Advertisement

Normal Left Ventricular Dynamics: Contraction and Relaxation Patterns

  • V Rao Parachuri
  • Srilakshmi M. Adhyapak
Chapter

Abstract

The left ventricular function follows its form. The uniqueness of its myofiber arrangement defines its unique function. As implied in the previous chapter, its inflow and outflow are literally continuous, making the filling and ejection of blood bidirectional through literally two orifices which are in anatomical continuity. For this to occur, the left ventricle has to adopt a “wringing” effect of torsion in clockwise and counterclockwise directions. This is an evolutionary adaptation to assumption of the erect posture by man. The function of torsion during systole and diastole is mediated by the oblique myocardial fibers which are unique to the left ventricle. In this chapter, we discuss the patterns of ventricular systole and diastole throughout the cardiac cycle. This understanding is crucial to grasp the perturbations occurring in heart failure, in modulating the therapies for amelioration of the same.

Keywords

Systolic Wall Left Ventricular Twist Apical Rotation Sphericity Index Circumferential Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Moore CC, McVeigh ER, Elias A. Quantitative tagged magnetic resonance imaging of the normal human ventricle. Top Magn Reson Imaging. 2000;11(6):359–71.PubMedCrossRefGoogle Scholar
  2. 2.
    Osakada G, Sasayama S, Kawai C, Hirakawa A, Kemper WS, Franklin D, Ross Jr J. The analysis of left ventricular wall thickness and shear by an ultrasonic triangulation technique in the dog. Circ Res. 1980;47:173–81.PubMedCrossRefGoogle Scholar
  3. 3.
    LeGrice IJ, Takayama Y, Covell JW. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res. 1995;77:182–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Buchalter MB, Weiss JL, Rogers WJ, Zerhouni EA, Weissfeldt ML, Beyar R, Shapiro EP. Noninvasive quantification of left ventricular rotational deformation in normal humans using MRI myocardial tagging. Circulation. 1990;81:1236–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Ashikaga H, Criscione JC, Omens JH, Covell JW, Ingels NB. Transmural left ventricular mechanics underlying torsional recoil during relaxation. Am J Physiol Heart Circ Physiol. 2004;286:H640–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Sallin EA. Fiber orientation and ejection fraction in the human ventricle. Biophys J. 1969;9:954–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Roscitano A, Benedetto U, Sciangula A, Merico E, Barberi F, Bianchini R, Tonelli E, Sinatra R. Indexed effective orifice area after mechanical aortic valve replacement does not affect left ventricular mass regression in elderly. Eur J Cardiothorac Surg. 2006;29:S139–43.CrossRefGoogle Scholar
  8. 8.
    Badeer HS. Contractile tension in the myocardium. Am Heart J. 1963;66:432–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Pettersen E, Vale TH, Lindberg EH, Smith HJ, Smevik B, Andersen K. Contraction pattern of the systemic right ventricle. J Am Coll Cardiol. 2007;49:2450–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Nagel E, Stuber M, Lakatos M, Scheidegger MB, Boesiger P, Hess OM. Cardiac rotation and relaxation after anterolateral myocardial infarction. Coron Artery Dis. 2000;11:261–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Stuber M, Scheidegger MB, Fischer SC, Nagel E, Steinmann F, Hess OM, Boesiger P. Alterations in the local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation. 1999;100:361–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Tibiyan FA, Lai DT, Timek TA, Dagum P, Liang D, Daughters GT, Ingels NB, Miller DC. Alterations in left ventricular torsion in tachycardia induced dilated cardiomyopathy. J Thorac Cardiovasc Surg. 2002;124:43–9.CrossRefGoogle Scholar
  13. 13.
    Sandler H, Dodge HT. Left ventricular tension and stress in man. Circ Res. 1963;13:91–104.PubMedCrossRefGoogle Scholar
  14. 14.
    Sengupta P, Tajik J, Krishnaswamy C, Khanderia BK. Twist mechanics of the left ventricle. JACC Cardiovasc Imaging. 2008;1:366–76.PubMedCrossRefGoogle Scholar
  15. 15.
    Young AA, Imai H, Chang CN, Axel L. Two-dimensional left ventricular deformation during systole using MRI with spatial modulation of magnetization. Circulation. 1994;89:740–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Axel L, Gonsalves R, Bloomgarden D. Regional heart wall motion: two-dimensional analysis and functional imaging of regional heart wall motion with MRI. Radiology. 1992;183:745–50.PubMedGoogle Scholar
  17. 17.
    Rogers W, Shapiro E, Weiss J. Quantification of and correction for left ventricular systolic long-axis shortening by MR tissue tagging and slice isolation. Circulation. 1991;84:721–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Reichek N. MRI for assessment of myocardial function. Magn Reson Q. 1991;7:255–74.PubMedGoogle Scholar
  19. 19.
    Bernal JM, Lorca J, Prieto-Salceda D, Pulitani I, Pontón A, García I, Revuelta JM. Performance at 10 years of the CarboMedics ‘Top Hat’ valve. Postclamping time is a predictor of mortality. Eur J Cardiothorac Surg. 2006;29:S144–9.CrossRefGoogle Scholar
  20. 20.
    Barletta G, Baroni M, Del Bene R, Toso A, Fantini F. Regional and temporal non uniformity of shape and wall movement in the normal left ventricle. Cardiology. 1998;90:195–201.PubMedCrossRefGoogle Scholar
  21. 21.
    Bogaert J, Rademakers FE. Regional nonuniformity of normal adult human left ventricle. Am J Physiol. 2001;280:H610–20.Google Scholar
  22. 22.
    Buckberg G, Hoffman J, Mahajan A, Saleh S, Coghlan C. Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation. 2008;118:2571–87.PubMedCrossRefGoogle Scholar
  23. 23.
    McDonald IG. The shape and movements of the human left ventricle during systole: a study by cineangiography and by cineradiography of epicardial markers. Am J Cardiol. 1970;26:221–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Sengupta PP, Khandheria BK, Korinek J, Jahangir A, Yoshifuku S, Milosevic I, Belohlavek M. Left ventricular isovolumic flow sequence during sinus and paced rhythms: new insights from use of high-resolution Doppler and ultrasonic digital particle imaging velocimetry. J Am Coll Cardiol. 2007;49:899–908.PubMedCrossRefGoogle Scholar
  25. 25.
    Buckberg GD, Castella M, Gharib M, Saleh S. Structure/function interface with sequential shortening of basal and apical components of the myocardial band. Eur J Cardiothorac Surg. 2006;29 Suppl 1:S75–97.PubMedCrossRefGoogle Scholar
  26. 26.
    Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, Khandheria BK. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol. 2006;48:1988–2001.PubMedCrossRefGoogle Scholar
  27. 27.
    Sengupta PP, Krishnamorthy VK, Korinek J, Narula J, Vannan MA, Lester SJ, Tajik JA, Seward JB, Khandheria BK, Belohlavek M. Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr. 2007;20:539–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Thomas JD, Popovic ZB. Assessment of left ventricular function by cardiac ultrasound. J Am Coll Cardiol. 2006;48:2012–25.PubMedCrossRefGoogle Scholar
  29. 29.
    Anderson RH, Siew YH, Sanchez-Quintana D, Redmann K, Lunkenheimer PP. Heuristic problems in defining the three-dimensional arrangement of the ventricular myocytes. Anat Rec. 2006;288A:579–86.CrossRefGoogle Scholar
  30. 30.
    Ingels NB, Hansen D, Daughters II GT, Stinson EB, Alderman E, Miller DC. Relation between longitudinal, circumferential, and oblique shortening and torsional deformation in the left ventricle of the transplanted human heart. Circ Res. 1989;64:915–27.PubMedCrossRefGoogle Scholar
  31. 31.
    Jung B, Markl M, Foll D, Buckberg GD, Hennig J. Investigating myocardial motion by MRI using tissue phase mapping. Eur J Cardiothorac Surg. 2006;29 Suppl 1:S150–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Katz AM, Zile MR. New molecular mechanism in diastolic heart failure. Circulation. 2006;113:1922–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Nikolic SD, Feneley MP, Pajaro OE, Rankin JS, Yellin EL. Origin of regional pressure gradients in the left ventricle during early diastole. Am J Physiol. 1995;268:H550–7.PubMedGoogle Scholar
  34. 34.
    Davis KL, Mehlhorn U, Schertel ER, Geissler HJ, Trevas D, Laine GA, Allen SJ. Variation in tau, the time constant for isovolumic relaxation, along the left ventricular base-to-apex axis. Basic Res Cardiol. 1999;94:41–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Simari RD, Bell MR, Schwartz RS, Nishimura RA, Holmes Jr DR. Ventricular relaxation and myocardial ischemia: a comparison of different models of tau during coronary angioplasty. Cathet Cardiovasc Diagn. 1992;25:278–84.PubMedCrossRefGoogle Scholar
  36. 36.
    Dong SJ, Hees PS, Siu CO, Weiss JL, Shapiro EP. MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of tau. Am J Physiol. 2001;281:H2002–9.Google Scholar
  37. 37.
    Stuber M, Scheidegger MB, Fischer SE, Nagel E, Steinemann F, Hess OM. Alterations in the local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation. 1999;100:361–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Castella M, Buckberg GD. Diastolic dysfunction in stunned myocardium and its prevention by Na+-H+exchange inhibition. Eur J Cardiothorac Surg. 2006;29 Suppl 1:S107–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • V Rao Parachuri
    • 1
  • Srilakshmi M. Adhyapak
    • 2
  1. 1.Department of Cardiothoracic SurgeryNarayana HrudayalayaBangaloreIndia
  2. 2.Department of CardiologySt. John’s Medical College HospitalBangaloreIndia

Personalised recommendations