Skip to main content

Adipose Tissue Expansion for Improving Glycemic Control

  • Chapter
  • First Online:
  • 2173 Accesses

Abstract

Obesity is linked with metabolic abnormalities such as insulin resistance and hyperglycemia, which improve upon weight loss. However, achieving and sustaining meaningful weight loss is hard for a majority of the free-living population. Perhaps, strategies that do not require weight loss may offer a more practicable approach. In fact, improvement in glycemic control may also be achieved by adipose tissue expansion under specific circumstances. Several animal models show a significant enhancement of glycemic control, if adipose tissue is expanded transgenically or by stimulating adipogenesis. In humans, considerable evidence, including the action of thiazolidinedione class of drugs, indicates that adipose tissue expandability is associated with an improved metabolic profile. Admittedly, iatrogenic weight gain to improve diabetes may be socially and cosmetically undesirable and inappropriate for some other obesity-associated comorbidities. Therefore, it is less practical to promote adipogenesis as a measure to improve glycemic control. Nonetheless, this approach has provided templates and targets for future research. Indications are that further research may creatively uncouple the adipogenic and antiglycemic effects to improve obesity-associated metabolic abnormalities independent of weight loss.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. BerringtondeGonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363:2211–9.

    Article  CAS  Google Scholar 

  2. Wormser D, Kaptoge S, Di Angelantonio E, Wood AM, Pennells L, Thompson A, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377:1085–95.

    PubMed  Google Scholar 

  3. Unick JL, Beavers D, Jakicic JM, Kitabchi AE, Knowler WC, Wadden TA, et al. Effectiveness of lifestyle interventions for individuals with severe obesity and type 2 diabetes: results from the look AHEAD trial. Diabetes Care. 2011;34:2152–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wing RR. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the look AHEAD trial. Arch Intern Med. 2010;170:1566–75.

    PubMed  CAS  Google Scholar 

  5. Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L, et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care. 2006;29:2102–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care. 2011;34:1424–30.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kotronen A, Yki-Jarvinen H, Sevastianova K, Bergholm R, Hakkarainen A, Pietilainen KH, et al. Comparison of the relative contributions of intra-abdominal and liver fat to components of the metabolic syndrome. Obesity. 2011;19:23–8.

    Article  PubMed  CAS  Google Scholar 

  8. Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A. 2009;106:15430–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Magkos F, Fabbrini E, Mohammed BS, Patterson BW, Klein S. Increased whole-body adiposity without a concomitant increase in liver fat is not associated with augmented metabolic dysfunction. Obesity (Silver Spring). 2010;18(8):1510–5.

    Article  CAS  Google Scholar 

  10. Sorensen TI. Obesity defined as excess storage of inert triglycerides–do we need a paradigm shift? Obes Facts. 2011;4:91–4.

    Article  PubMed  Google Scholar 

  11. Vitola BE, Deivanayagam S, Stein RI, Mohammed BS, Magkos F, Kirk EP, Klein S. Weight loss reduces liver fat and improves hepatic and skeletal muscle insulin sensitivity in obese adolescents. Obesity (Silver Spring). 2009;17:1744–8.

    Article  CAS  Google Scholar 

  12. Arner P, Arner E, Hammarstedt A, Smith U. Genetic predisposition for type 2 diabetes, but not for overweight/obesity, is associated with a restricted adipogenesis. PLoS One. 2011;6:e18284.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Garg A. Lipodystrophies. Am J Med. 2000;108:143–52.

    Article  PubMed  CAS  Google Scholar 

  14. van Tienen FH, van der Kallen CJ, Lindsey PJ, Wanders RJ, van Greevenbroek MM, Smeets HJ. Preadipocytes of type 2 diabetes subjects display an intrinsic gene expression profile of decreased differentiation capacity. Int J Obes. 2011;35:1154–64.

    Article  Google Scholar 

  15. Tan CY, Vidal-Puig A. Adipose tissue expandability: the metabolic problems of obesity may arise from the inability to become more obese. Biochem Soc Trans. 2008;36:935–40.

    Article  PubMed  CAS  Google Scholar 

  16. Staels B, Fruchart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes. 2005;54:2460–70.

    Article  PubMed  CAS  Google Scholar 

  17. Larsen TM, Toubro S, Astrup A. PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disord. 2003;27:147–61.

    Article  PubMed  CAS  Google Scholar 

  18. Shepherd PR, Gnudi L, Tozzo E, Yang H, Leach F, Kahn BB. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem. 1993;268:22243–6.

    PubMed  CAS  Google Scholar 

  19. Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117:2621–37.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Lang P, van Harmelen V, Ryden M, Kaaman M, Parini P, Carneheim C, et al. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity. PLoS One. 2008;3:e1713.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol. 2009;29:1575–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Krishnapuram R, Dhurandhar EJ, Dubuisson O, Kirk-Ballard H, Bajpeyi S, Butte N, et al. Template to improve glycemic control without reducing adiposity or dietary fat. Am J Physiol Endocrinol Metab. 2011;300:E779–89.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Pasarica M, Shin AC, Yu M, Ou Yang HM, Rathod M, Jen KL, et al. Human adenovirus 36 induces adiposity, increases insulin sensitivity, and alters hypothalamic monoamines in rats. Obesity (Silver Spring). 2006;14:1905–13.

    Article  CAS  Google Scholar 

  24. Dhurandhar NV. A framework for identification of infections that contribute to human obesity. Lancet Infect Dis. 2011;11:963–9.

    Article  PubMed  Google Scholar 

  25. Johmura Y, Watanabe K, Kishimoto K, Ueda T, Shimada S, Osada S, et al. Fad24 causes hyperplasia in adipose tissue and improves glucose metabolism. Biol Pharm Bull. 2009;32:1656–64.

    Article  PubMed  CAS  Google Scholar 

  26. Trovato GM, Martines GF, Garozzo A, Tonzuso A, Timpanaro R, Pirri C, et al. Ad36 adipogenic adenovirus in human non-alcoholic fatty liver disease. Liver Int. 2010;30:184–90.

    Article  PubMed  CAS  Google Scholar 

  27. Ye JM, Dzamko N, Cleasby ME, Hegarty BD, Furler SM, Cooney GJ, et al. Direct demonstration of lipid sequestration as a mechanism by which rosiglitazone prevents fatty-acid-induced insulin resistance in the rat: comparison with metformin. Diabetologia. 2004;47:1306–13.

    Article  PubMed  CAS  Google Scholar 

  28. Dubuisson O, Dhurandhar EJ, Krishnapuram R, Kirk-Ballard H, Gupta AK, Hegde V, et al. PPAR{gamma}-independent increase in glucose uptake and adiponectin abundance in fat cells. Endocrinology. 2011;152(10):3648–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Sugii S, Olson P, Sears DD, Saberi M, Atkins AR, Barish GD, et al. PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization. Proc Natl Acad Sci U S A. 2009;106:22504–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Knouff C, Auwerx J. Peroxisome proliferator-activated receptor-gamma calls for activation in moderation: lessons from genetics and pharmacology. Endocr Rev. 2004;25:899–918.

    Article  PubMed  CAS  Google Scholar 

  31. Mukherjee R, Hoener PA, Jow L, Bilakovics J, Klausing K, Mais DE, et al. A selective peroxisome proliferator-activated receptor-gamma (PPARgamma) modulator blocks adipocyte differentiation but stimulates glucose uptake in 3T3-L1 adipocytes. Mol Endocrinol. 2000;14:1425–33.

    Article  PubMed  CAS  Google Scholar 

  32. Boden G, Cheung P, Mozzoli M, Fried SK. Effect of thiazolidinediones on glucose and fatty acid metabolism in patients with type 2 diabetes. Metabolism. 2003;52:753–9.

    Article  PubMed  CAS  Google Scholar 

  33. Engl J, Bobbert T, Ciardi C, Laimer M, Tatarczyk T, Kaser S, et al. Effects of pronounced weight loss on adiponectin oligomer composition and metabolic parameters. Obesity (Silver Spring). 2007;15:1172–8.

    Article  CAS  Google Scholar 

  34. Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D, et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature. 2010;466:451–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgment

 Dr. Dhurandhar holds the following US patents: patent number 6,127,113 (Viral obesity methods and compositions), patent number 6,664,050 (Viral obesity methods and compositions), patent number US 8,008,436B2, dated August 30, 2011 (Adenovirus 36 E4orf1 gene and protein and their uses), provisional patent filed (Adenovirus Ad36 E4orf1 protein for prevention and treatment of non-alcoholic fatty liver disease, July 2010), and provisional patent filed (Enhanced glycemic control using Ad36E4orf1 and AKT1 Inhibitor, January 2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil V. Dhurandhar PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Dhurandhar, N.V. (2014). Adipose Tissue Expansion for Improving Glycemic Control. In: Haslam, D., Sharma, A., le Roux, C. (eds) Controversies in Obesity. Springer, London. https://doi.org/10.1007/978-1-4471-2834-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2834-2_23

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2833-5

  • Online ISBN: 978-1-4471-2834-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics