clusterin/apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol. 2002;34(11):1430–48.

    PubMed  CAS  Google Scholar 

  39. So A, Hadaschik B, Sowery R, Gleave M. The role of stress proteins in prostate cancer. Curr Genomics. 2007;8(4):252–61.

    PubMed  CAS  Google Scholar 

  40. Pins MR, Fiadjoe JE, Korley F, et al. Clusterin as a possible predictor for biochemical recurrence of prostate cancer following radical prostatectomy with intermediate Gleason scores: a preliminary report. Prostate Cancer Prostatic Dis. 2004;7(3):243–8.

    PubMed  CAS  Google Scholar 

  41. Williams A, Jahreiss L, Sarkar S, et al. Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol. 2006;76:89–101.

    PubMed  CAS  Google Scholar 

  42. Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr. 2007;27:19–40.

    PubMed  CAS  Google Scholar 

  43. Amaravadi RK, Thompson CB. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res. 2007;13(24):7271–9.

    PubMed  CAS  Google Scholar 

  44. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7(12):961–7.

    PubMed  CAS  Google Scholar 

  45. Weinhouse S. The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1976;87(2):115–26.

    PubMed  CAS  Google Scholar 

  46. DiPaola RS, Dvorzhinski D, Thalasila A, et al. Therapeutic starvation and autophagy in prostate cancer: a new paradigm for targeting metabolism in cancer therapy. Prostate. 2008;68(16):1743–52.

    PubMed  CAS  Google Scholar 

  47. Ben Sahra I, Laurent K, Giuliano S, et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 2010;70(6):2465–75.

    PubMed  CAS  Google Scholar 

  48. Stein M, Lin H, Jeyamohan C, et al. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate. 2010;70(13):1388–94.

    PubMed  CAS  Google Scholar 

  49. Mavropoulos JC, Buschemeyer 3rd WC, Tewari AK, et al. The effects of varying dietary carbohydrate and fat content on survival in a murine LNCaP prostate cancer xenograft model. Cancer Prev Res (Phila). 2009;2(6):557–65.

    CAS  Google Scholar 

  50. Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostate cancer: implications for new treatment modalities. Eur Urol. 2005;47(2):147–55.

    PubMed  CAS  Google Scholar 

  51. Papandreou CN, Daliani DD, Thall PF, et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate. J Clin Oncol. 2002;20(14):3072–80.

    PubMed  CAS  Google Scholar 

  52. Wang Q, Horiatis D, Pinski J. Interleukin-6 inhibits the growth of prostate cancer xenografts in mice by the process of neuroendocrine differentiation. Int J Cancer. 2004;111(4):508–13.

    PubMed  CAS  Google Scholar 

  53. Mosca A, Berruti A, Russo L, Torta M, Dogliotti L. The neuroendocrine phenotype in prostate cancer: basic and clinical aspects. J Endocrinol Invest. 2005;28(11 Suppl International):141–5.

    PubMed  CAS  Google Scholar 

  54. Xie S, Lin HK, Ni J, et al. Regulation of interleukin-6-mediated PI3K activation and neuroendocrine differentiation by androgen signaling in prostate cancer LNCaP cells. Prostate. 2004;60(1):61–7.

    PubMed  CAS  Google Scholar 

  55. Sun S, Sprenger CC, Vessella RL, et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest. 2010;120(8):2715–30.

    PubMed  CAS  Google Scholar 

  56. Guo Z, Yang X, Sun F, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 2009;69(6):2305–13.

    PubMed  CAS  Google Scholar 

  57. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 2008;68(13):5469–77.

    PubMed  CAS  Google Scholar 

  58. Li H, DeRosier DJ, Nicholson WV, Nogales E, Downing KH. Microtubule structure at 8 A resolution. Structure. 2002;10(10):1317–28.

    PubMed  CAS  Google Scholar 

  59. Petrylak DP, Tangen CM, Hussain MH, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004;351(15):1513–20.

    PubMed  CAS  Google Scholar 

  60. Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351(15):1502–12.

    PubMed  CAS  Google Scholar 

  61. Carver BS, Tran J, Chen Z, et al. ETS rearrangements and prostate cancer initiation. Nature. 2009;457(7231):E1; discussion E2–3.

    PubMed  CAS  Google Scholar 

  62. Hagisawa S, Mikami T, Sato Y. Docetaxel-induced apoptosis in the mitotic phase: electron microscopic and cytochemical studies of human leukemia cells. Med Electron Microsc. 1999;32(3):167–74.

    PubMed  CAS  Google Scholar 

  63. Saito T, Zhang ZJ, Shibamori Y, et al. P-glycoprotein expression in capillary endothelial cells of the 7th and 8th nerves of guinea pig in relation to blood-nerve barrier sites. Neurosci Lett. 1997;232(1):41–4.

    PubMed  CAS  Google Scholar 

  64. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58.

    PubMed  CAS  Google Scholar 

  65. Sissung TM, Baum CE, Deeken J, et al. ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin Cancer Res. 2008;14(14):4543–9.

    PubMed  CAS  Google Scholar 

  66. Albiges L, Loriot Y, Gross-Goupil M, et al. New drugs in metastatic castration-resistant prostate cancer. Bull Cancer. 2010;97(1):149–59.

    PubMed  CAS  Google Scholar 

  67. Lodish H, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. Molecular biology of the cell. 5th ed. New York: WH Freeman; 2004.

    Google Scholar 

  68. Powell C, Mikropoulos C, Kaye SB, et al. Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treat Rev. 2010;36(7):566–75.

    PubMed  CAS  Google Scholar 

  69. Gunby RH, Sala E, Tartari CJ, Puttini M, Gambacorti-Passerini C, Mologni L. Oncogenic fusion tyrosine kinases as molecular targets for anti-cancer therapy. Anticancer Agents Med Chem. 2007;7(6):594–611.

    PubMed  CAS  Google Scholar 

  70. George DJ, Halabi S, Shepard TF, et al. Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res. 2001;7(7):1932–6.

    PubMed  CAS  Google Scholar 

  71. Di Lorenzo G, De Placido S, Autorino R, et al. Expression of biomarkers modulating prostate cancer progression: implications in the treatment of the disease. Prostate Cancer Prostatic Dis. 2005;8(1):54–9.

    PubMed  Google Scholar 

  72. Zellweger T, Ninck C, Bloch M, et al. Expression patterns of potential therapeutic targets in prostate cancer. Int J Cancer. 2005;113(4):619–28.

    PubMed  CAS  Google Scholar 

  73. Sherwood ER, Lee C. Epidermal growth factor-related peptides and the epidermal growth factor receptor in normal and malignant prostate. World J Urol. 1995;13(5):290–6.

    PubMed  CAS  Google Scholar 

  74. Sirotnak FM, Zakowski MF, Miller VA, Scher HI, Kris MG. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res. 2000;6(12):4885–92.

    PubMed  CAS  Google Scholar 

  75. Osman I, Scher HI, Drobnjak M, et al. HER-2/neu (p185neu) protein expression in the natural or treated history of prostate cancer. Clin Cancer Res. 2001;7(9):2643–7.

    PubMed  CAS  Google Scholar 

  76. Lara Jr PN, Chee KG, Longmate J, et al. Trastuzumab plus docetaxel in HER-2/neu-positive prostate carcinoma: final results from the California cancer consortium screening and phase II trial. Cancer. 2004;100(10):2125–31.

    PubMed  CAS  Google Scholar 

  77. Meng TC, Lee MS, Lin MF. Interaction between protein tyrosine phosphatase and protein tyrosine kinase is involved in androgen-promoted growth of human prostate cancer cells. Oncogene. 2000;19(22):2664–77.

    PubMed  CAS  Google Scholar 

  78. Pu YS, Hsieh MW, Wang CW, et al. Epidermal growth factor receptor inhibitor (PD168393) potentiates cytotoxic effects of paclitaxel against androgen-independent prostate cancer cells. Biochem Pharmacol. 2006;71(6):751–60.

    PubMed  CAS  Google Scholar 

  79. Mellinghoff IK, Vivanco I, Kwon A, Tran C, Wongvipat J, Sawyers CL. HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell. 2004;6(5):517–27.

    PubMed  CAS  Google Scholar 

  80. Pietras K, Sjoblom T, Rubin K, Heldin CH, Ostman A. PDGF receptors as cancer drug targets. Cancer Cell. 2003;3(5):439–43.

    PubMed  CAS  Google Scholar 

  81. Klein E, editor. Management of prostate cancer. 2nd ed. Totowa: Humana Press; 2004.

    Google Scholar 

  82. Uehara H, Kim SJ, Karashima T, et al. Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst. 2003;95(6):458–70.

    PubMed  CAS  Google Scholar 

  83. Macfarlane RJ, Chi KN. Novel targeted therapies for prostate cancer. Urol Clin North Am. 2010;37(1):105–19.

    PubMed  Google Scholar 

  84. Green PJ, Walsh FS, Doherty P. Promiscuity of fibroblast growth factor receptors. Bioessays. 1996;18(8):639–46.

    PubMed  CAS  Google Scholar 

  85. Cao R, Brakenhielm E, Pawliuk R, et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med. 2003;9(5):604–13.

    PubMed  CAS  Google Scholar 

  86. Gowardhan B, Douglas DA, Mathers ME, et al. Evaluation of the fibroblast growth factor system as a potential target for therapy in human prostate cancer. Br J Cancer. 2005;92(2):320–7.

    PubMed  CAS  Google Scholar 

  87. Sahadevan K, Darby S, Leung HY, Mathers ME, Robson CN, Gnanapragasam VJ. Selective over-expression of fibroblast growth factor receptors 1 and 4 in clinical prostate cancer. J Pathol. 2007;213(1):82–90.

    PubMed  CAS  Google Scholar 

  88. Udayakumar TS, Bair EL, Nagle RB, Bowden GT. Pharmacological inhibition of FGF receptor signaling inhibits LNCaP prostate tumor growth, promatrilysin, and PSA expression. Mol Carcinog. 2003;38(2):70–7.

    PubMed  CAS  Google Scholar 

  89. Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet. 2004;363(9418):1346–53.

    PubMed  CAS  Google Scholar 

  90. Hellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM. Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res. 2002;62(10):2942–50.

    PubMed  CAS  Google Scholar 

  91. Saikali Z, Setya H, Singh G, Persad S. Role of IGF-1/IGF-1R in regulation of invasion in DU145 prostate cancer cells. Cancer Cell Int. 2008;8:10.

    PubMed  Google Scholar 

  92. Nickerson T, Chang F, Lorimer D, Smeekens SP, Sawyers CL, Pollak M. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Res. 2001;61(16):6276–80.

    PubMed  CAS  Google Scholar 

  93. Plymate SR, Haugk K, Coleman I, et al. An antibody targeting the type I insulin-like growth factor receptor enhances the castration-induced response in androgen-dependent prostate cancer. Clin Cancer Res. 2007;13(21):6429–39.

    PubMed  CAS  Google Scholar 

  94. Cohen BD, Baker DA, Soderstrom C, et al. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res. 2005;11(5):2063–73.

    PubMed  CAS  Google Scholar 

  95. Xu J, Stolk JA, Zhang X, et al. Identification of differentially expressed genes in human prostate cancer using subtraction and microarray. Cancer Res. 2000;60(6):1677–82.

    PubMed  CAS  Google Scholar 

  96. Sardana G, Dowell B, Diamandis EP. Emerging biomarkers for the diagnosis and prognosis of prostate cancer. Clin Chem. 2008;54(12):1951–60.

    PubMed  CAS  Google Scholar 

  97. Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM. Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res. 2002;62(15):4427–33.

    PubMed  CAS  Google Scholar 

  98. Chan JM, Giovannucci EL. Dairy products, calcium, and vitamin D and risk of prostate cancer. Epidemiol Rev. 2001;23(1):87–92.

    PubMed  CAS  Google Scholar 

  99. Rubin MA, Bismar TA, Andren O, et al. Decreased alpha-methylacyl CoA racemase expression in localized prostate cancer is associated with an increased rate of biochemical recurrence and cancer-specific death. Cancer Epidemiol Biomarkers Prev. 2005;14(6):1424–32.

    PubMed  CAS  Google Scholar 

  100. Evans AJ. Alpha-methylacyl CoA racemase (P504S): overview and potential uses in diagnostic pathology as applied to prostate needle biopsies. J Clin Pathol. 2003;56(12):892–7.

    PubMed  CAS  Google Scholar 

  101. Zehentner BK, Secrist H, Zhang X, et al. Detection of alpha-methylacyl-coenzyme-A racemase transcripts in blood and urine samples of prostate cancer patients. Mol Diagn Ther. 2006;10(6):397–403.

    PubMed  CAS  Google Scholar 

  102. Sreekumar A, Laxman B, Rhodes DR, et al. Humoral immune response to alpha-methylacyl-CoA racemase and prostate cancer. J Natl Cancer Inst. 2004;96(11):834–43.

    PubMed  CAS  Google Scholar 

  103. Jaffe ES, Harris N, Stein H. Pathology and genetics of tumors of hematopietic and lymphoid tissue. Lyon: IARC Press; 2001.

    Google Scholar 

  104. Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C, Antonarakis SE. Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics. 1997;44(3):309–20.

    PubMed  CAS  Google Scholar 

  105. Barry M, Perner S, Demichelis F, Rubin MA. TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology. 2007;70(4):630–3.

    PubMed  Google Scholar 

  106. Esgueva R, Perner S, Lafargue C, et al. Prevalence of TMPRSS2-ERG and SLC45A3-ERG gene fusions in a large prostatectomy cohort. Mod Pathol. 2010;23(4):539–46.

    PubMed  CAS  Google Scholar 

  107. Hessels D, Smit FP, Verhaegh GW, Witjes JA, Cornel EB, Schalken JA. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin Cancer Res. 2007;13(17):5103–8.

    PubMed  CAS  Google Scholar 

  108. Rostad K, Hellwinkel OJ, Haukaas SA, et al. TMPRSS2: ERG fusion transcripts in urine from prostate cancer patients correlate with a less favorable prognosis. APMIS. 2009;117(8):575–82.

    PubMed  CAS  Google Scholar 

  109. Attard G, Clark J, Ambroisine L, et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene. 2008;27(3):253–63.

    PubMed  CAS  Google Scholar 

  110. Nam RK, Sugar L, Yang W, et al. Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br J Cancer. 2007;97(12):1690–5.

    PubMed  CAS  Google Scholar 

  111. Leinonen KA, Tolonen TT, Bracken H, et al. Association of SPINK1 expression and TMPRSS2:ERG fusion with prognosis in endocrine-treated prostate cancer. Clin Cancer Res. 2010;16(10):2845–51.

    PubMed  CAS  Google Scholar 

  112. Clarke NW, McClure J, George NJ. Osteoblast function and osteomalacia in metastatic prostate cancer. Eur Urol. 1993;24(2):286–90.

    PubMed  CAS  Google Scholar 

  113. Weston R, Hussain A, George E, Parr NJ. Testosterone recovery and changes in bone mineral density after stopping long-term luteinizing hormone-releasing hormone analogue therapy in osteoporotic patients with prostate cancer. BJU Int. 2005;95(6):776–9.

    PubMed  CAS  Google Scholar 

  114. Fizazi K, Lipton A, Mariette X, et al. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol. 2009;27(10):1564–71.

    PubMed  CAS  Google Scholar 

  115. Lalich M, McNeel DG, Wilding G, Liu G. Endothelin receptor antagonists in cancer therapy. Cancer Invest. 2007;25(8):785–94.

    PubMed  CAS  Google Scholar 

  116. Bagnato A, Catt KJ. Endothelins as autocrine regulators of tumor cell growth. Trends Endocrinol Metab. 1998;9(9):378–83.

    PubMed  CAS  Google Scholar 

  117. Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res. 1998;13(4):581–9.

    PubMed  CAS  Google Scholar 

  118. Jagdev SP, Coleman RE, Shipman CM, Rostami HA, Croucher PI. The bisphosphonate, zoledronic acid, induces apoptosis of breast cancer cells: evidence for synergy with paclitaxel. Br J Cancer. 2001;84(8):1126–34.

    PubMed  CAS  Google Scholar 

  119. Aapro M, Abrahamsson PA, Body JJ, et al. Guidance on the use of bisphosphonates in solid tumours: recommendations of an international expert panel. Ann Oncol. 2008;19(3):420–32.

    PubMed  CAS  Google Scholar 

  120. Saad F, Gleason DM, Murray R, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst. 2002;94(19):1458–68.

    PubMed  CAS  Google Scholar 

  121. Dearnaley DP, Mason MD, Parmar MK, Sanders K, Sydes MR. Adjuvant therapy with oral sodium clodronate in locally advanced and metastatic prostate cancer: long-term overall survival results from the MRC PR04 and PR05 randomised controlled trials. Lancet Oncol. 2009;10(9):872–6.

    PubMed  CAS  Google Scholar 

  122. Nam S, Kim D, Cheng JQ, et al. Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res. 2005;65(20):9185–9.

    PubMed  CAS  Google Scholar 

  123. Rucci N, Recchia I, Angelucci A, et al. Inhibition of protein kinase c-Src reduces the incidence of breast cancer metastases and increases survival in mice: implications for therapy. J Pharmacol Exp Ther. 2006;318(1):161–72.

    PubMed  CAS  Google Scholar 

  124. Rabbani SA, Valentino ML, Arakelian A, Ali S, Boschelli F. SKI-606 (Bosutinib) blocks prostate cancer invasion, growth, and metastasis in vitro and in vivo through regulation of genes involved in cancer growth and skeletal metastasis. Mol Cancer Ther. 2010;9(5):1147–57.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg L. Shaw M.D., FRCS (Urol) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Shaw, G.L., Neal, D.E. (2013). Molecular Biology and Prostate Cancer. In: Tewari, A. (eds) Prostate Cancer: A Comprehensive Perspective. Springer, London. https://doi.org/10.1007/978-1-4471-2864-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2864-9_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2863-2

  • Online ISBN: 978-1-4471-2864-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics