Skip to main content

Molecular Imaging in Diagnostics

  • Chapter
  • First Online:
Prostate Cancer: A Comprehensive Perspective

Abstract

Prostate cancer is the most common malignancy and the second most common cause of cancer-related mortality in men. Despite the downstaging we have observed over the last 20 years with the widespread use of PSA screening, we continue to observe conflicting data regarding its effect on prostate cancer survival [1, 2]. While treatment for localized prostate cancer is highly successful, about 30–50 % of men will experience a biochemical failure within 10 years from the primary treatment, suggesting that prostate cancer can metastasize relatively early in the course of disease [3–6]. This is supported by the discovery of circulating prostate cancer cell in bone marrow biopsy of patients with apparently localized disease [7]. A portion of men with biochemical failure will develop locally recurrent disease, and as many as two-thirds will have evidence of osseous metastatic involvement [8–11]. In the study by Pound et al. after primary surgical treatment, 15 % of patients developed biochemical recurrence. The median actuarial time to metastases was 8 years from the time of PSA relapse. Once men developed metastatic disease, the median survival time to death was 5 years [12]. If men develop castrate resistant metastatic disease, the 1-year survival is about 24 % with a median survival of only 8-18 months [13]. The hormone-refractory state is believed to occur via bypassing or sensitizing the androgen receptor (AR) signaling pathway. Patients with biochemical recurrence and metastatic disease are left with imaging modalities that neither provide enough information to change management nor are able to predict patient’s prognosis or evaluate patient’s treatment progress. The reason is that traditional imaging techniques are focused on evaluating the anatomy rather than the function of prostate cancer. Unlike traditional structural imaging, molecular imaging takes advantage of the functionality of tumor. These imaging techniques can theoretically provide functional information regarding prostate cancer. In this chapter, we review the current literature on the potential and emerging role of molecular imaging in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andriole GL, Crawford ED, Grubb RL, et al. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med. 2009;360:1310.

    Article  PubMed  CAS  Google Scholar 

  2. Schröder FH, Hugosson J, Roobol MJ, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360:1320.

    Article  PubMed  Google Scholar 

  3. Catalona WJ, Smith DS. Cancer recurrence and survival rates after anatomic radical retropubic prostatectomy for prostate cancer: intermediate-term results. J Urol. 1998;160:2428.

    Article  PubMed  CAS  Google Scholar 

  4. Kupelian PA, Katcher J, Levin HS, et al. Stage T1-2 prostate cancer: a multivariate analysis of factors affecting biochemical and clinical failures after radical prostatectomy. Int J Radiat Oncol Biol Phys. 1997;37:1043.

    Article  PubMed  CAS  Google Scholar 

  5. Trapasso JG, de Kernion JB, Smith RB, et al. The incidence and significance of detectable levels of serum prostate specific antigen after radical prostatectomy. J Urol. 1994;152:1821.

    PubMed  CAS  Google Scholar 

  6. Han M, Partin AW, Pound CR, et al. Long-term biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15-year Johns Hopkins experience. Urol Clin North Am. 2001;28:555.

    Article  PubMed  CAS  Google Scholar 

  7. Thomas C, Wiesner C, Melchior SW, et al. Urokinase-plasminogen-activator receptor expression in disseminated tumour cells in the bone marrow and peripheral blood of patients with clinically localized prostate cancer. BJU Int. 2009;104:29.

    Article  PubMed  CAS  Google Scholar 

  8. Yu KK, Hawkins RA. The prostate: diagnostic evaluation of metastatic disease. Radiol Clin North Am. 2000;38:139.

    Article  PubMed  CAS  Google Scholar 

  9. Carroll P. Rising PSA after a radical treatment. Eur Urol. 2001;40 Suppl 2:9.

    Article  PubMed  CAS  Google Scholar 

  10. McMurtry CT, McMurtry JM. Metastatic prostate cancer: complications and treatment. J Am Geriatr Soc. 2003;51:1136.

    Article  PubMed  Google Scholar 

  11. Timme TL, Satoh T, Tahir SA, et al. Therapeutic targets for metastatic prostate cancer. Curr Drug Targets. 2003;4:251.

    Article  PubMed  CAS  Google Scholar 

  12. Pound CR, Partin AW, Eisenberger MA, et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 1999;281:1591.

    Article  PubMed  CAS  Google Scholar 

  13. Fosså SD, Dearnaley DP, Law M, et al. Prognostic factors in hormone-resistant progressing cancer of the prostate. Ann Oncol. 1992;3:361.

    PubMed  Google Scholar 

  14. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57.

    Article  PubMed  CAS  Google Scholar 

  15. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202:654.

    Article  PubMed  CAS  Google Scholar 

  16. Yun H, Lee M, Kim S-S, et al. Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma. J Biol Chem. 2005;280:9963.

    Article  PubMed  CAS  Google Scholar 

  17. Effert P, Beniers AJ, Tamimi Y, et al. Expression of glucose transporter 1 (Glut-1) in cell lines and clinical specimens from human prostate adenocarcinoma. Anticancer Res. 2004;24:3057.

    PubMed  CAS  Google Scholar 

  18. Stewart GD, Gray K, Pennington CJ, et al. Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter-1 expression correlate with Gleason score. Oncol Rep. 2008;20:1561.

    PubMed  CAS  Google Scholar 

  19. Jadvar H, Xiankui L, Shahinian A, et al. Glucose metabolism of human prostate cancer mouse xenografts. Mol Imaging. 2005;4:91.

    PubMed  Google Scholar 

  20. Agus DB, Golde DW, Sgouros G, et al. Positron emission tomography of a human prostate cancer xenograft: association of changes in deoxyglucose accumulation with other measures of outcome following androgen withdrawal. Cancer Res. 1998;58:3009.

    PubMed  CAS  Google Scholar 

  21. Oyama N, Kim J, Jones LA, et al. MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate and a prostate cancer tumor model. Nucl Med Biol. 2002;29:783.

    Article  PubMed  CAS  Google Scholar 

  22. Katz-Brull R, Degani H. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res. 1996;16:1375.

    PubMed  CAS  Google Scholar 

  23. Epstein JI, Carmichael M, Partin AW. OA-519 (fatty acid synthase) as an independent predictor of pathologic state in adenocarcinoma of the prostate. Urology. 1995;45:81.

    Article  PubMed  CAS  Google Scholar 

  24. Breeuwsma AJ, Pruim J, Jongen MM, et al. In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging. 2005;32:668.

    Article  PubMed  Google Scholar 

  25. Hara T, Bansal A, DeGrado TR. Effect of hypoxia on the uptake of [methyl-3H]choline, [1-14C] acetate and [18F]FDG in cultured prostate cancer cells. Nucl Med Biol. 2006;33:977.

    Article  PubMed  CAS  Google Scholar 

  26. Sutinen E, Nurmi M, Roivainen A, et al. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31:317.

    Article  PubMed  CAS  Google Scholar 

  27. Baron A, Migita T, Tang D, et al. Fatty acid synthase: a metabolic oncogene in prostate cancer? J Cell Biochem. 2004;91:47.

    Article  PubMed  CAS  Google Scholar 

  28. Yoshimoto M, Waki A, Yonekura Y, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol. 2001;28:117.

    Article  PubMed  CAS  Google Scholar 

  29. Liu Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 2006;9:230.

    Article  PubMed  CAS  Google Scholar 

  30. Vāvere AL, Kridel SJ, Wheeler FB, et al. 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med. 2008;49:327.

    Article  PubMed  CAS  Google Scholar 

  31. Pflug BR, Pecher SM, Brink AW, et al. Increased fatty acid synthase expression and activity during progression of prostate cancer in the TRAMP model. Prostate. 2003;57:245.

    Article  PubMed  CAS  Google Scholar 

  32. Schiepers C, Hoh CK, Nuyts J, et al. 1-11C-acetate kinetics of prostate cancer. J Nucl Med. 2008;49:206.

    Article  PubMed  CAS  Google Scholar 

  33. Seltzer MA, Jahan SA, Sparks R, et al. Radiation dose estimates in humans for (11)C-acetate whole-body PET. J Nucl Med. 2004;45:1233.

    PubMed  CAS  Google Scholar 

  34. Troyer JK, Beckett ML, Wright GL. Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int J Cancer. 1995;62:552.

    Article  PubMed  CAS  Google Scholar 

  35. Sokoloff MH, Nardin A, Solga MD, et al. Targeting of cancer cells with monoclonal antibodies specific for C3b(i). Cancer Immunol Immunother. 2000;49:551.

    Article  PubMed  CAS  Google Scholar 

  36. Wright GL, Grob BM, Haley C, et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology. 1996;48:326.

    Article  PubMed  Google Scholar 

  37. Sweat SD, Pacelli A, Murphy GP, et al. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 1998;52:637.

    Article  PubMed  CAS  Google Scholar 

  38. Liu IJ, Zafar MB, Lai YH, et al. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology. 2001;57:108.

    Article  PubMed  CAS  Google Scholar 

  39. Oyama N, Akino H, Suzuki Y, et al. The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol. 1999;29:623.

    Article  PubMed  CAS  Google Scholar 

  40. Hofer C, Laubenbacher C, Block T, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol. 1999;36:31.

    Article  PubMed  CAS  Google Scholar 

  41. Effert PJ, Bares R, Handt S, et al. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol. 1996;155:994.

    Article  PubMed  CAS  Google Scholar 

  42. Salminen E, Hogg A, Binns D, et al. Investigations with FDG-PET scanning in prostate cancer show limited value for clinical practice. Acta Oncol. 2002;41:425.

    Article  PubMed  Google Scholar 

  43. Takahashi N, Inoue T, Lee J, et al. The roles of PET and PET/CT in the diagnosis and management of prostate cancer. Oncology. 2007;72:226.

    Article  PubMed  Google Scholar 

  44. Li X, Liu Q, Wang M, et al. C-11 choline PET/CT imaging for differentiating malignant from benign prostate lesions. Clin Nucl Med. 2008;33:671.

    Article  PubMed  CAS  Google Scholar 

  45. Testa C, Schiavina R, Lodi R, et al. Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET/CT. Radiology. 2007;244:797.

    Article  PubMed  Google Scholar 

  46. Park H, Piert MR, Khan A, et al. Registration methodology for histological sections and in vivo imaging of human prostate. Acad Radiol. 2008;15:1027.

    Article  PubMed  Google Scholar 

  47. Schiavina R, Scattoni V, Castellucci P, et al. 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol. 2008;54:392.

    Article  PubMed  Google Scholar 

  48. Briganti A, Chun FK-H, Salonia A, et al. Validation of a nomogram predicting the probability of lymph node invasion among patients undergoing radical prostatectomy and an extended pelvic lymphadenectomy. Eur Urol. 2006;49:1019.

    Article  PubMed  Google Scholar 

  49. Cagiannos I, Karakiewicz P, Eastham JA, et al. A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J Urol. 2003;170:1798.

    Article  PubMed  Google Scholar 

  50. Schmid DT, John H, Zweifel R, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology. 2005;235:623.

    Article  PubMed  Google Scholar 

  51. Igerc I, Kohlfürst S, Gallowitsch HJ, et al. The value of 18F-choline PET/CT in patients with elevated PSA-level and negative prostate needle biopsy for localisation of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:976.

    Article  PubMed  CAS  Google Scholar 

  52. Kwee SA, Wei H, Sesterhenn I, et al. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med. 2006;47:262.

    PubMed  Google Scholar 

  53. Beheshti M, Imamovic L, Broinger G, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925.

    Article  PubMed  Google Scholar 

  54. Husarik DB, Miralbell R, Dubs M, et al. Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:253.

    Article  PubMed  Google Scholar 

  55. Oyama N, Akino H, Kanamaru H, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med. 2002;43:181.

    PubMed  CAS  Google Scholar 

  56. Kato T, Tsukamoto E, Kuge Y, et al. Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging. 2002;29:1492.

    Article  PubMed  CAS  Google Scholar 

  57. Seppälä J, Seppänen M, Arponen E, et al. Carbon-11 acetate PET/CT based dose escalated IMRT in prostate cancer. Radiother Oncol. 2009;93:234.

    Article  PubMed  CAS  Google Scholar 

  58. Mouraviev V, Madden JF, Broadwater G, et al. Use of 111in-capromab pendetide immunoscintigraphy to image localized prostate cancer foci within the prostate gland. J Urol. 2009;182:938.

    Article  PubMed  Google Scholar 

  59. Ponsky LE, Cherullo EE, Starkey R, et al. Evaluation of preoperative ProstaScint scans in the prediction of nodal disease. Prostate Cancer Prostatic Dis. 2002;5:132.

    Article  PubMed  CAS  Google Scholar 

  60. Ellis RJ, Zhou EH, Fu P, et al. Single photon emission computerized tomography with capromab pendetide plus computerized tomography image set co-registration independently predicts biochemical failure. J Urol. 2008;179:1768.

    Article  PubMed  CAS  Google Scholar 

  61. D’Amico AV, Whittington R, Malkowicz SB, et al. Pretreatment nomogram for prostate-specific antigen recurrence after radical prostatectomy or external-beam radiation therapy for clinically localized prostate cancer. J Clin Oncol. 1999;17:168.

    PubMed  Google Scholar 

  62. Sanz G, Robles JE, Giménez M, et al. Positron emission tomography with 18fluorine-labelled deoxyglucose: utility in localized and advanced prostate cancer. BJU Int. 1999;84:1028.

    Article  PubMed  CAS  Google Scholar 

  63. Chang C-H, Wu H-C, Tsai JJP, et al. Detecting metastatic pelvic lymph nodes by 18F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol Int. 2003;70:311.

    Article  PubMed  Google Scholar 

  64. Schöder H, Herrmann K, Gönen M, et al. 2-[18]fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res. 2005;11:4761.

    Article  PubMed  Google Scholar 

  65. Seltzer MA, Barbaric Z, Belldegrun A, et al. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol. 1999;162:1322.

    Article  PubMed  CAS  Google Scholar 

  66. de Jong IJ, Pruim J, Elsinga PH, et al. 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol. 2003;44:32.

    Article  PubMed  Google Scholar 

  67. Picchio M, Messa C, Landoni C, et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol. 2003;169:1337.

    Article  PubMed  CAS  Google Scholar 

  68. Krause BJ, Souvatzoglou M, Tuncel M, et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:18.

    Article  PubMed  CAS  Google Scholar 

  69. Giovacchini G, Picchio M, Coradeschi E, et al. Predictive factors of [(11)C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2010;37:301.

    Article  PubMed  Google Scholar 

  70. Rinnab L, Mottaghy FM, Simon J, et al. [11C]Choline PET/CT for targeted salvage lymph node dissection in patients with biochemical recurrence after primary curative therapy for prostate cancer Preliminary results of a prospective study. Urol Int. 2008;81:191.

    Article  PubMed  Google Scholar 

  71. Reske SN, Blumstein NM, Glatting G. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2008;35:9.

    Article  PubMed  Google Scholar 

  72. Kotzerke J, Volkmer BG, Neumaier B, et al. Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2002;29:1380.

    Article  PubMed  CAS  Google Scholar 

  73. Fricke E, Machtens S, Hofmann M, et al. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2003;30:607.

    Article  PubMed  CAS  Google Scholar 

  74. Oyama N, Miller TR, Dehdashti F, et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med. 2003;44:549.

    PubMed  CAS  Google Scholar 

  75. Wachter S, Tomek S, Kurtaran A, et al. 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol. 2006;24:2513.

    Article  PubMed  Google Scholar 

  76. Sandblom G, Sörensen J, Lundin N, et al. Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology. 2006;67:996.

    Article  PubMed  Google Scholar 

  77. Vees H, Buchegger F, Albrecht S, et al. 18F-choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/mL) after radical prostatectomy. BJU Int. 2007;99:1415.

    Article  PubMed  CAS  Google Scholar 

  78. Raj GV, Partin AW, Polascik TJ. Clinical utility of indium 111-capromab pendetide immunoscintigraphy in the detection of early, recurrent prostate carcinoma after radical prostatectomy. Cancer. 2002;94:987.

    Article  PubMed  Google Scholar 

  79. Kahn D, Williams RD, Haseman MK, et al. Radioimmunoscintigraphy with In-111-labeled capromab pendetide predicts prostate cancer response to salvage radiotherapy after failed radical prostatectomy. J Clin Oncol. 1998;16:284.

    PubMed  CAS  Google Scholar 

  80. Levesque PE, Nieh PT, Zinman LN, et al. Radiolabeled monoclonal antibody indium 111-labeled CYT-356 localizes extraprostatic recurrent carcinoma after prostatectomy. Urology. 1998;51:978.

    Article  PubMed  CAS  Google Scholar 

  81. Thomas CT, Bradshaw PT, Pollock BH, et al. Indium-111-capromab pendetide radioimmunoscintigraphy and prognosis for durable biochemical response to salvage radiation therapy in men after failed prostatectomy. J Clin Oncol. 2003;21:1715.

    Article  PubMed  CAS  Google Scholar 

  82. Wilkinson S, Chodak G. The role of 111indium-capromab pendetide imaging for assessing biochemical failure after radical prostatectomy. J Urol. 2004;172:133.

    Article  PubMed  Google Scholar 

  83. Shreve PD, Grossman HB, Gross MD, et al. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology. 1996;199:751.

    PubMed  CAS  Google Scholar 

  84. Sung J, Espiritu JI, Segall GM, et al. Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cancer. BJU Int. 2003;92:24.

    Article  PubMed  CAS  Google Scholar 

  85. Oyama N, Akino H, Suzuki Y, et al. FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Commun. 2001;22:963.

    Article  PubMed  CAS  Google Scholar 

  86. Zhang Y, Saylor M, Wen S, et al. Longitudinally quantitative 2-deoxy-2-[18F]fluoro-D-glucose micro positron emission tomography imaging for efficacy of new anticancer drugs: a case study with bortezomib in prostate cancer murine model. Mol Imaging Biol. 2006;8:300.

    Article  PubMed  CAS  Google Scholar 

  87. Morris MJ, Akhurst T, Larson SM, et al. Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res. 2005;11:3210.

    Article  PubMed  CAS  Google Scholar 

  88. Jadvar H, et al. Concordance among FDG PET, CT and bone scan in men with metastatic prostate cancer. 55th annual meeting of the society of nuclear medicine. New Orleans. 15 June 2008.

    Google Scholar 

  89. Beheshti M, Vali R, Waldenberger P, et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol. 2009;11:446.

    Article  PubMed  Google Scholar 

  90. Luboldt W, Küfer R, Blumstein N, et al. Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology. 2008;249:1017.

    Article  PubMed  Google Scholar 

  91. Steuber T, Schlomm T, Heinzer H, et al. [F(18)]-fluoroethylcholine combined in-line PET-CT scan for detection of lymph-node metastasis in high risk prostate cancer patients prior to radical prostatectomy: Preliminary results from a prospective histology-based study. Eur J Cancer. 2010;46:449.

    Article  PubMed  CAS  Google Scholar 

  92. De Waele A, Van Binnebeek S, Mottaghy FM. Response assessment of hormonal therapy in prostate cancer by [11C] choline PET/CT. Clin Nucl Med. 2010;35:701.

    Article  PubMed  Google Scholar 

  93. Ndlovu X, George R, Ellmann A, et al. Should SPECT-CT replace SPECT for the evaluation of equivocal bone scan lesions in patients with underlying malignancies? Nucl Med Commun. 2010;31:659.

    PubMed  Google Scholar 

  94. Even-Sapir E, Metser U, Mishani E, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287.

    PubMed  Google Scholar 

  95. Beheshti M, Vali R, Waldenberger P, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35:1766.

    Article  PubMed  Google Scholar 

  96. Bading JR, Shahinian AH, Bathija P, et al. Pharmacokinetics of the thymidine analog 2′-fluoro-5-[(14)C]-methyl-1-beta-D-arabino­furanosyluracil ([(14)C]FMAU) in rat prostate tumor cells. Nucl Med Biol. 2000;27:361.

    Article  PubMed  CAS  Google Scholar 

  97. Schuster DM, Votaw JR, Nieh PT, et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med. 2007;48:56.

    PubMed  CAS  Google Scholar 

  98. Larson SM, Morris M, Gunther I, et al. Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med. 2004;45:366.

    PubMed  CAS  Google Scholar 

  99. Mease RC, Dusich CL, Foss CA, et al. N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res. 2008;14:3036.

    Article  PubMed  CAS  Google Scholar 

  100. Lapi SE, Wahnishe H, Pham D, et al. Assessment of an 18F-labeled phosphoramidate peptidomimetic as a new prostate-specific membrane antigen-targeted imaging agent for prostate cancer. J Nucl Med. 2009;50:2042.

    Article  PubMed  CAS  Google Scholar 

  101. Jadvar H. Prostate Cancer: PET with 18F-FDG, 18F- or 11C-Acetate, and 18F- or 11C-Choline. J Nucl Med. 2011;52:81.

    Article  PubMed  Google Scholar 

  102. Apolo AB, Pandit-Taskar N, Morris MJ. Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med. 2008;49:2031.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

National Institutes of Health–National Cancer Institute Grants R01-CA111613 and R21-CA142426 (H. Jadvar).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Jadvar M.D., Ph.D., MPH, M.B.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Ng, C.K., Kauffman, E.C., Jadvar, H. (2013). Molecular Imaging in Diagnostics. In: Tewari, A. (eds) Prostate Cancer: A Comprehensive Perspective. Springer, London. https://doi.org/10.1007/978-1-4471-2864-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2864-9_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2863-2

  • Online ISBN: 978-1-4471-2864-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics