Skip to main content

Coronary Angiography

  • Chapter
  • First Online:
Coronary Artery Disease

Part of the book series: Cardiovascular Medicine ((CVM))

  • 6234 Accesses

Abstract

Coronary angiography is the backbone of clinical coronary artery clinical care. The technical aspects of the procedure include a thorough clinical history and examination prior to angiography and knowledge of both the variations of coronary anatomy and equipment and drugs needed to carry out the procedure. Analysis of the angiogram should be based on an understanding of coronary physiology, and how the structure and function are altered by a variety of disease states. In this chapter, I outline the methods for quantitatively assessing the coronary angiogram, as well as how atherosclerosis affects coronary dimensions and the angiographic hallmarks of acute coronary syndromes. In addition, the angiographic findings in less common, but important non-atherosclerotic coronary syndromes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Radiographic Imaging

  1. Togni M, Balmer F, Pfiffner D, et al. Percutaneous coronary interventions in Europe 1992–2001. Eur Heart J. 2004;25:1208–13.

    PubMed  Google Scholar 

  2. American Heart Association. Heart disease and stroke statistics −2005 update. Dallas: American Heart Association; 2005.

    Google Scholar 

  3. Judkins ML. Angiographic equipment; the cardiac catheterization laboratory. In: Abrams HL, editor. Coronary arteriography: a practical approach. Boston: Little Brown and Company; 1983. p. 1–51.

    Google Scholar 

  4. Hirshfeld JW, Balter S, Brinker JA, et al. ACCF/AHA/HRS/SCAI clinical competence statement on physician knowledge to optimize patient safety and image quality in fluoroscopically guided invasive cardiovascular procedures. Circulation. 2005;111:511–32.

    PubMed  Google Scholar 

  5. Macorski A. Medical imaging systems. Englewood: Prentice-Hall; 1983. p. 36–62.

    Google Scholar 

  6. Pepine CJ, Allen HD, Bashore TM, Brinker JA, Cohn LH, Dillon JC, Hillis LD, Klocke FJ, Parmley WW, Ports TA, Rapaport E, Ross J, Rutherford B, Ryan TJ, Scanlon PJ. ACC/AHA guidelines for cardiac catheterization and cardiac catheterization laboratories. Circulation. 1991;84:2227–47.

    Google Scholar 

  7. Holmes DR, Bove AA, Wondrow MA, et al. New technique for decreasing x-ray exposure without decreasing image quality during cardiac catheterization. Mayo Clin Proc. 1986;61:321–38.

    PubMed  Google Scholar 

Radiation Protection

  1. Judkins MP. Guidelines for radiation protection in the cardiac catheterization laboratory. Cathet Cardiovasc Diagn. 1984;10:87–92.

    CAS  PubMed  Google Scholar 

  2. Miller SW, Castronovo FP. Radiation exposure and protection in cardiac catheterization laboratories. Am J Cardiol. 1985;55:171–6.

    CAS  PubMed  Google Scholar 

  3. Pitney MR, Allan RM, Giles RW, et al. Modifying fluoroscopic views reduces operator radiation exposure during coronary angioplasty. J Am Coll Cardiol. 1994;24:1660–3.

    CAS  PubMed  Google Scholar 

  4. Zorzetto M, Bernardi G, Morocutti G, Fontanelli A. Radiation exposure to patients and operators during diagnostic catheterization and coronary angioplasty. Cathet Cardiovasc Diagn. 1997;40:348–51.

    CAS  PubMed  Google Scholar 

  5. Rueter FG. Physician and patient exposure during cardiac catheterization. Circulation. 1978;58:135–9.

    Google Scholar 

  6. Geise RA, Hunter DW. Personnel exposure during fluoroscopy procedures. Postgrad Radiol. 1988;8:162–73.

    Google Scholar 

  7. National Council on Radiation Protection and Measurements (NCRP). Report #91, recommendations on limits for exposure to ionizing radiation. Bethesda: NCRP Publications; 1987.

    Google Scholar 

  8. National Council on Radiation Protection and Measurements. Limitation of exposure to ionizing radiation. NCRP report no. 116. Bethesda: NCRP; 1993.

    Google Scholar 

  9. Limacher MC, Douglas PS, Germano G, Laskey WK, Lindsay BD, McKetty MH, Moore ME, Park JK, Prigent FM, Walsh MN. ACC expert consensus document: radiation safety in the practice of cardiology. J Am Coll Cardiol. 1998;31:892–913.

    CAS  PubMed  Google Scholar 

  10. Gertz EW, Wisneski JA, Gould RG, Akin JR. Improved radiation protection for physicians performing cardiac catheterization. Am J Cardiol. 1982;50:1283–6.

    CAS  PubMed  Google Scholar 

  11. Judkins MP, Laboratory Performance Standards Committee. Guidelines for radiation protection in the cardiac catheterization laboratory. Cathet Cardiovasc Diagn. 1984;10:87–92.

    CAS  PubMed  Google Scholar 

  12. National Council on Radiation Protection and Measurements (NCRP). Report #99, Quality assurance for diagnostic imaging. Bethesda: NCRP Publications; 1990.

    Google Scholar 

Personnel

  1. Leaman DM, Zelis RF. What is the appropriate “dress code” for the cardiac catheterization laboratory? Cathet Cardiovasc Diagn. 1983;9:33–8.

    CAS  PubMed  Google Scholar 

Technical History of Coronary Angiography

  1. Diguglielmo L, Guttaduro M. Roentgenologic study of coronary arteries in living man. Acta Radiol Suppl. 1952;97:1–82.

    CAS  Google Scholar 

  2. Baltaxe HA, Amplatz K, Levin DC. Coronary angiography. Springfield: Charles C Thomas; 1973. p. 3–9.

    Google Scholar 

  3. Bellman S, Frank HA, Lambert PB, Littman D, Williams JA. Coronary angiography I. Differential opacification of the aortic stream by catheters of special design – experimental development. N Engl J Med. 1960;262:325–9.

    CAS  PubMed  Google Scholar 

  4. Sones Jr FM, Shirey EK. Cine coronary arteriography. Mod Concepts Cardiovasc Dis. 1962;31:735–8.

    PubMed  Google Scholar 

  5. Polacek P, Zechmeister A. The occurrence and significance of myocardial bridges and loops on coronary arteries. In: Opuscola cardiologica. Brno: Acta Facultatis Medicae Univesitatis Brunensis; 1968.

    Google Scholar 

  6. Chen JN, Liao R. A study of the myocardial bridges on the arteries in the Chinese. Acta Anat Sinica. 1965;8:106–10.

    Google Scholar 

  7. Zapedowski Z. Pattern of coronary arteries in man as the morphologic ground for the analysis of the place and extent of the infarctions of the wall of the left ventricle. Buletyn Vojskowj Akademii Medycznej, Lodz 1965;2:1.

    Google Scholar 

  8. Judkins MP. Selective coronary arteriography: part I: a percutaneous transfemoral technic. Radiology. 1967;89:815–24.

    CAS  PubMed  Google Scholar 

  9. Ricketts HJ, Abrams HL. Percutaneous selective coronary cine arteriography. JAMA. 1962;181:620–4.

    CAS  PubMed  Google Scholar 

  10. Amplatz K, Formanek G, Stanger P, Wilson W. Mechanics of selective coronary artery catheterization via femoral approach. Radiology. 1967;89:1040–7.

    CAS  PubMed  Google Scholar 

  11. Schoonmaker FW, King SB. Coronary arteriography by the single catheter percutaneous technique. Circulation. 1974;50:735.

    CAS  PubMed  Google Scholar 

  12. Paulin S. Coronary angiography: a technical, anatomic and clinical study. Acta Radiol Diagn (Stockh). 1964:(Suppl 223):1+

    Google Scholar 

Patient Preparation

  1. Eisenberg RL, Bank WO, Hedgecock MW. Renal failure after major angiography. Am J Med. 1980;68:43–6.

    CAS  PubMed  Google Scholar 

  2. Robbins JA, Rose SP. Partial thromboplastin time as a screening test. Ann Intern Med. 1979;90:796–802.

    CAS  PubMed  Google Scholar 

  3. Nawaz S, Cleveland T, Gaines PA, Chan P. Clinical risk associated with contrast angiography in metformin treated patients: a clinical review. Clin Radiol. 1998;53(5):342–4.

    CAS  PubMed  Google Scholar 

  4. Stevens MA, McCullough PA, Tobin KJ, Speck JP, Westveer DC, Guido-Allen DA, Timmis GC, O’Neill WW. A prospective randomized trial of prevention measures in patients at high risk for contrast nephropathy: results of the P.R.I.N.C.E. study. Prevention of Radiocontrast Induced Nephropathy Clinical Evaluation. J Am Coll Cardiol. 1999;33(2):403–11.

    CAS  PubMed  Google Scholar 

Technique

  1. Kern MJ, Cohen M, Talley JD, Litvack F, Serota H, Aguirre F, Deligonul U, Bashore TM. Early ambulation after 5 French diagnostic cardiac catheterization: results of a multicenter trial. J Am Coll Cardiol. 1990;15:1475–83.

    CAS  PubMed  Google Scholar 

  2. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography. Acta Radiol. 1952;39:368–76.

    Google Scholar 

  3. Dotter CT, Rosch J, Robinson M. Fluoroscopic guidance in femoral artery puncture. Radiology. 1978;127:266–7.

    CAS  PubMed  Google Scholar 

  4. Judkins MP, Kidd HJ, Frische LH, Dotter CT. Lumen -following safety J-guide for catheterization of tortuous vessels. Radiology. 1967;88:1127–30.

    CAS  PubMed  Google Scholar 

  5. Ovitt TW, Durst S, Moore R, Amplatz K. Guide wire thrombogenicity and its reduction. Radiology. 1974;111:43–6.

    CAS  PubMed  Google Scholar 

  6. Eisenberg RL, Mani RL, McDonald EJ. The complication rate of catheter angiography by direct puncture through aorto-femoral bypass grafts. Am J Roentgenol. 1976;126:814–6.

    CAS  Google Scholar 

  7. Giustra PE, Root JA, Killoran PJ. Percutaneous selective visceral catheterization through aortofemoral dacron prosthesis. Radiology. 1978;126:261.

    CAS  PubMed  Google Scholar 

  8. Pollard SD, Munks K, Wales C, Crossman DC, Cumberland DC, Oakley GD, Gunn J. Position and mobilisation post-angiography study: position and mobilisation post-angiography study (PAMPAS): a comparison of 4.5 hours and 2.5 hours bed rest. Heart. 2003;89:447–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Mani RL, Copstin BS. Catheter angiography through aortofemoral grafts: prevention of catheter separation during withdrawal. Am J Roentgenol. 1977;128:328–9.

    CAS  Google Scholar 

  10. Archbold RA, Robinson NM, Schilling RJ. Radial artery access for coronary angiography and percutaneous coronary intervention. BMJ. 2004;329:443–6.

    PubMed Central  PubMed  Google Scholar 

  11. Nagai S, Abe S, Sato T, Hozawa K, Yuki K, Hanashima K, Tomoike H. Ultrasonic assessment of vascular complications in coronary angiography and angioplasty after transradial approach. Am J Cardiol. 1999;83:180–6.

    CAS  PubMed  Google Scholar 

  12. Koreny M, Riedmuller E, Nikfardjam M, Siostrzonek P, Mullner M. Arterial puncture closing devices compared with standard manual compression after cardiac catheterization: systematic review and meta-analysis. JAMA. 2004;291:350–7.

    CAS  PubMed  Google Scholar 

  13. Hui WKK, Klinke WP, Kubac G, Talibi T. Comparison of 5F and 7/8F catheters for left ventricular and coronary angiography. Cathet Cardiovasc Diagn. 1990;19:84–5.

    CAS  PubMed  Google Scholar 

  14. Pande AK, Meier B, Urban P, Verin V, Moles VP, Chappuis F, Mehan VK. Coronary angiography with four French catheters. Am J Cardiol. 1992;70:1085–6.

    CAS  PubMed  Google Scholar 

  15. Abbott JA, Lipton MJ, Kosek J, Hayashi T, Lee FCS. Cardiac trauma from angiographic injections: a quantitative study. Circulation. 1978;57:91–8.

    CAS  PubMed  Google Scholar 

  16. Prewitt KC, Zen B, Wortham DC, Pearson C. Increased risk of coronary artery dissection during coronary angiography with 6F catheters. Angiology. 1993;44:107–13.

    CAS  PubMed  Google Scholar 

Contrast Material

  1. Dawson P. Conventional angiography. In: Skucas J, editor. Radiographic contrast agents. 2nd ed. Rockville: Aspen; 1989. p. 152.

    Google Scholar 

  2. Paulin S, Adams DF. Increased ventricular fibrillation during coronary arteriography with a new contrast medium preparation. Radiology. 1971;101:45–50.

    CAS  PubMed  Google Scholar 

  3. Murdock DK, Euler DE, Kozeny G, Murdock JD, Loeb HS, Scanlon PJ. Ventricular fibrillation during coronary angiography in dogs: the role of calcium-binding additives. Am J Cardiol. 1984;54:897–901.

    CAS  PubMed  Google Scholar 

  4. Zukerman LS, Friehling TD, Wolf NM, Meister SG, Nahass G, Kowey PR. Effect of calcium-binding additives on ventricular fibrillation and repolarization changes during coronary angiography. J Am Coll Cardiol. 1987;10:1249–53.

    CAS  PubMed  Google Scholar 

  5. Morris TW, Sahler LG, Fischer HW. Calcium binding by radiopaque media. Invest Radiol. 1982;17:501–5.

    CAS  PubMed  Google Scholar 

  6. Piao ZE, Murdock DK, Hwang MH, Raymond RM, Scanlon PJ. Contrast media-induced ventricular fibrillation: a comparison of hypaque-76, hexabrix, and omnipaque. Invest Radiol. 1988;23:466–70.

    CAS  PubMed  Google Scholar 

  7. Fischer HW. Catalog of intravascular contrast media. Radiology. 1986;159:561–3.

    CAS  PubMed  Google Scholar 

  8. Ritchie JL, Nissen SE, Douglas JS, Dreifus LS, Gibbons RJ, Higgins CB, Schelbert HR, Seward JB, Zaret BL. Use of nonionic or low osmolar contrast agents in cardiovascular procedures. American College of Cardiology Cardiovascular Imaging Committee. J Am Coll Cardiol. 1993;21:269–73.

    CAS  PubMed  Google Scholar 

  9. Gertz EW, Wisneski JA, Miller R, Knudtson M, Robb J, Dragatakis L, Browne KF, Vetrovec G, Smith SC. Adverse reactions of low osmolality contrast media during cardiac angiography: a prospective randomized multicenter study. J Am Coll Cardiol. 1992;19:899–906.

    CAS  PubMed  Google Scholar 

  10. Barrett BJ, Parfrey PS, Vavasour HM, O’Dea F, Kent G, Stone E. A comparison of non-ionic, low-osmolality radiocontrast agents with ionic, high-osmolality agents during cardiac catheterization. N Engl J Med. 1992;326:431–6.

    CAS  PubMed  Google Scholar 

  11. Missri J, Jeresaty RM. Ventricular fibrillation during coronary angiography: reduced incidence with nonionic contrast media. Cathet Cardiovasc Diagn. 1990;19:4–7.

    CAS  PubMed  Google Scholar 

  12. Laskey W, Aspelin P, Davidson C, et al. Nephrotoxicity of iodixanol versus iopamidol in patients with chronic kidney disease and diabetes mellitus undergoing coronary angiographic procedures. Am Heart J. 2009;158:822–8.

    CAS  PubMed  Google Scholar 

  13. Aspelin P, Aubry P, Fransson SG, et al. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348:491–9.

    CAS  PubMed  Google Scholar 

  14. Wilson RF, White CW. Intracoronary papaverine: an ideal vasodilator for studies of the coronary circulation. Circulation. 1986;73:444–51.

    CAS  PubMed  Google Scholar 

  15. Bookstein JJ, Higgens CB. Comparative efficacy of coronary vasodilatory methods. Invest Radiol. 1977;12:121–7.

    CAS  PubMed  Google Scholar 

  16. White CW, Eckberg DL, Inasaka T, Abboud FM. Effects of angiographic contrast media on sino-atrial nodal function. Cardiovasc Res. 1976;10:214–23.

    CAS  PubMed  Google Scholar 

  17. Eckberg DL, White CW, Kioschos JM, Abboud FM. Mechanisms mediating bradycardia during coronary arteriography. J Clin Invest. 1974;54:1455–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Wilson RF, White CW. Iohexol does not have minimal effects on coronary hemodynamics. Circulation. 1986;74(Suppl II):405 (abstract).

    Google Scholar 

  19. Bettmann MA, Bourdillon PD, Barry WH, Brush KA, Levin DC. Contrast agents for cardiac angiography: effects of a nonionic agent vs. a standard ionic agent. Radiology. 1984;153:583–7.

    CAS  PubMed  Google Scholar 

  20. Mancini GBJ, Bloomquist JN, Bhargava V, Stein JB, Lew W, Slutsky RA, Shabetai R, Higgins CB. Hemodynamic and electrocardiographic effects in man of a new nonionic contrast agent (iohexol): advantages over standard ionic agents. Am J Cardiol. 1983;51:1218–22.

    CAS  PubMed  Google Scholar 

  21. Hirshfeld JW, Laskey W, Martin JL, Groh WC, Untereker W, Wolf GL. Hemodynamic changes induced by cardiac angiography with ioxaglate: comparison with diatrizoate. J Am Coll Cardiol. 1983;2:954–7.

    PubMed  Google Scholar 

  22. Thomson KR, Evill CA, Fritzsche J, Beness GT. Comparison of iopamidol, ioxaglate and diatrizoate during coronary arteriography in dogs. Invest Radiol. 1980;15:234–41.

    CAS  PubMed  Google Scholar 

  23. Feldman RL, Jalowiec DA, Hill JA, Lambert CR. Contrast media-related complications during cardiac catheterization using hexabrix or renografin in high risk patients. Am J Cardiol. 1988;61:1334–7.

    CAS  PubMed  Google Scholar 

  24. Yamazaki H, Banka VS, Bodenheimer MM, Hattori S, Agarwal JB, Helfant RH. Differential effects of renografin-76 on the ischemic and nonischemic myocardium. Am J Cardiol. 1981;47:597–602.

    CAS  PubMed  Google Scholar 

  25. Cohn PF, Horn HR, Teicholz LE, Kreulen TH, Herman MV, Gorlin R. Effects of angiographic contrast medium on left ventricular function in coronary artery disease. Am J Cardiol. 1973;32:21–6.

    CAS  PubMed  Google Scholar 

  26. Klow NE, Mortensen E, Refsum H. Left ventricular systolic and diastolic function during coronary arteriography before and after acute left ventricular failure in dogs. A comparison between iodixanol, iohexol and ioxaglate. Acta Radiol. 1991;32:124–9.

    CAS  PubMed  Google Scholar 

  27. Powe NR, Davidoff AJ, Moore RD, Brinker JA, Anderson GF, Litt MR, Gopalan R, Graziano SL, Steinberg EP. Net costs from three perspectives of using low versus high osmolality contrast medium in diagnostic angiocardiography. J Am Coll Cardiol. 1993;21:1701–9.

    CAS  PubMed  Google Scholar 

  28. Mark AL. The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol. 1983;1:90–102.

    CAS  PubMed  Google Scholar 

  29. Palomo AR, Schwartz AM, Trohman RG, Chahine RA, Myerburg RJ, Kessler KM. Cardiac arrhythmias associated with prophylactic pacing during coronary angiography. Am J Cardiol. 1986;58:100–3.

    CAS  PubMed  Google Scholar 

  30. Lehmann MH, Cameron A, Kemp HG. Increased risk of ventricular fibrillation associated with temporary pacemaker use during coronary angiography. Pacing Clin Electrophysiol. 1983;6:923–9.

    CAS  PubMed  Google Scholar 

  31. Stormorken H, Skalpe IO, Testart MC. Effect of various contrast media on coagulation, fibrinolysis, and platelet function an in vitro and in vivo study. Invest Radiol. 1986;21:348–54.

    CAS  PubMed  Google Scholar 

  32. Dawson P, Hewitt P, Mackie IJ, Machin SJ, Amin S, Bradshaw A. Contrast, coagulation and fibrinolysis. Invest Radiol. 1986;21:248–52.

    CAS  PubMed  Google Scholar 

  33. Gabriel DA, Jones MR, Reece NS, Boothroyd E, Bashore T. Platelet and fibrin modification by radiographic contrast media. Circ Res. 1991;68:881–7.

    CAS  PubMed  Google Scholar 

  34. Greenbaum RA, Barradas MA, Mikhaildis DP, Jeremy JY, Evans TR, Dandona P. Effect of heparin and contrast medium on platelet function during routine cardiac catheterization. Cardiovasc Res. 1987;21:878–85.

    CAS  PubMed  Google Scholar 

  35. Davidson CJ, Mark DB, Pieper KS, Kisslo KB, Hlatky MA, Gabriel DA, Bashore TM. Thrombotic and cardiovascular complications related to nonionic contrast media during cardiac catheterization: analysis of 8,517 patients. Am J Cardiol. 1990;65:1481–4.

    CAS  PubMed  Google Scholar 

  36. Markus H, Loh A, Israel D, Buckenham T, Clifton A, Brown MM. Microscopic air embolism during cerebral angiography and strategies for its avoidance. Lancet. 1993;341:784–7.

    CAS  PubMed  Google Scholar 

  37. Goldstein JA, Kern M, Wilson R. A novel automated injection system for angiography. J Interv Cardiol. 2001;14:147–52.

    CAS  PubMed  Google Scholar 

  38. Ciabattoni G, Ujang S, Sritara P, Andreotti F, Davies G, Simonetti BM, Patrono C, Maseri A. Aspirin, but not heparin, suppresses the transient increase in thromboxane biosynthesis associated with cardiac catheterization or coronary angioplasty. J Am Coll Cardiol. 1993;21:1377–81.

    CAS  PubMed  Google Scholar 

  39. Davis K, Kennedy JW, Kemp HG, Judkins MP, Gosselin AJ, Killip T. Complications of coronary arteriography from the collaborative study of coronary artery surgery (CASS). Circulation. 1979;59:11051112.

    Google Scholar 

  40. Eyer KM. Complications of transfemoral coronary arteriography and their prevention using heparin. Am Heart J. 1973;86:428–35.

    CAS  PubMed  Google Scholar 

  41. Walker WJ, Mundall SJ, Broderick HG, Prasad B, Ravi JM. Systemic heparinization for femoral percutaneous coronary arteriography. N Engl J Med. 1973;288:826–30.

    CAS  PubMed  Google Scholar 

  42. Greenbaum RA, Barradas MA, Mikhailidis DP, Jeremy JY, Evans TR, Dandona P. Effect of heparin and contrast medium on platelet function during routine cardiac catheterization. Cardiovasc Res. 1987;21:878–85.

    CAS  PubMed  Google Scholar 

  43. Shanberge JN, Quattrociocchi-Longe TM, Martens MH. Interrelationship of protamine and platelet factor 4 in the neutralization of heparin. Thromb Res. 1987;46:89–100.

    CAS  PubMed  Google Scholar 

  44. Becker RC, Clyne C, Weiner BH, Lew R, Ball SP, Corrao JM, Haugh L, Tracy R, Bovill EG. Heparin pharmacokinetics and in vitro anticoagulant activity in patients receiving non-ionic contrast media. Cardiology. 1991;79:31–8.

    CAS  PubMed  Google Scholar 

  45. Dehmer GJ, Haagen D, Malloy CR, Schmitz JM. Anticoagulation with heparin during cardiac catheterization and its reversal by protamine. Cathet Cardiovasc Diagn. 1987;13:16–21.

    CAS  PubMed  Google Scholar 

  46. Shanberge JN, Murato M, Quattrociocchi-Longe T, Van Neste L. Heparin-protamine complexes in the production of heparin rebound and other complications of extracorporeal bypass procedures. Am J Clin Pathol. 1987;87:210–7.

    CAS  PubMed  Google Scholar 

  47. Kesteven PJ, Ahmed A, Aps C, Williams BT, Savidge GF. Protamine sulphate and heparin rebound following open-heart surgery. J Cardiovasc Surg (Torino). 1986;27:600–3.

    CAS  Google Scholar 

  48. Weiss ME, Nyhan D, Peng Z, Harrow JC, Lowenstein EL, Hirshman C, Adkinson F. Association of protamine IgE and IgE antibodies with life threatening reactions to intravenous protamine. N Engl J Med. 1989;320:886–92.

    CAS  PubMed  Google Scholar 

  49. Harrow JC. Protamine: a review of its toxicity. Anesth Analg. 1985;64:348–61.

    Google Scholar 

Nitroglycerin

  1. Feldman RL, Marx JD, Pepine CL, Conti CR. Analysis of coronary responses to various doses of intracoronary nitroglycerin. Circulation. 1982;66:321–7.

    CAS  PubMed  Google Scholar 

  2. Feldman RL, Pepine CJ, Conti CR. Magnitude of dilatation of large and small coronary arteries by nitroglycerin. Circulation. 1981;64:324–33.

    CAS  PubMed  Google Scholar 

  3. Macho P, Vatner SF. Effects of nitroglycerin and nitroprusside on large and small coronary vessels in conscious dogs. Circulation. 1981;64:1101–7.

    CAS  PubMed  Google Scholar 

  4. Mehta J, Pepine CJ. Effect of sublingual nitroglycerin on regional flow in patients with and without coronary disease. Circulation. 1978;58:803–7.

    CAS  PubMed  Google Scholar 

  5. Dick C, Wyche K, Homans DC, White CW. Effect of distending pressure on intravascular ultrasound measurement of lumen dimensions. Circulation. 1990;83(Suppl III):459 (abstract).

    Google Scholar 

Special Considerations in Coronary Angiography

  1. Gordon PR, Abrams C, Gash AK, Carabello BA. Pericatheterization risk factors in left main coronary artery stenosis. Am J Cardiol. 1987;59:1080–3.

    CAS  PubMed  Google Scholar 

  2. Cohen MG, Kelly RV, Kong DF, Menon V, Shah M, Ferreira J, Pieper KS, Criger D, Poggio R, Ohman EM, Gore J, Califf RM, Granger CB. Pulmonary artery catheterization in acute coronary syndromes: insights from the GUSTO IIb and GUSTO III trials. Am J Med. 2005;118:482–8.

    PubMed  Google Scholar 

  3. Conti CR, Selby JH, Christie LG, Pepine CJ, Curry RC, Nichols WW, Conetta DG, Feldman RL, Mehta J, Alexander JA. Left main coronary artery stenosis: clinical spectrum, pathophysiology, and management. Prog Cardiovasc Dis. 1979;22:73–105.

    CAS  PubMed  Google Scholar 

  4. Davis K, Kennedy JW, Kemp HG, Judkins MP, Gosselin AJ, Killip T. Complications of coronary arteriography from the collaborative study of coronary artery surgery (CASS). Circulation. 1979;59:1105–12.

    CAS  PubMed  Google Scholar 

  5. Kern MJ, Aguirre F, Bach R, Donohue T, Siegel R, Segal J. Augmentation of coronary blood flow by intra-aortic balloon pumping in patients after coronary angioplasty. Circulation. 1993;87:500–11.

    CAS  PubMed  Google Scholar 

  6. Alderman EL, Wexler L. Angiographic implications of cardiac transplantation. Am J Cardiol. 1989;64:16E–21.

    CAS  PubMed  Google Scholar 

Outpatient Catheterization

  1. Block PC, Ockene I, Goldberg RJ, Butterly J, Block EH, Degon C, Beiser A, Colton T. A prospective randomized trial of outpatient versus inpatient cardiac catheterization. N Engl J Med. 1988;319:1251–5.

    CAS  PubMed  Google Scholar 

  2. Pink S, Fiutowski L, Gianelly RE. Outpatient cardiac catheterizations: analysis of patients requiring admission. Clin Cardiol. 1989;12:375–8.

    CAS  PubMed  Google Scholar 

  3. Clements SD, Gatlin S. Outpatient cardiac catheterization: a report of 3,000 cases. Clin Cardiol. 1991;14:477–80.

    PubMed  Google Scholar 

  4. Clark DA, Moscovich MD, Vetrovec GW, Wexler L. Guidelines for the performance of outpatient catheterization and angiographic procedures. Cathet Cardiovasc Diagn. 1992;27:5–7.

    CAS  PubMed  Google Scholar 

  5. Oldroyd KG, Phadke KV, Phillips R, Carson PHM, Clarke M, David JAS. Cardiac catheterization by the Judkins technique as an outpatient procedure. Br Med J. 1989;298:875–6.

    CAS  Google Scholar 

  6. Health and Public Policy Committee. The safety and efficacy of ambulatory cardiac catheterization in the hospital and freestanding setting. Ann Intern Med. 1985;103:294–8.

    Google Scholar 

  7. Kahn KL. The efficacy of ambulatory cardiac catheterization in the hospital and free-standing setting. Am Heart J. 1986;111:152.

    CAS  PubMed  Google Scholar 

Complications of Coronary Angiography

  1. Bourassa MG, Noble J. Complication rate of coronary arteriography: a review of 5250 cases studied by a percutaneous femoral technique. Circulation. 1976;53:106114.

    Google Scholar 

  2. Kennedy JW. Registry committee of the society for cardiac angiography. Complications associated with cardiac catheterization and angiography. Cathet Cardiovasc Diagn. 1982;8:5–11.

    CAS  PubMed  Google Scholar 

  3. Noto TJ, Johnson L, Krone R, Weaver WF, Clark DA, Kramer JR, Vetrovec GW. Registry committee of the society for cardiac angiography and interventions. Cathet Cardiovasc Diagn. 1991;24:75–83.

    PubMed  Google Scholar 

  4. Gersh BJ, Phil D, Kronmal RA, Frye RL, Schaff HV, Ryan TJ, Gosselin AJ, Kaiser GC, Killip T. Participants in the coronary artery surgery study: coronary arteriography and coronary artery bypass surgery: morbidity and mortality in patients ages 65 years or older. Circulation. 1983;67:483–91.

    CAS  PubMed  Google Scholar 

  5. Ernst SMPG, Tjonjoegin RM, Schrader R, Kaltenbach M, Sigwart U, Sanborn TA, Plokker HWT. Immediate sealing of arterial puncture sites after cardiac catheterization and coronary angioplasty using a biodegradable collagen plug: results of an international registry. J Am Coll Cardiol. 1993;21:851–5.

    CAS  PubMed  Google Scholar 

  6. McCann RL, Schwartz LB, Pieper KS. Vascular complications of cardiac catheterization. J Vasc Surg. 1991;14:375–81.

    CAS  PubMed  Google Scholar 

  7. Muller DWM, Shamir KJ, Ellis SG, Topol EJ. Peripheral vascular compilcations after conventional and complex percutaneous coronary interventional procedures. Am J Cardiol. 1992;69:63–8.

    CAS  PubMed  Google Scholar 

  8. Altin RS, Flicker S, Naidech HJ. Pseudoaneurysm and arteriovenous fistula after femoral artery catheterization: association with low femoral punctures. AJR Am J Roentgenol. 1989;152:629–31.

    CAS  PubMed  Google Scholar 

  9. Khoury M, Batra S, Berg R, Rama K, Kozul V. Influence of arterial access sites and interventional procedures on vascular complications after cardiac actheterizations. Am J Surg. 1992;164:205–9.

    CAS  PubMed  Google Scholar 

  10. McCready RA, Siderys H, Pittman JN, Herod GT, Halbrook HG, Fehrenbacher JW, Beckman DJ, Hormuth DA. Septic complications after cardiac catheterization and percutaneous transluminal coronary angioplasty. J Vasc Surg. 1991;14:170–4.

    CAS  PubMed  Google Scholar 

  11. Kotval PS, Khoury A, Shah PM, Babu SC. Doppler sonographic demonstration of the progressive spontaneous thrombosis of pseudoaneurysms. J Ultrasound Med. 1990;9:185–90.

    CAS  PubMed  Google Scholar 

  12. Agrawal SK, Pinheiro L, Roubin GS, Hearn JA, Cannon AD, Macander PJ, Barnes JL, Dean LS, Nanda NC. Nonsurgical closure of femoral pseudoaneurysms complicating cardiac catheterization and percutaneous transluminal coronary angioplasty. J Am Coll Cardiol. 1992;20:610–5.

    CAS  PubMed  Google Scholar 

  13. Fellmeth BD, Baron SB, Brown PR, Ang JGP, Clayson KR, Morrison SL, Low RI. Repair of postcatheterization femoral pseudoaneurysms by color flow ultrasound guided compression. Am Heart J. 1992;123:547–51.

    CAS  PubMed  Google Scholar 

  14. Colt HG, Begg RJ, Saporito JJ, Cooper WM, Shapiro AP. Cholesterol emboli after cardiac catheterization. Medicine. 1988;67:389–400.

    CAS  PubMed  Google Scholar 

  15. Oda H, Miida T, Sato H, Higuma N. Treatment of unstable angina with cholesterol embolization as a complication of left heart catheterization. Jpn Circ J. 1990;54:487–92.

    CAS  PubMed  Google Scholar 

  16. Rosman HS, David TP, Reddy D, Goldstein S. Cholesterol embolization: clinical findings and implications. J Am Coll Cardiol. 1990;15:1296–9.

    CAS  PubMed  Google Scholar 

  17. Ong HT, Elmsly WG, Friedlander DH. Cholesterol atheroembolism: an increasingly frequent complication of cardiac catheterization. Med J Aust. 1991;154:412–4.

    CAS  PubMed  Google Scholar 

  18. Kalter DC, Rudolph A, McGavran M. Livedo reticularis due to multiple cholesterol emoli. J Am Acad Dermatol. 1985;13:235–42.

    CAS  PubMed  Google Scholar 

  19. Gaines PA, Kennedy A, Moorhead P, Cumberland DC, Welsh CL, Rutley MS. Cholesterol embolization: a lethal complication of vascular catheterization. Lancet. 1988;1(8578):168–70.

    CAS  PubMed  Google Scholar 

  20. Ramirez G, O’Neill WM, Lambert R, Bloomer A. Cholesterol embolization: a complication of angiography. Arch Intern Med. 1978;138:143001432.

    Google Scholar 

  21. Rose M, Dinour D, Chisin R. Splenic infarction: a complication of cardiac catheterization. Clin Cardiol. 1992;15:697–8.

    CAS  PubMed  Google Scholar 

  22. Eggebrecht H, Oldenburg O, Dirsch O, Haude M, Baumgart D, Welge D, Herrmann J, Arnold G, Werner Schmid K, Erbel R. Potential embolization by atherosclerotic debris dislodged from aortic wall during cardiac catheterization: histological and clinical findings in 7,621 patients. Catheter Cardiovasc Interv. 2000;49:389–94.

    CAS  PubMed  Google Scholar 

  23. Keeley EC, Grines CL. Scraping of aortic debris by coronary guiding catheters: a prospective evaluation of 1,000 cases. J Am Coll Cardiol. 1998;32:1861–5.

    CAS  PubMed  Google Scholar 

  24. Katz ES, Tunick PA, Rusinek H, Ribakive G, Spencer FC, Kronzon I. Protruding aortic atheromas predict stroke in elderly patients undergoing cardiopulmonary bypass: experience with intraoperative transesophageal echocardiography. J Am Coll Cardiol. 1992;20:70–7.

    CAS  PubMed  Google Scholar 

  25. Karalis DG, Chandrasekaran K, Victor MF, Ross JJ, Mintz GS. Recognition and embolic potential of intraaortic atherosclerotic debri. J Am Coll Cardiol. 1991;17:73–8.

    CAS  PubMed  Google Scholar 

  26. O’Quin RJ, Lakshminarayan S. Venous air embolism. Arch Intern Med. 1982;142:2173–6.

    PubMed  Google Scholar 

  27. Gottdiener JS, Papademetriou V, Notargiacomo A, Park WY, Cutler J. Incidence and cardiac effects of systemic venous air embolism: echocardiographic evidence of arterial embolization via non-cardiac shunt. Arch Intern Med. 1988;148:795–800.

    CAS  PubMed  Google Scholar 

  28. Marco AP, Furman WR. Venous air embolism, airway difficulties, and massive transfusion. Surg Clin North Am. 1993;73:213–28.

    CAS  PubMed  Google Scholar 

  29. Calverley RK, Dodds WA, Trapp WG, Jenkins LC. Hyperbaric treatment of cerebral air embolism: a report of a case following cardiac catheterization. Can Anaesth Soc J. 1971;18:665–74.

    CAS  PubMed  Google Scholar 

  30. Keilson GR, Schwartz WJ, Recht LD. The preponderance of posterior circulatory events is independent of the route of cardiac catheterization. Stroke. 1992;23:1358–9.

    CAS  PubMed  Google Scholar 

  31. Kosmorsky G, Hanson MR, Tomsak RL. Neuro-ophthalmologic complications of cardiac catheterization. Neurology. 1988;38:483–5.

    CAS  PubMed  Google Scholar 

  32. Vik-Mo H, Todnem K, Folling M, Rosland GA. Transient visual disturbance during cardiac catheterization with angiography. Cathet Cardiovasc Diagn. 1986;12:1–4.

    CAS  PubMed  Google Scholar 

  33. Dawson DM, Fischer EG. Neurologic complications of cardiac catheterization. Neurology. 1977;27:496–7.

    CAS  PubMed  Google Scholar 

  34. Sticherling C, Berkefeld J, et al. Transient bilateral cortical blindness after coronary angiography. Lancet. 1998;351:570.

    CAS  PubMed  Google Scholar 

  35. Deckelbaum LI, Isner JM, Konstam MA, Salem DN. Catheter-induced versus spontaneous spasm- do these coronary bedfellows deserve to be estranged? Am J Med. 1985;79:1–4.

    CAS  PubMed  Google Scholar 

  36. Deligonul U, Kern MJ, Caralis D. Left main and right catheter-induced coronary artery spasm in a patient with vasospastic angina. Cathet Cardiovasc Diagn. 1989;17:39–44.

    CAS  PubMed  Google Scholar 

  37. Heijman J, Gamal ME, Michels R. Catheter induced spasm in aortocoronary vein grafts. Br Heart J. 1983;49:30–2.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Schwartz RE, Butman S. Catheter-induced nonproximal coronary artery spasm. Am J Cardiol. 1984;53:352–4.

    Google Scholar 

  39. Freeman SP, Liston MJ, Lips DL, Vacek JL. Catheter-induced left internal mammary artery dissection: a report of two cases and review of the literature. [Case Reports. Journal Article]. J Interv Cardiol. 2004;17(2):117–21.

    PubMed  Google Scholar 

  40. Haas JM, Peterson CR, Jones RC. Subintimal dissection of the coronary arteries: a complication of selective coronary arteriography and the transfemoral percutaneous approach. Circulation. 1968;38:678–83.

    CAS  PubMed  Google Scholar 

  41. Tortoledo F, Zacca NM, Chahine RA. Coronary artery spasm superimposed on coronary artery dissection. Am J Cardiol. 1984;53:363–4.

    CAS  PubMed  Google Scholar 

  42. Wilson VE, Bates ER. Subacute bilateral coronary ostial stenoses following cardiac catheterization and PTCA. Cathet Cardiovasc Diagn. 1991;23:114–6.

    CAS  PubMed  Google Scholar 

  43. Hammermeister KE, Warbasse JR. Immediate hemodynamic effects of cardiac angiography in man. Am J Cardiol. 1973;31:307–14.

    CAS  PubMed  Google Scholar 

  44. Golman K, Almen T. Contrast media-induced nephrotoxicity: survey and present state. Invest Radiol. 1985;20:S92–6.

    CAS  PubMed  Google Scholar 

  45. D’elia JA, Gleason RE, Alday M, Malarick C, Godley K, Warram J, Kaldany A, Weinrauch LA. Nephrotoxicity from angiographic contrast material. Am J Med. 1982;72:719–23.

    PubMed  Google Scholar 

  46. Parfrey PS, Griffiths SM, Barrett BJ, Paul MD, Genge M, Withers J, Farid N, McManamon PJ. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. N Engl J Med. 1989;320:143–9.

    CAS  PubMed  Google Scholar 

  47. Rich MW, Crecelius CA. Incidence, risk factors, and clinical course of acute renal insufficiency after cardiac catheterization in patients 70 years of age. Arch Intern Med. 1990;150:1237–42.

    CAS  PubMed  Google Scholar 

  48. Taliercio CP, Vlietstra RE, Fisher LD, Burnett JC. Risks for renal dysfunction with cardiac angiography. Ann Intern Med. 1986;104:501–4.

    CAS  PubMed  Google Scholar 

  49. Talierco CP, Vliestra RE, Ilstrup DM. A randomized comparison of nephrotoxicity of iopamidol and diatrizoate in high risk patients undergoing coronary angiography. J Am Coll Cardiol. 1991;17:384–90.

    Google Scholar 

  50. Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348:491–9.

    CAS  PubMed  Google Scholar 

  51. Kay J, Chow WH, Chan TM, Lo SK, Kwok OH, Yip A, Fan K, Lee CH, Lam WF. Acetylcysteine for prevention of acute deterioration of renal function following elective coronary angiography and intervention: a randomized controlled trial. JAMA. 2003;289:553–8.

    CAS  PubMed  Google Scholar 

  52. Ochoa A, Pellizzon G, Addala S, Grines C, Isayenko Y, Boura J, Rempinski D, O’Neill W, Kahn J. Abbreviated dosing of N-acetylcysteine prevents contrast-induced nephropathy after elective and urgent coronary angiography and intervention. J Interv Cardiol. 2004;17:159–65.

    PubMed  Google Scholar 

  53. Merten GJ, Burgess WP, Gray LV, Holleman JH, Roush TS, Kowalchuk GJ, Bersin RM, Van Moore A, Simonton 3rd CA, Rittase RA, Norton HJ, Kennedy TP. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA. 2004;19(291):2328–34.

    Google Scholar 

  54. Anto HR, Chou SY, Porush JG, Shapiro WB. Infusion intravenous pyelography and renal function. Arch Intern Med. 1981;141:1652–6.

    CAS  PubMed  Google Scholar 

  55. Old CW, Duarte CM, Lehrner LH, Henry AR, Sinnott RC. A prospective evaluation of mannitol in the prevention of radiocontrast acute renal failure. Clin Res. 1981;29:472A (abstract).

    Google Scholar 

  56. Beroniade VC. Prevention of acute renal failure secondary to radiocontrast agents. Abstracts of the 8th international congress of nephrology. Athens: University Studio Publishing; 1981. p. 380.

    Google Scholar 

  57. Stone GW, McCullough PA, Tumlin JA, Lepor NE, Madyoon H, Murray P, Wang A, Chu AA, Schaer GL, Stevens M, Wilensky RL, O’Neill WW, CONTRAST Investigators. Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA. 2003;290:2284–91.

    CAS  PubMed  Google Scholar 

  58. Lasser EC, Berry CC, Talner LB, Santini LC, Lang EK, Gerber FH, Stolberg HO (Contrast material reaction study participants). Pretreatment with corticosteroids to alleviate reactions to intravenous contrast material. N Engl J Med. 1987;317:845–9.

    Google Scholar 

  59. Steinberg EP, Moore RD, Powe NR, Gopalan R, Davidoff AJ, Litt M, Graziano S, Brinker JA. Safety and cost effectiveness of high-osmolality as compared with low osmolality contrast material in patients undergoing cardiac angiography. N Engl J Med. 1992;326:425–30.

    CAS  PubMed  Google Scholar 

  60. Greenberger PA, Patterson R, Tapio CM. Prophylaxis against repeated radiocontrast media reactions in 857 cases. Arch Intern Med. 1985;145:2197–200.

    CAS  PubMed  Google Scholar 

  61. Horrow JC. Protamine: a review of its toxicity. Anesth Analg. 1985;64:348–61.

    CAS  PubMed  Google Scholar 

  62. Hobbhahn J, Conzen PF, Habazettl H, Gutman R, Kellermann W, Peter K. Heparin reversal by protamine in humans- complement, protaglandins, blood cells, and hemodynamics. J Appl Physiol. 1991;71:1415–21.

    CAS  PubMed  Google Scholar 

  63. Pearson PJ, Evora PRB, Ayrancioglu K, Schaff HV. Protamine releases endothelium-derived relaxing factor from systemic arteries: a possible mechanism of hypotension during heparin neutralization. Circulation. 1992;86:289–94.

    CAS  PubMed  Google Scholar 

  64. Kastrati A, Neumann FJ, Mehilli J, et al. Bivalirudin versus unfractionated heparin during percutaneous coronary intervention. N Engl J Med. 2008;359(7):688–96.

    CAS  PubMed  Google Scholar 

  65. Friedman HS, Trivelli LA, Nguyen T, Benamor R, Dorsa M. Hematologic changes after cardiac catheterization. Cathet Cardiovasc Diagn. 1988;15:89–91.

    CAS  PubMed  Google Scholar 

  66. Bell WR, Royall RM. Heparin-associated thrombocytopenia: a comparison of three heparin preparations. N Engl J Med. 1980;303:902–7.

    CAS  PubMed  Google Scholar 

  67. Ansell J, Deykin D. Heparin-induced thrombocytopenia and recurrent thromboembolism. Am J Hematol. 1980;8:325–32.

    CAS  PubMed  Google Scholar 

  68. Gaglani RD, Turk AA, Mehra MR, Lach RD. Ventricular standstill complicating left heart catheterization in the presence of uncomplicated right bundle branch block. Cathet Cardiovasc Diagn. 1992;26:212–4.

    Google Scholar 

  69. Munsif AN, Schechter E. Complete block below the His bundle induced by left-sided cardiac catheterization. Cathet Cardiovasc Diagn. 1991;24:189–91.

    CAS  PubMed  Google Scholar 

  70. Little WC, Reeves RC, Coughlan HC, Rogers EW. Effect of cough on coronary perfusion pressure: does coughing help clear the coronary arteries of angiographic contrast medium? Circulation. 1982;65:604–10.

    CAS  PubMed  Google Scholar 

  71. Bergstra A, van Dijk RB, Brekke O, Buurma AE, Orozco L, den Heijer P, Crijns HJ. Hemodynamic effects of iodixanol and iohexol during ventriculography in patients with compromised left ventricular function. Catheter Cardiovasc Interv. 2000;50:314–21.

    CAS  PubMed  Google Scholar 

Coronary Anatomy and Dimensions

  1. Dryander. Anatomia Mundini. Marburg; 1541. p. 30–4.

    Google Scholar 

  2. Saunders JBdCM, O’Malley CD. The anatomical drawings of Andreas Vesalius. New York: Bonanza Books; 1982.

    Google Scholar 

  3. James TN. Anatomy of the coronary arteries. New York: Hoeber Medical Division, Harper & Row Publishers, Inc; 1961.

    Google Scholar 

  4. Angelini P. Normal and anomalous coronary arteries: definitions and classification. Am Heart J. 1989;117:418–34.

    CAS  PubMed  Google Scholar 

  5. Zamir M, Sinclair P. Roots and calibers of the human coronary arteries. Am J Anat. 1988;183:226–34.

    CAS  PubMed  Google Scholar 

  6. Baroldi G, Scomazzoni G. Coronary circulation in the normal and pathologic heart. Washington, DC: Department of the Army, United States Government Printing Office; 1967. p. 5–90.

    Google Scholar 

  7. Virmani R, Chun PKC, Rainowitz M, Goldstein RE, McAllister HA. Lack of correlation to coronary artery dominance and bicuspid aortic valve: an autopsy study of 54 cases. Arch Pathol Lab Med. 1984;108:638–41.

    CAS  PubMed  Google Scholar 

  8. Bergelson BA, Tommaso CL. Left main coronary artery disease: assessment, diagnosis, and therapy. Am Heart J. 1995;129(2):350–9.

    CAS  PubMed  Google Scholar 

  9. Kronzon I, Deutsch P, Glassman E. Length of the left main coronary artery: its relation to the pattern of coronary arterial distribution. Am J Cardiol. 1974;34:787–9.

    CAS  PubMed  Google Scholar 

  10. Higgins CB, Wexler L. Reversal of dominance of the coronary arterial system in isolated aortic stenosis and bicuspid aortic valve. Circulation. 1975;52:292–6.

    CAS  PubMed  Google Scholar 

  11. Murphy ES, Rosch J, Rahimtoola SH. Frequency and significance of coronary arterial dominance in isolated aortic stenosis. Am J Cardiol. 1977;39:505–9.

    CAS  PubMed  Google Scholar 

  12. Green GE, Bernstein S, Reppert EH. The length of the left main coronary artery. Surgery. 1967;62:1021–4.

    CAS  PubMed  Google Scholar 

  13. Baptista CAC, DiDio LJA, Prates JC. Types of division of the left coronary artery and the ramus diagonalis of the human heart. Jpn Heart J. 1991;31:323–35.

    Google Scholar 

  14. Kolodziej AW, Lobo FV, Walley VM. Intra-atrial course of the right coronary artery and its branches. Can J Cardiol. 1994;10(2):263–7.

    CAS  PubMed  Google Scholar 

  15. Lereer PK, Edwards WD. Coronary arterial anatomy in bicuspid aortic valve: necrospy study of 100 hearts. Br Heart J. 1981;45:142–7.

    Google Scholar 

  16. Adams J, Treasure T. Variable anatomy of the right coronary artery supply to the left ventricle. Thorax. 1985;40:618–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Gregg DE. Coronary circulation in health and disease. Philadelphia: Lea and Febiger; 1950.

    Google Scholar 

  18. Weaver ME, Pantely GA, Bristow JD, Ladley HD. A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man. Cardiovasc Res. 1986;20:907–17.

    CAS  PubMed  Google Scholar 

  19. Nerantzis C, Avgoustakis D. An s-shaped atrial artery supplying the sinus node area. Chest. 1980;78:274–8.

    CAS  PubMed  Google Scholar 

  20. Ilia R, Goldfarb B, Katz A, Margulis G, Gussarsky Y, Gueron M. Variations in blood supply to the anterior interventricular septum: incidence and possible clinical importance. Cathet Cardiovasc Diagn. 1991;24:277–82.

    CAS  PubMed  Google Scholar 

  21. Tomanek RJ. Microanatomy of the coronary circulation. In: Spaan JAE, Bruschke AVG, Gittenberger AC, De Groot DD, editors. Coronary circulation: from basic mechanisms to clinical implications. Dordrecht: Martinus Nijhoff; 1990. p. 3–12.

    Google Scholar 

  22. Schlesinger MJ. Relation of anastomotic pattern to pathologic conditions of the coronary arteries. Arch Pathol. 1940;30:403–15.

    Google Scholar 

  23. Allwork SP. Chapter 7. Angiographic anatomy. In: Anderson RH, Becker AE, editors. Cardiac anatomy. London: Churchill Livingstone; 1980.

    Google Scholar 

  24. Allwork SP. The applied anatomy of the arterial blood supply to the heart in man. J Anat. 1987;153:1–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Feiring AJ, Johnson MR, Kioschos JM, Kirchner PT, Marcus ML, White CW. The importance of the determination of the myocardial area at risk in the evaluation of the outcome of acute myocardial infarction in patients. Circulation. 1987;75:980–7.

    CAS  PubMed  Google Scholar 

  26. Scanlon PJ, Faxon DP, Audet AM, Carabello B, Dehmer GJ, Eagle KA, Legako RD, Leon DF, Murray JA, Nissen SD, Pepine CJ, Watson RM. ACC/AHA guidelines for coronary angiography: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). J Am Coll Cardiol. 1999;33:1756–824.

    CAS  PubMed  Google Scholar 

  27. Sos TA, Kligfield PD, Sniderman KW. A method for understanding three-dimensional coronary anatomy. JAMA. 1980;243:252–4.

    CAS  PubMed  Google Scholar 

  28. Coleman C, Castaneda-Zuniga WR, Amplatz K. Three-dimensional teaching model for coronary angiography. Cardiovasc Intervent Radiol. 1982;5:154–6.

    CAS  PubMed  Google Scholar 

  29. Brown BG, Bolson E, Frimer M, Dodge HT. Quantitative coronary angiography: estimation of dimension, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation. 1977;55:329.

    CAS  PubMed  Google Scholar 

  30. Wilson RF, Marcus ML, White CW. Prediction of the physiology significance of coronary arterial lesions by quantitative coronary angiography in patients with limited coronary artery disease. Circulation. 1987;75:723–32.

    CAS  PubMed  Google Scholar 

  31. Brown BG, Bolson E, Frimer M, Dodge HT. Quantitative coronary arteriography: estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation. 1977;55:329–37.

    CAS  PubMed  Google Scholar 

  32. Paulin S. Terminology for radiographic projections in cardiac angiography. (Letter.). Cathet Cardiovasc Diagn. 1981;7:341.

    CAS  PubMed  Google Scholar 

  33. Raman SV, Morford R, Neff M, Attar TT, Kukielka G, Magorien RD, Bush CA. Rotational X-ray coronary angiography. Catheter Cardiovasc Interv. 2004;63:201–7.

    PubMed  Google Scholar 

  34. Arnett EN, Isner JM, Redwood DR, et al. Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann Intern Med. 1979;91:350.

    CAS  PubMed  Google Scholar 

  35. Isner JM, Kishel J, Kent KM, et al. Inaccuracy of angiographic determination of left main coronary arterial narrowing. Circulation. 1979;59:60:II.

    Google Scholar 

  36. Hutchins GM, Bulkley BH, Ridolfi RL, et al. Correlation of coronary arteriograms and left ventriculograms with postmortem studies. Circulation. 1977;56:32.

    CAS  PubMed  Google Scholar 

  37. Grondin CM, Dyrda I, Pasternac A, et al. Discrepancies between cineangiographic and postmortem findings in patients with coronary artery disease and recent myocardial revascularization. Circulation. 1974;49:703.

    CAS  PubMed  Google Scholar 

  38. Marcus ML, Armstrong ML, Heistad DD, et al. A comparison of three methods of evaluation coronary obstructive lesions: postmortem arteriography, pathological examination and measurement of regional myocardial perfusion during maximal vasodilation. Am J Cardiol. 1982;49:1699–706.

    CAS  PubMed  Google Scholar 

  39. Johnson MR. A normal coronary artery: what size is it? Circulation. 1992;86:331–3.

    CAS  PubMed  Google Scholar 

  40. McPherson DD, Hiratzka LF, Lamberth WC, Brandt B, Hunt M, Kieso RA, Marcus ML, Kerber RE. Delineation of the extent of coronary atherosclerosis by high-frequency epicardial echocardiography. N Engl J Med. 1987;316:304–9.

    CAS  PubMed  Google Scholar 

  41. Langille BI, O’Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium dependent. Science. 1986;231:405–7.

    CAS  PubMed  Google Scholar 

  42. Marcus ML, Skorton DJ, Johnson MR, Collins SM, Harrison DG, Kerber RE. Visual estimates of percent diameter coronary stenosis: “a battered gold standard”. J Am Coll Cardiol. 1988;11:882–5.

    CAS  PubMed  Google Scholar 

  43. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    CAS  PubMed  Google Scholar 

  44. Mohiaddin RH, Burman ED, Prasad SK, Varghese A, Tan RS, Collins SA, Hughes RL, Gatehouse PD, Jhooti P, Longmore DB, Yang GZ, Firmin DN, Pennell DJ. Glagov remodeling of the atherosclerotic aorta demonstrated by cardiovascular magnetic resonance: the CORDA asymptomatic subject plaque assessment research (CASPAR) project. J Cardiovasc Magn Reson. 2004;6(2):517–25.

    CAS  PubMed  Google Scholar 

  45. Varnava AM, Davies MJ. Relation between coronary artery remodelling (compensatory dilatation) and stenosis in human native coronary arteries. Heart. 2001;86:207–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Pasterkamp G, Wensing PJ, Post MJ, Hillen B, Mali WP, Borst C. Paradoxical arterial wall shrinkage may contribute to luminal narrowing of human atherosclerotic femoral arteries. Circulation. 1995;91:1444–9.

    CAS  PubMed  Google Scholar 

  47. Dodge JT, Brown BG, Bolson EL, Dodge HT. Lumen diameter of normal human coronary arteries: influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation. 1992;86:232–46.

    PubMed  Google Scholar 

  48. Vieweg WVR, Alpert JS, Hagan AD. Caliber and distribution of normal coronary arterial anatomy. Cathet Cardiovasc Diagn. 1976;2:269–80.

    CAS  PubMed  Google Scholar 

  49. MacAlpin RN, Abbasi AS, Grollman JH, Eber L. Human coronary artery size during life. Radiology. 1973;108:567–76.

    CAS  PubMed  Google Scholar 

  50. Seiler C, Kirkeeide RL, Gould KL. Basic structure function relations of the coronary vascular tree. The basis of quantitative coronary arteriography for diffuse coronary artery disease. Circulation. 1992;85:1987–2003.

    CAS  PubMed  Google Scholar 

  51. Dick C, Wyche K, Homans DC, White CW. Effect of distending pressure on intravascular ultrasound measurement of lumen dimensions. Circulation. 1990;82(Suppl III):459.

    Google Scholar 

  52. Markis JE, Joffe CD, Cohn PF, Feen DJ, Herman MV, Gorlin R. Clinical significance of coronary artery ectasia. Am J Cardiol. 1976;37:217–22.

    CAS  PubMed  Google Scholar 

  53. Swaye PS, Fisher LD, Litwin P, Vignola PA, Judkins MP, Kemp HG, Mudd JG, Gosselin AJ. Aneurysmal coronary artery disease. Circulation. 1983;67:134–8.

    CAS  PubMed  Google Scholar 

  54. Hartnell GG, Parnell BM, Pridie RB. Coronary artery ectasia: its prevalence and clinical significance in 4,993 patients. Br Heart J. 1985;54:392–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med. 1984;310:819–24.

    CAS  PubMed  Google Scholar 

  56. Zeiher AM, Schächinger V, Saurbier B, Just H. Assessment of endothelial modulation of coronary vasomotor tone: insights into a fundamental functional disturbance in vascular biology of atherosclerosis. Basic Res Cardiol. 1994;(89 Suppl 1):115–28.

    Google Scholar 

  57. O’Keefe JH, Owen RM, Bove AA. Influence of left ventricular mass on coronary artery cross-sectional area. Am J Cardiol. 1987;59:1395–7.

    PubMed  Google Scholar 

  58. Lewis BS, Gotsman MS. Relation between coronary artery size and left ventricular wall mass. Br Heart J. 1973;35:1150–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Paulsen S, Vetner M, Hagerup SM. Relationship between heart weight and the cross-sectional area of the coronary ostia. Acta Pathol Microbiol Scand. 1975;83:529–32.

    Google Scholar 

  60. Haskell WL, Sims C, Myll J, Bortz WM, St. Goar FG, Alderman EL. Coronary artery size and dilating capacity in ultradistance runners. Circulation. 1993;87:1076–82.

    CAS  PubMed  Google Scholar 

  61. Kalin JK, Rutherford BD, McConabay DR, Johnson WL, Giogi LV, Shimshak TM, Ligon RW, Hartzler GO. Comparison of procedural results and risks of coronary angioplasty in men and women for conditions other than acute myocardial infarction. Am J Cardiol. 1992;69:1241–2.

    Google Scholar 

  62. Fisher LD, Kennedy JW, Davis KB, Maynard C, Fritz JK, Kaiser G, Myers WO. Association of sex, physical size and operative mortality after coronary artery bypass in the Coronary Artery Surgery Study (CASS). J Thorac Cardiovasc Surg. 1982;84:334–41.

    CAS  PubMed  Google Scholar 

  63. O’Connor NJ, Morton JR, Birkmeyer JD, Olmstead EM, O’Connor GT. Effect of coronary artery diameter in patients undergoing coronary bypass surgery. Northern New England Cardiovascular Disease Study Group. Circulation. 1996;93(4):652–5.

    PubMed  Google Scholar 

  64. Kornowski R, Lansky AJ, Mintz GS, Kent KM, Pichard AD, Satler LF, Bucher TA, Popma JJ, Leon MB. Comparison of men versus women in cross-sectional area luminal narrowing, quantity of plaque, presence of calcium in plaque, and lumen location in coronary arteries by intravascular ultrasound in patients with stable angina pectoris. Am J Cardiol. 1997;79(12):1601–5.

    CAS  PubMed  Google Scholar 

  65. Neufeld HN, Wagenvoort CA, Edwards JE. Coronary arteries in fetuses, infants, juveniles and young adults. Lab Invest. 1962;11:837–44.

    CAS  PubMed  Google Scholar 

  66. Leung WH, Stadius ML, Alderman EL. Determinants of normal coronary artery dimensions in humans. Circulation. 1991;84:2294–306.

    CAS  PubMed  Google Scholar 

  67. Jost S, Rafflenbeul W, Reil G, Gulba D, Knop I, Hecker H, Lichtlen PR. Reproducible uniform coronary vasomotor tone with nitrocompounds: prerequisite of quantitative coronary angiographic trials. Cathet Cardiovasc Diagn. 1990;20:168–73.

    CAS  PubMed  Google Scholar 

  68. Yasue H, Omati S, Takizawa A, Nagao M, Miwa K, Tanaka S. Circadian variation in exercise capacity in patients with Prinzmetal’s variant angina: role of exercise induced coronary arterial spasm. Circulation. 1979;59:938–48.

    CAS  PubMed  Google Scholar 

  69. Williams JK, Vita JA, Manuck SB, Selwyn AP, Kaplan JR. Psychosocial factors impair responses of coronary arteries. Circulation. 1991;84:2146–53.

    CAS  PubMed  Google Scholar 

  70. Williams JK, Adams MR, Klopfenstein HS. Estrogen modulates responses of atherosclerotic coronary arteries. Circulation. 1990;81:1680–7.

    CAS  PubMed  Google Scholar 

  71. Brown BG, Petersen RB, Pierce CD, Bolson EL, Dodge HT. Dynamics of human coronary stenosis: interaction among stenosis flow, distending pressure and vasomotor tone. In: Santamore WP, Bove AA, editors. Coronary artery disease, Cardiac imaging. Baltimore-Munich: Urban & Schwarzenberg; 1982. p. 199.

    Google Scholar 

  72. Lee JT, Ideker RE, Reimer KA. Myocardial infarct size and location in relation to the coronary vascular bed at risk in man. Circulation. 1981;64:526.

    CAS  PubMed  Google Scholar 

  73. Koyanagi S, Eastham CL, Harrison DG, Marcus ML. Transmural variation in the relationship between myocardial infarct size and risk area. Am J Physiol. 1982;242(Heart Circ Physiol II):H867.

    Google Scholar 

  74. Liu YH, Bahn RC, Ritman EL. Myocardial volume perfused by coronary artery branches: a three-dimensional X-ray computed tomographic evaluation in pigs. Invest Radiol. 1992;27:302–7.

    CAS  PubMed  Google Scholar 

  75. Koiwa Y, Bahn RC, Ritman EL. Regional myocardial volume perfused by the coronary branch; estimation in vivo. Circulation. 1986;74:157–63.

    CAS  PubMed  Google Scholar 

  76. Feiring AJ, Bruch PM, Husayni TS, Kirchner PT, Marcus M. Premortem assessment of myocardial risk area employing intracoronary technetium macroaggregated albumin and gated nuclear imaging. Circulation. 1986;73:551.

    CAS  PubMed  Google Scholar 

  77. Gibbons RJ, Verani MS, Behrenbeck T, Pellikka PA, O’Connor MK, Mahmarian JJ, Chesebro JH, Wackers FJ. Feasibility of tomographic 99mTc-Hexakis-2-Methoxy-2-Methylpropyl-Isonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation. 1989;80:1277–86.

    CAS  PubMed  Google Scholar 

  78. Huber KC, Bresnahan JF, Bresnahan DR, Pellikka PA, Behrenbeck T, Gibbons RJ. Measurement of myocardium at risk by technetium-99m sestamibi: correlation with coronary angiography. J Am Coll Cardiol. 1992;19:67–73.

    CAS  PubMed  Google Scholar 

  79. Freiman PC, Cooper SM, Harrison DC. Relationship between angiographic lesion location and left ventricular anatomic risk area. Clin Res. 1987;35:831A (abstract).

    Google Scholar 

Coronary Anomalies

  1. Yamanaka O, Hobbs RE. Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Cathet Cardiovasc Diagn. 1990;21:26–40.

    Google Scholar 

  2. Kimbris D, Iskandrian AS, Segal BL, Bemis CE. Anomalous aortic origin of coronary arteries. Circulation. 1978;58:606–15.

    Google Scholar 

  3. Wilkins CE, Betancourt B, Mathur VS, et al. Coronary artery anomalies: a review of more than 10,000 patients from the Clayton Cardiovascular Laboratories. Tex Heart Inst J. 1988;15:166–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Engel HJ, Tomes C, Page HL. Major variations in anatomical origin of the coronary arteries: angiographic observations in 4,250 patients without associated congenital heart disease. Cathet Cardiovasc Diagn. 1975;1:157–69.

    CAS  PubMed  Google Scholar 

  5. Baltaxe HA, Wixson D. The incidence of congenital anomalies of the coronary arteries in the adult population. Radiology. 1977;122:47–52.

    CAS  PubMed  Google Scholar 

  6. Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115:1296–305.

    PubMed  Google Scholar 

  7. Becker AE. Congenital coronary arterial anomalies of clinical relevance. Coron Artery Dis. 1995;6(3):187–93.

    CAS  PubMed  Google Scholar 

  8. Reyman HC. Dissertatio de vasis cordis propriis. Haller Bibioth Anat. 1737;2:366 (in ref 19a).

    Google Scholar 

  9. Angelini P, Trivellato M, Donis J, Leachman RD. Myocardial bridges: a review. Prog Cardiovasc Dis. 1983;26:75–88.

    CAS  PubMed  Google Scholar 

  10. Lee SS, Wu TL. The role of mural coronary artery in prevention of coronary atherosclerosis. Arch Pathol. 1972;93:32.

    CAS  PubMed  Google Scholar 

  11. Stolte M, Weis P, Prestele H. Muscle bridges over the left anterior descending coronary artery: their influence on arterial disease. Virchows Arch A Pathol Anat Histol. 1977;375(1):23.

    CAS  PubMed  Google Scholar 

  12. Polacek P, Zechmeister A. The occurrence and significance of myocardial bridges and loops on coronary arteries, Opuscola cardiologica. Brno: Acta Facultatis Medicae Univesitatis Brunensis; 1968.

    Google Scholar 

  13. Morales A, Romanelli R, Boucek R. The mural left anterior descending coronary artery, strenuous exercise and sudden death. Circulation. 1980;62(2):230–7.

    CAS  PubMed  Google Scholar 

  14. Channer KS, Bukis E, Hartnell G, Rees JR. Myocardial bridging of the coronary arteries. Clin Radiol. 1989;40:355–9.

    CAS  PubMed  Google Scholar 

  15. Irvin RG. The angiographic prevalence of myocardial bridging in man. Chest. 1982;81:198–202.

    CAS  PubMed  Google Scholar 

  16. Hashimoto A, Takekoshi N, Murakami E. Clinical significance of myocardial bridging of the coronary artery. Jpn Heart J. 1984;25:913–22.

    CAS  PubMed  Google Scholar 

  17. Katz SA, Feigl EO. Systole has little effect on diastolic coronary artery blood flow. Circ Res. 1988;62:443–51.

    CAS  PubMed  Google Scholar 

  18. Algeria JR, Herrmann J, Holmes Jr DR, Lerman A, Rihal CS. Myocardial bridging. Eur Heart J. 2005;26(12):1159–68.

    Google Scholar 

  19. Marcus ML. The coronary circulation in health and disease. New York: McGraw Hill; 1983.

    Google Scholar 

  20. Jain SP, White CJ, Ventura HO. De novo appearance of a myocardial bridge in heart transplant: assessment by intravascular ultrasonography, Doppler, and angiography. Am Heart J. 1993;126:453–6.

    CAS  PubMed  Google Scholar 

  21. Ge J, Erbel R, Rupprecht H-S, et al. Comparison of intravascular ultrasound and angiography in the assessment of myocardial bridging. Circulation. 1994;89:1725–32.

    CAS  PubMed  Google Scholar 

  22. Noble J, Bourassa MG, Petitclere R, Dyrda I. Myocardial bridging and the milking effect of the left anterior descending coronary artery: normal variant or obstruction. Am J Cardiol. 1976;37:993–9.

    CAS  PubMed  Google Scholar 

  23. Ferreira AG, Trotter SE, König B, Décourt LV, Fox K, Olsen ED. Myocardial bridges: morphological and functional aspects. Br Heart J. 1991;6:364–7.

    Google Scholar 

  24. Corrado D, Thiene G, Cocco P, Frescura C. Nonatherosclerotic coronary artery disease and sudden death in the young. Br Heart J. 1992;68:601–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Ishii T, Asuwa N, Masuda S, Ishikawa Y. The effects of a myocardial bridge on coronary atherosclerosis and ischaemia. J Pathol. 1998;185(1):4–9.

    CAS  PubMed  Google Scholar 

  26. Ishii T, Hosoda Y. The significance of myocardial bridge upon atherosclerosis in the left anterior descending coronary artery. J Pathol. 1986;148:279–91.

    CAS  PubMed  Google Scholar 

  27. Edwards JC, Burnsides CH, Swarm RL, et al. Arteriosclerosis in the intramural and extramural portions of coronary arteries in the human heart. Circulation. 1956;13:235.

    PubMed  Google Scholar 

  28. van Brussel BL, van Tellingen C, Ernst SMPG, Plokker HWM. Myocardial bridging: a cause of myocardial infarction? Int J Cardiol. 1984;6:78–82.

    PubMed  Google Scholar 

  29. Feldman AM, Baugham KL. Myocardial infarction associated with a myocardial bridge. Am Heart J. 1986;111:784–7.

    CAS  PubMed  Google Scholar 

  30. Wymore P, Yedlicka JW, Garcia-Medina V, Olivari MT, Hunter DW, Castaneda-Zuniga WR, Amplatz K. The incidence of myocardial bridges in heart transplants. Cardiovasc Intervent Radiol. 1989;12:202–6.

    CAS  PubMed  Google Scholar 

  31. Ischimori T, Raizner AE, Chahine RA, Awdeh M, Luchi RJ. Myocardial bridges in man: clinical correlations and angiographic accentuation with nitroglycerin. Cathet Cardiovasc Diagn. 1977;3:59–65.

    Google Scholar 

  32. Kramer JR, Kitazume H, Krauthamer D, Raju NVR, Loop FO, Proudfit WL. The prevalence of myocardial bridging and septal squeeze in patients with significant aortic stenosis. Cleve Clin Q. 1984;51:35–8.

    CAS  PubMed  Google Scholar 

  33. Page Jr HL, Engel JH, Campbell WB, Thomas SC. Anomalous origin of the left circumflex coronary artery. Recognition, angiographic demonstration and clinical significance. Circulation. 1974;50:768.

    PubMed  Google Scholar 

  34. Chaitman BR, Lesperance J, Saltiel J, Bourassa MG. Clinical, angiographic, and hemodynamic findings in patients with anomalous origin of the coronary arteries. Circulation. 1975;53:122.

    Google Scholar 

  35. Page Jr HL, Engel HJ, Campbell WB, Thomas Jr CS. Anomalous origin of the left circumflex coronary artery: recognition, angiographic demonstration and clinical significance. Circulation. 1974;50:768–73.

    PubMed  Google Scholar 

  36. Topaz O, DiSciascio G, Goudreau E, Cowley MJ, Nath A, Kohli RS, Vetrovec GW. Coronary angioplasty of anomalous coronary arteries: notes on technical aspects. Cathet Cardiovasc Diagn. 1990;21:106–11.

    CAS  PubMed  Google Scholar 

  37. Dicicco BS, McManus BM, Waller BF, Roberts WC. Separate aortic ostium of the left anterior descending and left circumflex coronary arteries from the left aortic sinus of Valsalva (absent left main coronary artery). Am Heart J. 1982;104:53.

    Google Scholar 

  38. Liberthson RR, Dinsmore RE, Bharati S, Rubenstein JJ, Caulfield J, Wheeler EO, Harthorne JW, Lev M. Aberrant coronary artery origin from the aorta: diagnosis and clinical significance. Circulation. 1974;50:774–9.

    Google Scholar 

  39. Roberts WC. Major anomalies of coronary arterial origin seen in adulthood. Am Heart J. 1986;111:941–63.

    CAS  PubMed  Google Scholar 

  40. Roberts WC. Major anomalies of coronary arterial origin seen in adulthood. Am Heart J. 1986;111:941–63.

    CAS  PubMed  Google Scholar 

  41. Barth III CW, Roberts WC. Left main coronary artery originating from the right sinus of Valsalva and coursing between the aorta and pulmonary trunk. J Am Coll Cardiol. 1986;7:366–73.

    PubMed  Google Scholar 

  42. Donaldson RM, Raphael M, Rodley-Smith R, et al. Angiographic identification of primary coronary anomalies causing impaired myocardial perfusion. Cathet Cardiovasc Diagn. 1983;9:237–49.

    CAS  PubMed  Google Scholar 

  43. Brandt III B, Martins JB, Marcus ML. Anomalous origin of the right coronary artery from the left sinus of Valsalva. N Engl J Med. 1983;10:596.

    Google Scholar 

  44. Serota H, Barth CW, Seuc CA, Vandormael M, Aguirre F, Kern MJ. Rapid identification of the course of anomalous coronary arteries in adults: the “dot and eye” method. Am J Cardiol. 1990;65:891–8.

    CAS  PubMed  Google Scholar 

  45. Datta J, White CS, Gilkeson RC, Meyer CA, Kansal S, Jani ML, Arildsen RC, Read K. Anomalous coronary arteries in adults: depiction at multi-detector row CT angiography. Radiology. 2005;235(3):812–8.

    PubMed  Google Scholar 

  46. Hobbs RE, Millit HD, Raghavan PV, Moodie DS, Sheldon WC. Congenital coronary anomalies: clinical and therapeutic implications. In: Vidt D, editor. Cardiovascular therapy. Philadelphia: FA David; 1982. p. 43.

    Google Scholar 

  47. Kragel AH, Roberts WC. Anomalous origin of either the right or left main coronary artery from the aorta with subsequent coursing between aorta and pulmonary trunk: analysis of 32 necropsy cases. Am J Cardiol. 1988;62:771–7.

    CAS  PubMed  Google Scholar 

  48. Kaku B, Shimizu M, Yoshio H, Ino H, Mizuno S, Kanaya H, Ishise S, Mabuchi H. Clinical features of prognosis of Japanese patients with anomalous origin of the coronary artery. Jpn Circ J. 1996;60(10):7331–41.

    Google Scholar 

  49. Bland EF, White PD, Garland J. Congenital anomalies of the coronary arteries: report of an unusual case associated with cardiac hypertrophy. Am Heart J. 1933;8:787–801.

    Google Scholar 

  50. Greenberg MA, Fish BG, Spindola-Franco H. Congenital anomalies of the coronary arteries. Radiol Clin North Am. 1989;27:1127–46.

    CAS  PubMed  Google Scholar 

  51. Wesselhoeft H, Fawcett JS, Johnson AL. Anomalous origin of the left coronary artery from the pulmonary trunk: its clinical spectrum, pathology, pathophysiology, based on a review of 140 cases with seven further cases. Circulation. 1968;38:403–25.

    CAS  PubMed  Google Scholar 

  52. Guikahue M, Sidi D, Kachaner J, Villlain E, Cohen L, Piechaud JF, Bidois J, Pedroni E, Vouhe P, Neveux JY. Anomalous left coronary artery arising from the pulmonary artery in infancy: is early operation better? Br Heart J. 1988;60:522–6.

    Google Scholar 

  53. Musiani A, Cernigliaro C, Sansa M, Maselli D, De Gasperis C. Left main coronary artery atresia: literature review and therapeutical considerations. Eur J Cardiothorac Surg. 1997;11(3):505–14.

    CAS  PubMed  Google Scholar 

  54. White CW, Chandra MS. Total occlusion of the main left coronary artery: a lethal lesion? Angiology. 1976;27:587.

    CAS  PubMed  Google Scholar 

  55. Vogt PR, Tkebuchava T, Arbenz U, von Segesser LK, Turina MI. Anomalous origin of the right coronary artery from the pulmonary artery. Thorac Cardiovasc Surg. 1994;42(2):125–7.

    CAS  PubMed  Google Scholar 

  56. Rittenhouse EA, Doty DB, Ehrenhaft JL. Congenital coronary artery-cardiac chamber fistula. Review of operative management. Ann Thorac Surg. 1975;20:468–85.

    CAS  PubMed  Google Scholar 

  57. Said SA, el Gamal MI, van der Werf T. Coronary arteriovenous fistulas: collective review and management of six new cases—changing etiology, presentation, and treatment strategy. Clin Cardiol. 1997;20(9):748–52.

    CAS  PubMed  Google Scholar 

  58. Jaffe RB, Glancy DL, Epstein SE, Brown BG, Morrow AG. Coronary arterial-right heart fistulae: long-term observations in seven patients. Circulation. 1973;48:133–43.

    Google Scholar 

  59. Gillebert C, Van Hoof R, Van de Werf F, Piessens J, De Geest H. Coronary artery fistulas in an adult population. Eur Heart J. 1986;7:437–43.

    CAS  PubMed  Google Scholar 

  60. Levin DC, Fellow KE, Abrams HL. Hemodynamically significant primary anomalies of the coronary arteries. Circulation. 1978;58:25.

    CAS  PubMed  Google Scholar 

  61. Karagoz HY, Zorlutuna YI, Babacan KM, Tasdemir O, Yakut C, Kutuk E, Bayazit K. Congenital coronary artery fistulas diagnostic and surgical considerations. Jpn Heart J. 1989;30:685694.

    Google Scholar 

  62. Rittenhouse EA, Doty DB, Ehrenhaft JL. Congenital coronary artery-cardiac chamber fistula. Review of operative management. Ann Thorac Surg. 1975;20:468.

    CAS  PubMed  Google Scholar 

  63. Chia BL, Chan ALK, Tan LKA, Ng RAL. Coronary artery-left ventricular fistula. Cardiology. 1981;68:167–79.

    CAS  PubMed  Google Scholar 

  64. Martens J, Haseldoncks C, van de Werf F, de Geest H. Silent left and right coronary artery – left ventricular fistulas: an unusual prominent thebesian system. Acta Cardiol. 1983;38:139–42.

    CAS  PubMed  Google Scholar 

  65. Coussement P, De Geest H. Multiple coronary artery—left ventricular communications: an unusual prominent Thebesian system. A report of four cases and review of the literature. Acta Cardiol. 1994;49(2):165–73.

    CAS  PubMed  Google Scholar 

  66. Ahmed SS, Haider B, Regen TJ. Silent left coronary artery – cameral fistula: probable cause of myocardial ischemia. Am Heart J. 1982;102:869–70.

    Google Scholar 

  67. Cheng TO. Left coronary artery to left ventricular fistula: demonstration of coronary steal phenomenon. Am Heart J. 1982;102:870–1.

    Google Scholar 

  68. Henzlova MJ, Nath H, Bucy RP, Bourge RC, Kirklin JK, Rogers WJ. Coronary artery to right ventricle fistula in heart transplant recipients: a complication of endomyocardial biopsy. J Am Coll Cardiol. 1989;14:258–61.

    CAS  PubMed  Google Scholar 

Coronary Atherosclerosis

  1. Clarkson TB, Prichard RW, Morgan TM, Petrick GS, Klein KP. Remodeling of coronary arteries in human and non-human primates. JAMA. 1994;271(4):289–94.

    CAS  PubMed  Google Scholar 

  2. Rumberger JA, Sheedy II PF, Breen JF, Schwartz RS. Coronary calcium, as determined by electron beam computed tomography, and coronary disease on arteriogram: effect of patient’s sex on diagnosis. Circulation. 1995;91:1363–7.

    CAS  PubMed  Google Scholar 

  3. Janowitz WR, Agatston AS, Kaplan G, Viamonte Jr M. Differences in prevalence and extent of coronary artery calcium detected by ultrafast computed tomography in asymptomatic men and women. Am J Cardiol. 1994;72:247–54.

    Google Scholar 

  4. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area: a histopathologic correlative study. Circulation. 1995;92:2157–62.

    CAS  PubMed  Google Scholar 

  5. Mintz GS, Pichard AD, Popma JJ, Kent KM, Satler LF, Bucher TA, Leon MB. Determinants and correlates of target lesion calcium in coronary artery disease: a clinical, angiographic and intravascular ultrasound study. J Am Coll Cardiol. 1997;29(2):268–74.

    CAS  PubMed  Google Scholar 

  6. Schmermund A, Baumgart D, Gorge G, Gronemyer D, Seibel R, Bailey KR, Rumberger JA, Paar D, Erbel R. Measuring the effect of risk factors on coronary atherosclerosis: coronary calcium score versus angiographic disease severity. J Am Coll Cardiol. 1998;31(6):1267–73.

    CAS  PubMed  Google Scholar 

  7. Vlodaver Z, Kahn HA, Neufeld HN. The coronary arteries in early life in three different ethnic groups. Circulation. 1969;39:541–50.

    CAS  PubMed  Google Scholar 

  8. Waller BF, Pinkerton CA, Slack JD. Intravascular ultrasound: a histological study of vessels during life. Circulation. 1992;85:2305–10.

    CAS  PubMed  Google Scholar 

  9. Berry C, L’Allier PL, Grégoire J, Lespérance J, Levesque S, Ibrahim R, Tardif JC. Comparison of intravascular ultrasound and quantitative coronary angiography for the assessment of coronary artery disease progression. Circulation. 2007;115:1851–7.

    PubMed  Google Scholar 

  10. St. Goar FG, Pinto FJ, Alderman EL, Fitzgerald PJ, Stinson EB, Billingham ME, Popp RL. Detection of coronary atherosclerosis in young adult hearts using intravascular ultrasound. Circulation. 1992;86:756–63.

    CAS  PubMed  Google Scholar 

  11. St. Goar FG, Pinto FJ, Alderman EL, Valantine HA, Schroeder JS, Gao SZ, Stinson EB, Popp RL. Intracoronary ultrasound in cardiac transplant recipients. Circulation. 1992;85:979–87.

    CAS  PubMed  Google Scholar 

  12. Johnson TH, McDonald K, Nakhleh R, McGinn AL, Wilson RF, Olivari MT, Kubo SH. Allograft vasculopathy and death in a cardiac transplant patient with angiographically normal coronary arteries. Cathet Cardiovasc Diagn. 1991;24:37–40.

    CAS  PubMed  Google Scholar 

  13. Herzog CA, Ma JZ, Collins AJ. Poor long-term survival after acute myocardial infarction among patients on long-term dialysis. N Engl J Med. 1998;339(12):799–805.

    CAS  PubMed  Google Scholar 

  14. Vavuranakis M, Stefanadis C, Toutouzas K, Pitsavos C, Spanos V, Toutouzas P. Impaired compensatory coronary artery enlargement in atherosclerosis contributes to t e development of coronary artery stenosis in diabetic patients. An in vivo intravascular ultrasound study. Eur Heart J. 1997;18(7):1090–4.

    CAS  PubMed  Google Scholar 

  15. Schaper W, Buschmann I. Collateral circulation and diabetes. Circulation. 1999;99:2224–6.

    CAS  PubMed  Google Scholar 

  16. Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res. 1985;47:341.

    Google Scholar 

  17. Marcus ML, Harrison DG, White CW, McPherson DD, Wilson RF, Kerber RE. Assessing the physiologic significance of coronary obstructions in patients: importance of diffuse undetected atherosclerosis. Prog Cardiovasc Dis. 1988;31:39.

    CAS  PubMed  Google Scholar 

  18. White CW. Physiologic assessment of coronary artery stenosis severity. Trends Cardiovasc Med. 1991;1:70–5.

    CAS  PubMed  Google Scholar 

  19. Gould KL. Percent coronary stenosis: battered gold standard, pernicious relic or clinical practicality? J Am Coll Cardiol. 1988;11:8868.

    Google Scholar 

  20. Raphael MJ, Donaldson RM. A “significant” stenosis: thirty years on. Lancet. 1989;1:207.

    CAS  PubMed  Google Scholar 

  21. Beauman GJ, Vogel RA. Accuracy of individual and panel visual interpretations of coronary arteriograms: implications for clinical decisions. J Am Coll Cardiol. 1990;16:108–13.

    CAS  PubMed  Google Scholar 

  22. Detre KM, Wright E, Murphy ML, Takaro T. Observer agreement in evaluating coronary angiograms. Circulation. 1975;52:979–86.

    CAS  PubMed  Google Scholar 

  23. Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Hawthorne JW. Interobserver variability in coronary arteriography. Circulation. 1976;53:627–32.

    CAS  PubMed  Google Scholar 

  24. DeRouen TA, Murphy JA, Owen W. Variability in the analysis of coronary arteriograms. Circulation. 1977;55:324–8.

    CAS  PubMed  Google Scholar 

  25. Fisher LD, Judkins MP, Lesperance J, et al. Reproducibility of coronary arteriographic reading in the coronary artery surgery study (CASS). Cathet Cardiovasc Diagn. 1982;8:565–75.

    CAS  PubMed  Google Scholar 

  26. Serruys PW, Reiber JHC, Wijns W, Brand M, Kooijman CJ, ten Katen HJ, Hugenholtz PG. Assessment of percutaneous transluminal angioplasty by quantitative angiography: diameter versus densitometric area measurements. Am J Cardiol. 1984;54:482–8.

    CAS  PubMed  Google Scholar 

  27. Meier B, Gruentzig AR, Goebel N, Pyle R, von Gosslar W, Schlumpf F. Assessment of stenoses in coronary angioplasty: inter-and intraobserver variability. Int J Cardiol. 1983;3:159–69.

    CAS  PubMed  Google Scholar 

  28. Scoblionko DP, Brown BG, Mitten S, et al. A new digital electronic caliper for measurement of coronary artery stenosis: comparison with visual estimates and computer-assisted measurements. Am J Cardiol. 1984;53:689–93.

    CAS  PubMed  Google Scholar 

  29. Eusterman JH, Achor RWP, Kincaid OW, Brown Jr AL. Atherosclerotic disease of the coronary arteries. A pathologic-radiologic correlative study. Circulation. 1962;26:1288.

    Google Scholar 

  30. Marcus ML, Harrison DG, White CW, McPherson DD, Wilson RF, Kerber RE. Assessing the physiologic significance of coronary obstructions in patients: importance of diffuse undetected atherosclerosis. Prog Cardiovasc Dis. 1988;31:39–56.

    CAS  PubMed  Google Scholar 

  31. Sanmarco ME, Brooks SH, Blankenhorn DH. Reproducibility of a consensus panel in the interpretation of coronary angiograms. Am Heart J. 1978;96:430–7.

    CAS  PubMed  Google Scholar 

  32. Galbraith JE, Murphy ML, de Soyza N. Coronary angiogram interpretation. JAMA. 1978;240:2053–6.

    CAS  PubMed  Google Scholar 

  33. Hermiller JB, Cusma JT, Spero LA, Fortin DF, Hardin MB, Bashore TM. Quantitative and qualitative coronary angiographic analysis: review of methods, utility and limitations. Cathet Cardiovasc Diagn. 1992;25:110–31.

    CAS  PubMed  Google Scholar 

  34. Mancini JGB. Quantitative coronary arteriography: development of methods, limitations and clinical applications. Am J Cardiac Imaging. 1988;2:98–109.

    Google Scholar 

  35. Brown BG, Bolston EL, Dodge HT. Quantitative computer techniques for analyzing coronary arteriograms. Prog Cardiovasc Dis. 1986;18:403–18.

    Google Scholar 

  36. Reiber JHC. Morphologic and densitometric quantitation of coronary stenoses: an overview of existing quantitation techniques. In: Reiber JHC, Serruys PW, editors. New developments in quantitative coronary arteriography. Dordrecht: Martinus Nijhoff; 1988. p. 34.

    Google Scholar 

  37. Gensini GG, Kelly AE, DaCosta BCB, Huntington PP. Quantitative angiography: the measurement of coronary vasomobility in the intact animal and man. Chest. 1971;60:522–30.

    CAS  PubMed  Google Scholar 

  38. Kalbfleisch SJ, McGillem MJ, Pinto IMF, Kavanaugh KM, De-Boe SF, Mancini GBJ. Comparison of automated quantitative coronary angiography with caliper measurements of percent diameter stenosis. Am J Cardiol. 1990;65:1181–4.

    CAS  PubMed  Google Scholar 

  39. Scoblionko DP, Brown BG, Mitten S, Caldwell JH, Kennedy JW, Bolson EL, Dodge HT. A new digital electronic caliper for measurement of coronary arterial stenosis: comparison with visual estimates and computer-assisted measurements. Am J Cardiol. 1984;53:689–93.

    CAS  PubMed  Google Scholar 

  40. Reiber JHC, Kooijman CJ, Slager CG, Gerbrands JJ, Schuurbiers JCH, den Boer A, Wijns W, Serruys PW, Hugenholtz PG. Coronary artery dimension from cineangiograms: methodology and validation of a computer assisted analysis procedure. IEEE Trans Med Imaging. 1984;MI-3:131–41.

    Google Scholar 

  41. Reiber JHC, Serruys PW, Kooijman CJ, Slager CJ, Schuurbiers JHC, den Boer A. Approaches to standardization in acquisition and quantitation of arterial dimensions from cineangiograms. In: Reiber JHL, Serruys PW, editors. State of the art in quantitative coronary arteriography. Boston: Martinus Nijhoff Publishers; 1986. p. 145.

    Google Scholar 

  42. Reiber JHC. Morphologic and densito-metric analysis of coronary arteries. In: Heintzen PH, Bursch JH, editors. Progress in digital angiocardiography. London: Kluwer Academic Publishers; 1988. p. 137.

    Google Scholar 

  43. Reiber JHC, Serruys PW, Kooijman CJ, Wijn W, Slager CJ, Gerbrands JJ, Schuurbiers JCH, den Boer A, Hugenholtz PG. Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation. 1985;71:280–8.

    CAS  PubMed  Google Scholar 

  44. Langer A, Wilson RF. Comparison of manual versus automated edge detection for determining degrees of luminal narrowing by quantitative coronary angiography. Am J Cardiol. 1991;67:885–9.

    CAS  PubMed  Google Scholar 

  45. Mancini GBJ, Simon SB, McGillem MJ, LeFree MT, Friedman HZ, Vogel RA. Automated quantitative coronary arteriography: morphologic and physiologic validation in vivo of a rapid digital angiographic method. Circulation. 1987;75:452–60.

    CAS  PubMed  Google Scholar 

  46. Cusma JT, Spero LA, Hanemann JD, Bashore TM, Morris KG. A multiuser environment for the display and processing of digital cardiac angiographic images. Proc SPIE. 1990;1233:310–20.

    Google Scholar 

  47. Spears JR, Sandor T. Quantitation of coronary artery stenosis severity: limitations of angiography and computerized information extraction. In: Reiber JHC, Serruys PW, editors. State of the art in quantitative coronary arteriography. Dordrecht: Martinus Nijhoff; 1986. p. 103.

    Google Scholar 

  48. Sanders WJ, Alderman EL, Harrison DC. Coronary artery quantitation using digital image processing. Comput Cardiol. 1979;7:15.

    Google Scholar 

  49. Kirkeeide RL, Smalling RW, Gould KL. Automated measurements of artery diameter from arteriograms (abstr). Circulation. 1982;66:II-325.

    Google Scholar 

  50. Doiot PA. On the accuracy of densitometric measurements of coronary artery stenosis based on Lambert-Beer’s absorption law. In: Reiber JHC, Serruys PW, editors. New developments in quantitative coronary arteriography. Dordrecht: Martinus Nijhoff; 1988. p. 115.

    Google Scholar 

  51. Parker DL, Pope DL, Petersen JC, et al. Quantitation in cardiac video-densitometry. Comput Cardiol. 1984:119.

    Google Scholar 

  52. Nichols AB, Gabrieli CFO, Fenoglio Jr JJ, Esser PD. Quantification of relative coronary arterial stenosis by cinevideodensitometric analysis of coronary arteriograms. Circulation. 1984;69:512.

    CAS  PubMed  Google Scholar 

  53. LeFree MT, Simon SB, Lewis RJ, et al. Digital radiographic coronary artery quantification. Comput Cardiol. 1985:99.

    Google Scholar 

  54. Johnson MR, Skorton DJ, Ericksen EE, Fleagle SR, Wilson RF, Hiratzka LF, White CW, Marcus ML, Collins SM. Videodensitometric analysis of coronary stenoses in vivo geometric and physiologic validation in humans. Invest Radiol. 1988;23:891–8.

    CAS  PubMed  Google Scholar 

  55. Whiting JS, Pfaff JM, Eigler NL. Advantages and limitations of videodensitometry in quantitative coronary angiography. In: Reiber JHC, Serruys PW, editors. Quantitative coronary arteriography. Dordrecht, Netherlands: Kluwer Academic Publishers; 1991. p. 43.

    Google Scholar 

  56. Spears JR, Sandor T, Als AV, Malagold M, Markis JE, Grossman W, Serur JR, Paulin S. Computerized image analysis for quantitative measurement of vessel diameter from cineangiograms. Circulation. 1983;68:453–61.

    CAS  PubMed  Google Scholar 

  57. Leung WH, Demopulos PA, Alderman EL, Sanders W, Stadius ML. Evaluation of catheters and metallic catheter markers as calibration standard for measurement of coronary dimension. Cathet Cardiovasc Diagn. 1990;21:148–53.

    CAS  PubMed  Google Scholar 

  58. Reiber JHC, Kooijman CJH, den Boer A, Serruys PW. Assessment of dimensions and image quality of coronary contrast catheters from cineangiograms. Cathet Cardiovasc Diagn. 1985;11:521–31.

    CAS  PubMed  Google Scholar 

  59. Ellis SG, Pinto IMF, McGillem MJ, DeBoe SF, LeFree MT, Mancini GBJ. Accuracy and reproducibility of quantitative coronary arteriography using 6 and 8 French catheters with cineangiographic acquisition. Cathet Cardiovasc Diagn. 1991;22:52–5.

    CAS  PubMed  Google Scholar 

  60. Fortin DF, Spero LA, Cusma JT, Santoro L, Burgess R, Bashore TM. Pitfalls in the determination of absolute dimensions using angiographic catheters as calibration devices in quantitative angiography. Am J Cardiol. 1991;68(11):1176–82.

    CAS  PubMed  Google Scholar 

  61. DiMario C, Hermans WRM, Rensing BJ, Serruys PW. Calibration using angiographic catheters as scaling devices – importance of filming the catheters not filled with contrast medium. Am J Cardiol. 1992;69:1377–8.

    CAS  Google Scholar 

  62. Fortin DF, Spero LA, Cusma JT, Santoro L, Burgess R, Bashore TM. Pitfalls in the determination of absolute dimensions using angiographic catheters as calibration devices in quantitative angiography. Am J Cardiol. 1991;68:1176–82.

    CAS  PubMed  Google Scholar 

  63. Lesperance J, Hudon G, White CW, Laurier J, Waters D. Comparison by quantitative angiographic assessment of coronary stenoses of one view showing the severest narrowing to tow orthogonal views. Am J Cardiol. 1989;64:462–5.

    CAS  PubMed  Google Scholar 

  64. Katz LN, Lindner E. Quantitative relation between reactive hyperemia and the myocardial ischemia which it follows. Am J Physiol. 1939;126:283.

    Google Scholar 

  65. Click RL, Holmes DR, Vlietstra RE, Kosinski AS, Kronmal RA. Anomalous coronary arteries: location, degree of atherosclerosis and effect on survival – a report from the coronary artery surgery study. J Am Coll Cardiol. 1989;13:531–7.

    CAS  PubMed  Google Scholar 

  66. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med. 1984;310:819–24.

    CAS  PubMed  Google Scholar 

  67. Wilson RF, Laughlin DE, Holida MD, Hartley CJ, Marcus JL, White CW. Transluminal subselective measurement of coronary blood flow velocity and vasodilator reserve in man. Circulation. 1985;72(1):82–92.

    CAS  PubMed  Google Scholar 

  68. Wilson RF, Laughlin DE, Ackell PH, et al. Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation. 1985;72:82.

    CAS  PubMed  Google Scholar 

  69. Wilson RF, White CW. Intracoronary papaverine: an ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation. 1986;73:444.

    CAS  PubMed  Google Scholar 

  70. Wilson RF, White CW. Serious ventricular dysrhythmias after intracoronary papaverine. Am J Cardiol. 1988;62:1301–2.

    CAS  PubMed  Google Scholar 

  71. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation. 1990;82:1595–606.

    CAS  PubMed  Google Scholar 

  72. Nissen SE, Gurley JC, Booth DC, DeMaria AN. Intravascular ultrasound of the coronary arteries: current applications and future directions. Am J Cardiol. 1992;69:18H–29.

    CAS  PubMed  Google Scholar 

  73. Wilson RF, White CW. Does coronary bypass surgery restore normal coronary flow reserve? The effect of diffuse atherosclerosis and focal obstructive lesions. Circulation. 1987;76:563–71.

    CAS  PubMed  Google Scholar 

  74. Wilson RF. Assessing the severity of coronary artery stenoses. N Engl J Med. 1996;334:1735–7.

    CAS  PubMed  Google Scholar 

  75. Pijls NHJ, Van Gelder B, Van der Voort P, Peels K, Bracke FALE, Bonnier HJRM, El Gamal MIH. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation. 1995;92:3183–93.

    CAS  PubMed  Google Scholar 

  76. Pijls NHJ, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJRM, Bartunek J, Koolen JJ. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334:1703–8.

    CAS  PubMed  Google Scholar 

  77. Bech GJW, Pijls NHJ, De Bruyne B, Peels KH, Michels HR, Bonnier HJRM, Koolen JJ. Usefulness of fractional flow reserve to predict clinical outcome after balloon angioplasty. Circulation. 1999;99:883–8.

    CAS  PubMed  Google Scholar 

  78. Bech GJWS, DeBruyne B, Bonnier HJRM, Bartunek J, Wijns W, Peels K, Heyndrickx GR, Koolen JJ, Pijls NHJ. Long-term follow-up after deferral of percutaneous transluminal coronary angioplasty of intermediate stenosis on the basis of coronary pressure measurement. J Am Coll Cardiol. 1998;31:841–7.

    CAS  PubMed  Google Scholar 

  79. Lesser JR, Wilson RF, White CW. Physiologic assessment of coronary stenoses of intermediate severity can facilitate patient selection for coronary angioplasty. Coron Artery Dis. 1990;1:697–705.

    Google Scholar 

  80. Bech GJW, De Bruyne B, Pijls NHJ, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation. 2001;103:2928–34.

    CAS  PubMed  Google Scholar 

  81. De Bruyne B, Pijls NH, Kalesan B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367:991–1001.

    PubMed  Google Scholar 

  82. Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    CAS  PubMed  Google Scholar 

  83. Doucette JW, Corl D, Payne H, Flynn A, Goto M, Nassi M, Segal J. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation. 1992;85:1899–911.

    CAS  PubMed  Google Scholar 

  84. Vanyi J, Bowers T, Jarvis G, White CW. Can an intracoronary Doppler wire accurately measure changes in coronary blood flow velocity? Cathet Cardiovasc Diagn. 1993;29:240.

    CAS  PubMed  Google Scholar 

  85. von Restorff W, Hofling B, Holtz J, Bassenge E. Effect of increased blood fluidity through hemodilution on coronary circulation at rest and during exercise in dogs. Pflugers Arch. 1975;357:15–24.

    Google Scholar 

  86. Marcus ML, Doty DB, Hiratzka LF, Wright CB, Eastham CL. Decreased coronary reserve: a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N Engl J Med. 1982;307:1362–6.

    CAS  PubMed  Google Scholar 

  87. Olinger GN, Mulder DG, Maloney Jr JV, Buckberg GD. Phasic coronary flow: intraoperative evaluation of flow distribution, myocardial function, and reactive hyperemic response. Ann Thorac Surg. 1976;21:397–404.

    CAS  PubMed  Google Scholar 

  88. White CW. Clinical applications of Doppler coronary flow reserve measurements. Am J Cardiol. 1993;71:10D–6.

    CAS  PubMed  Google Scholar 

  89. Ophertz D, Zebe H, Weihe E, Mall G, Dun C, Gravert B, Mehmel HC, Schwartz F, Kubler W. Reduced coronary dilator capacity and ultrastructural changes in patients with angina pectoris but normal coronary arteriograms. Circulation. 1981;63:817–25.

    Google Scholar 

  90. Klocke FJ. Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation. 1987;76:1183.

    CAS  PubMed  Google Scholar 

  91. McGinn AL, White CW, Wilson RF. Interstudy variability of coronary flow reserve: influence of heart rate, arterial pressure, and ventricular preload. Circulation. 1990;81:1319–28.

    CAS  PubMed  Google Scholar 

  92. Pijls NHJ, Van Son JAM, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation. 1993;87:1354–67.

    CAS  PubMed  Google Scholar 

  93. Little WC, Applegate RJ. Role of plaque size and degree of stenosis in acute myocardial infarction. Cardiol Clin. 1996;14(2):221–8.

    CAS  PubMed  Google Scholar 

  94. Wilson RF, Marcus ML, Christensen BV, Talman CL, White CW. The accuracy of exercise electrocardiography in predicting the physiologic significance of coronary arterial stenoses. Circulation. 1991;83:412–21.

    CAS  PubMed  Google Scholar 

  95. Wijns TL, Serruys PW, Reiber JH, van den Brand M, Simoons ML, Kooijman CJ, Balakumaran K, Hugenholtz PG. Quantitative angiography of the left anterior descending coronary artery: correlations with pressure gradient and results of exercise thallium scintigraphy. Circulation. 1985;71:273–9.

    CAS  PubMed  Google Scholar 

  96. Lesser JR, Wilson RF, White CW. Physiologic assessment of coronary stenoses of intermediate severity can facilitate patient selection for coronary angioplasty. Coron Artery Dis. 1990;1:697–705.

    Google Scholar 

  97. Crossman DC, Larkin SW, Fuller RW, Davies GJ, Maseri A. Substance P dilates epicardial coronary arteries and increases coronary blood flow in humans. Circulation. 1989;80:475–84.

    CAS  PubMed  Google Scholar 

  98. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315:1046–51.

    CAS  PubMed  Google Scholar 

Angiographic Findings in Infarction and Acute Coronary Syndromes

  1. Wilson RF, Ackell PH, Wysham DG, Buchanan DA, White CW. Effect of tissue plasminogen activator (rt-PA) on coronary lumenal dimensions in patients with abrupt onset of unstable angina. Clin Res. 1986;24(4):905A (abstr).

    Google Scholar 

  2. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild to moderate coronary artery disease? Circulation. 1988;78:1157–66.

    CAS  PubMed  Google Scholar 

  3. Little WC. Angiographic assessment of the culprit coronary artery lesion before acute myocardial infarction. Am J Cardiol. 1990;66:44G–7.

    CAS  PubMed  Google Scholar 

  4. Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, Borrico S, Gorlin R, Fuster V. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12:56–62.

    CAS  PubMed  Google Scholar 

  5. Hacket D, Verwilghen J, Davies G, Maseri A. Coronary stenoses before and after acute myocardial infarction. Am J Cardiol. 1989;63:1517–8.

    Google Scholar 

  6. Webster MWI, Chesebro JH, Smith HC, Frye RL, Holmes DR, Reeder GS, Bresmahan DR, Nishimura RZ, Clements IP, Bardsley WT, Grill DE, Bailey KR, Fuster V. Myocardial infarction and coronary artery occlusion: a prospective 5 yr angiographic study. J Am Coll Cardiol. 1990;15:218A.

    Google Scholar 

  7. Wilson RF, Holida MD, White CW. Quantitative angiographic morphology of coronary stenoses leading to myocardial infarction or unstable angina. Circulation. 1986;73:286–93.

    CAS  PubMed  Google Scholar 

  8. DeWood MA, Spores J, Notske RN, Mouser LT, Burroughs R, Mohiuddin S. Incidence of total coronary occlusion and thrombosis in the early phase of acute transmural myocardial infarction. Clin Res. 1979;27:162.

    Google Scholar 

  9. DeWood MA, Stifter WF, Simpson CS, Spores J, Eugster GS, Judge TP, Hinnen ML. Coronary arteriographic findings soon after non-Q-wave myocardial infarction. N Engl J Med. 1986;315:417–23.

    CAS  PubMed  Google Scholar 

  10. Falk E. Thrombosis in unstable angina: pathologic aspects. Cardiovasc Clin. 1987;18(1):137–49.

    CAS  PubMed  Google Scholar 

  11. Davies MJ, Thomas AC. Placque fissuring – the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J. 1985;53:363–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Falk E. Coronary thrombosis: pathogenesis and clinical manifestations. Am J Cardiol. 1991;68:288–358.

    Google Scholar 

  13. Sherman CT, Litvack F, Grundfest W, Lee M, Hickey A, Chaux A, Kass R, Blanche C, Matloff J, Morgenstern L, Ganz W, Swan HJC, Forrester J. Coronary angioscopy in patients with unstable angina pectoris. N Engl J Med. 1986;315:913–9.

    CAS  PubMed  Google Scholar 

  14. Ambrose JA, Hjemdahl-Monsen C, Borrico S, Sherman W, Cohen M, Gorlin R, Fuster V. Quantitative and qualitative effects of intracoronary streptokinase in unstable angina and non-Q wave infarction. J Am Coll Cardiol. 1987;9:1156–65.

    CAS  PubMed  Google Scholar 

  15. Levin DC, Fallon JT. Significance of the angiographic morphology of localized coronary stenosis. histopathologic correlations. Circulation. 1982;66:316.

    CAS  PubMed  Google Scholar 

  16. Davies SW, Marchant B, Lyons JP, Timmis AD, Rothman MT, Layton CA, Balcon R. Coronary lesion morphology in acute myocardial infarction: demonstration of early remodeling after streptokinase treatment. J Am Coll Cardiol. 1990;16:1079–86.

    CAS  PubMed  Google Scholar 

  17. Ambrose JA, Winters SL, Arora RR, et al. Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol. 1986;7:472–8.

    CAS  PubMed  Google Scholar 

  18. Ambrose JA, Winters SL, Arora RR, et al. Coronary angiographic morphology in myocardial infarction: a link between the pathogenesis of unstable angina and myocardial infarction. J Am Coll Cardiol. 1985;6:1233–8.

    CAS  PubMed  Google Scholar 

  19. Ambrose JA, Winters SL, Stern A, Eng A, Teichholz LE, Gorlin R, Fuster V. Angiographic morphology and the pathogenesis of unstable angina pectoris. J Am Coll Cardiol. 1985;5:609–16.

    CAS  PubMed  Google Scholar 

  20. Davies SW, Marchant B, Lyons JP, Timmis AD, Rothman MT, Layton CA, Balcon R. Coronary lesion morphology in acute myocardial infarction: demonstration of early remodeling after streptokinase treatment. J Am Coll Cardiol. 1990;16:1079–86.

    CAS  PubMed  Google Scholar 

  21. TIMI Research Group. Immediate vs delayed catheterization and angioplasty following thrombolytic therapy for acute myocardial infarction: TIMI IIA results. JAMA. 1988;260:2849–58.

    Google Scholar 

  22. Gibson CM, Murphy SA, Rizzo MJ, Ryan KA, Marble SJ, McCabe CH, Cannon CP, Van de Werf F, Braunwald E. Relationship between TIMI frame count and clinical outcomes after thrombolytic administration. Thrombolysis In Myocardial Infarction (TIMI) Study Group. Circulation. 1999;99:1945–50.

    Google Scholar 

  23. Gibson CM, Cannon CP, Murphy SA, Ryan KA, Mesley R, Marble SJ, McCabe CH, Van de Werf F and Braunwald E for the TIMI Study Group. Relationship of TIMI myocardial perfusion grade to mortality after administration of thrombolytic drugs. Circulation. 2000;101:125–30.

    Google Scholar 

  24. Harrison DG, Fergusion DW, Collins SM, Skorton DJ, Ericksen EE, Kioschos JM, Marcus ML, White CW. Rethrombosis after reperfusion with streptokinase: importance of geometry of residual lesions. Circulation. 1984;69:991–9.

    CAS  PubMed  Google Scholar 

  25. Davies SW, Marchant B, Lyons JP, Timmis AD, Rothman MT, Layton CA, Balcon R. Irregular lesion morphology after thrombolysis predicts early clinical instability. J Am Coll Cardiol. 1991;18:669–74.

    CAS  PubMed  Google Scholar 

  26. Freeman MR, Langer A, Wilson RF, Morgan CD, Armstrong PW. Thrombolysis in unstable angina: randomized double blind trial of tPA and placebo. Circulation. 1992;85:150–7.

    CAS  PubMed  Google Scholar 

  27. Brown BG, Gallery CA, Badger RS, Kennedy JW, Mathey D, Bolson EL, Dodge HT. Incomplete lysis of thrombus in the moderate underlying atherosclerotic lesion during intracoronary infusion of streptokinase for acute myocardial infarction: quantitative angiographic observations. Circulation. 1986;73:653–61.

    CAS  PubMed  Google Scholar 

  28. Satler LF, Pallas RS, Bond OB, Green CE, Pearle DL, Schaer GL, Kent KM, Rackley CE. Assessment of residual coronary arterial stenosis after thrombolytic therapy during acute myocardial infarction. Am J Cardiol. 1987;59:1231–3.

    CAS  PubMed  Google Scholar 

  29. Ellis SG, Topol EJ, George BS, Kereiakes DJ, Debowey D, Sigmon KN, Pickel A, Lee KL, Califf RM. Recurrent ischemia without warning – analysis of risk factors for in-hospital ischemic events following successful thrombolysis with intravenous tissue plasminogen activator. Circulation. 1989;80:1159–65.

    CAS  PubMed  Google Scholar 

  30. White CW. Recurrent ischemic events after successful thrombolysis in acute myocardial infarction: the Achilles’ heel of thrombolytic therapy. Circulation. 1989;80:1482–5.

    CAS  PubMed  Google Scholar 

  31. Lower R. Tractus de Corde. Amsterdam: Elsevier; 1669.

    Google Scholar 

  32. Knoebel SB, McHenry PL, Phillips JF, Pauletto FJ. Coronary collateral circulation and myocardial blood flow reserve. Circulation. 1972;46:84–94.

    CAS  PubMed  Google Scholar 

  33. Smith Jr SC, Gorlin R, Herman MV, Taylor WJ, Collins Jr JJ. Myocardial blood flow in man: effects of coronary collateral circulation and coronary artery bypass surgery. J Clin Invest. 1972;51:2556–65.

    PubMed Central  PubMed  Google Scholar 

  34. Seiler C. The human myocardial stain as mitigated by coronary collaterals. Circulation. 2013;127:670–2.

    PubMed  Google Scholar 

  35. Traupe T, Gloekler S, de Marchi SF, Werner GS, Seiler C. Assessment of the human coronary collateral circulation. Circulation. 2010;122:1210–20.

    PubMed  Google Scholar 

  36. Baroldi G, Mantero O, Scomazzoni G. The collaterals of the coronary arteries in normal and pathologic hearts. Circ Res. 1956;4:223–9.

    CAS  PubMed  Google Scholar 

  37. Fulton WFM. Arterial anastomoses in the coronary circulation. II. Distribution, enumeration and measurement of coronary arterial anastomoses in health and disease. Scott Med J. 1963;8:466–74.

    CAS  PubMed  Google Scholar 

  38. Fulton WF. The coronary arteries. Springfield: Thomas; 1965.

    Google Scholar 

  39. Schaper W, Sharma HS, Quinkler W, Markert U, Wunsch M, Schaper J. Molecular biologic concepts of coronary anastomoses. J Am Coll Cardiol. 1990;15:513–8.

    CAS  PubMed  Google Scholar 

  40. Yang SS, Bentivoglio LG, Maranhao V, Goldberg H. Assessment of coronary artery disease. In: Yang SS, Bentivoglio LG, Maranhao V, Goldberg H, editors. From cardiac catherterization data to hemodynamic parameters. 3rd ed. Philadelphia: FA Davis; 1988. p. 256.

    Google Scholar 

  41. Levin DC. Pathways and functional significance of the coronary collateral circulation. Circulation. 1974;50:831.

    CAS  PubMed  Google Scholar 

  42. Franklin D, McKnown D, McKnown M, et al. Development and regression of coronary collaterals induced by repeated, reversible ischemia in dogs. Fed Proc. 1981;40:339 (abstr).

    Google Scholar 

  43. Yamamoto H, Tomoike H, Shimokawa H, Nabeyama S, Nakamura M. Development of collateral function with repetitive coronary occlusion in a canine model reduces myocardial reactive hyperemia in the absence of significant coronary stenosis. Circ Res. 1984;55:623–32.

    CAS  PubMed  Google Scholar 

  44. Harrison DG, Sellke FW, Quillen JE. Neurohumoral regulation of coronary collateral vasomotor tone. Basic Res Cardiol. 1990;85 Suppl 1:121–9.

    PubMed  Google Scholar 

  45. Bache RJ, Foreman B, Hautamaa PV. Response of canine coronary collateral vessels to ergonovine and a-adrenergic stimulation. Am J Physiol. 1991;261(Heart Circ Physiol 30):H1019–25.

    Google Scholar 

  46. Takeshita A, Koiwaya Y, Nakamura M, Yamamoto K, Torii S. Immediate appearance of coronary collaterals during ergonovine-induced arterial spasm. Chest. 1982;82:319.

    CAS  PubMed  Google Scholar 

  47. Rentrop KP, Cohen M, Blanke H, Phillips RA. Changes in collateral channel filling immediately after controlled coronary artery occlusion by angioplasty balloon in human subjects. J Am Coll Cardiol. 1985;5:587.

    CAS  PubMed  Google Scholar 

  48. Meier B, Luethy P, Finci L, Steffenino GD, Rutishauser W. Coronary wedge pressure in relation to spontaneously visible and recruitable collaterals. Circulation. 1987;75:906–13.

    CAS  PubMed  Google Scholar 

  49. Helfant RH, Vokonas PS, Gorlin R. Functional importance of the human coronary collateral circulation. N Engl J Med. 1971;284:1277–81.

    CAS  PubMed  Google Scholar 

  50. Gorlin R. Chapter 4. Coronary collaterals. In: Coronary artery disease. Philadelphia: Saunders; 1976.

    Google Scholar 

  51. Sasayama S, Fujita M. Recent insights into coronary collateral circulation. Circulation. 1992;85:1197–204.

    CAS  PubMed  Google Scholar 

  52. Rentrop KP, Thorton JC, Feit F, Buskirk MV. Determinants and protective potential as assessed by an angioplasty model of coronary arterial collaterals. Am J Cardiol. 1988;61:677–84.

    CAS  PubMed  Google Scholar 

  53. Hirai T, Fujita M, Nakajima H, Asanoi H, Yamanishi K, Ohno A, Sasayama S. Importance of collateral circulation for prevention of left ventricular aneurysm formation in acute myocardial infarction. Circulation. 1989;79:791–6.

    CAS  PubMed  Google Scholar 

  54. Epstein SE. Influence of stenosis severity on coronary collateral development and importance of collaterals in maintaining left ventricular function during acute coronary occlusion. Am J Cardiol. 1988;61:866–8.

    CAS  PubMed  Google Scholar 

  55. Topol EJ, Ellis SG. Coronary collaterals revisited: accessory pathway to myocardial preservation during infarction. Circulation. 1991;83:1084–6.

    CAS  PubMed  Google Scholar 

  56. Rentrop KP, Cohen M, Blanke H, Phillips RA. Changes is collateral channel filling immediately after controlled coronary occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol. 1985;5:587–92.

    CAS  PubMed  Google Scholar 

  57. Schaper W. Residual perfusion of acutely ischemic heart muscle. Amsterdam: Elsevier Biomedical; 1979. p. 345.

    Google Scholar 

Coronary Vasospasm

  1. Ginsburg R, Schroeder JS. Coronary spasm producing coronary thrombosis. N Engl J Med. 1983;309:648.

    Google Scholar 

  2. Oliva PB, Potts DE, Pluss RG. Coronary arterial spasm in prinzmetal angina. N Engl J Med. 1973;288:745–51.

    CAS  PubMed  Google Scholar 

  3. Maseri A, Chierchia S. Coronary artery spasm: demonstration, definition, diagnosis, and consequences. Prog Cardiovasc Dis. 1982;25:169–92.

    CAS  PubMed  Google Scholar 

  4. Schroeder JS, Bolen JL, Quint RA, Clark DA, Hayden WG, Higgins CB, Wexler L. Provocation of coronary spasm with ergonovine maleate. Am J Cardiol. 1977;40:487–91.

    CAS  PubMed  Google Scholar 

  5. Heupler FA, Proudfit WL, Razavi M, Shirey EK, Greenstreet R, Sheldon WC. Ergonovine maleate provocative test for coronary arterial spasm. Am J Cardiol. 1978;41:631–40.

    PubMed  Google Scholar 

  6. Curry RC, Pepine CJ, Sabom MB, Feldman RL, Christie LG, Conti CR. Effects of ergonovine in patients with and without coronary artery disease. Circulation. 1977;56:804–9.

    Google Scholar 

  7. Chahine RA, Raizner AE, Ishimori T, Luchi RJ, McIntosh HD. The incidence and clinical implications of coronary artery spasm. Circulation. 1975;52:972–8.

    CAS  PubMed  Google Scholar 

  8. Curry RC, Pepine CJ, Sabom MB, Feldman RL, Christie LG, Varnell JH, Conti CR. Hemodynamic and myocardial metabolic effects of ergonovine in patients with chest pain. Circulation. 1978;58:648–54.

    PubMed  Google Scholar 

  9. Rall TW. Oxytocin, prostaglandins, ergot alkaloids, and other drugs; tocolytic agents. In: Gilman G, Goodman LS, Rall TW, Murad F, editors. The pharmacological basis of therapeutics. New York: Macmillan; 1985. p. 936–40.

    Google Scholar 

  10. Kugiyama K, Ohgushi M, Motoyama T, Sugiyama S, Soejima H, Matsumura T, Yoshimura M, Ogawa H, Yasue H. Enhancement of constrictor response of spastic coronary arteries to acetylcholine but not to phenylephrine in patients with coronary spastic angina. J Cardiovasc Pharmacol. 1999;33:414–9.

    CAS  PubMed  Google Scholar 

  11. Feldman RL, Curry RC, Pepine CJ, Mehta J, Conti CR. Regional coronary hemodynamic effects of ergonovine in patients with and without variant angina. Circulation. 1980;62:149–59.

    CAS  PubMed  Google Scholar 

  12. Okumura K, Yasue H, Matsuyama K, et al. Sensitivity and specificity of intracoronary injection of acetylcholine for the induction of coronary artery spasm. J Am Coll Cardiol. 1988;12:883–8.

    CAS  PubMed  Google Scholar 

  13. Cipriano PR, Guthaner DF, Orlick AE, Ricci DR, Wexler L, Silverman JF. The effects of ergonovine maleate on coronary arterial size. Circulation. 1979;59:82–9.

    CAS  PubMed  Google Scholar 

  14. Magder SA, Johnstone DE, Huckell VF, Adelman AG. Experience with ergonovine provocative testing for coronary arterial spasm. Chest. 1981;79:638–46.

    CAS  PubMed  Google Scholar 

  15. Kodama K, Yamagishi M, Nanto S, Kuzuya T, Koretsune Y, Tamai J, Tada M, Inoue M. Comparison of coronary hemodynamic and cardiac metabolic alterations during coronary artery spasm associated with ST segment elevation or depression. Jpn Circ J. 1985;49:422–31.

    CAS  PubMed  Google Scholar 

  16. Whittle JL, Feldman RL, Pepine CJ, Curry RC, Conti CR. Variability of electrocardiographic responses to repeated ergonovine provocation in variant angina patients with coronary artery spasm. Am Heart J. 1982;103:161–7.

    CAS  PubMed  Google Scholar 

  17. Matsuda Y, Ogawa H, Moritani K, Matsuda M, Katayama K, Fuji T, Kohno M, Miura T, Kohtoku S, Kusukawa R. Transient appearance of collaterals during vasospastic occlusion in patients without obstructive coronary atherosclerosis. Am Heart J. 1985;109:759–63.

    CAS  PubMed  Google Scholar 

  18. Takeshita A, Koiwaya Y, Nakamura M, Yamamoto K, Torii S. Immediate appearance of coronary collaterals during ergonovine-induced arterial spasm. Chest. 1982;82:319–22.

    CAS  PubMed  Google Scholar 

  19. Hom GA, Brent BN. Coronary artery vasospasm during treatment with intravenous nitroglycerin. Cathet Cardiovasc Diagn. 1985;11:423–6.

    CAS  PubMed  Google Scholar 

  20. Kurnik PB, Spadaro JJ, Nordlicht SM, Tiefenbrunn AJ, Ludbrook PA. Prolonged coronary vasoconstrictor effect of ergonovine maleate. Cathet Cardiovasc Diagn. 1984;10:353–61.

    CAS  PubMed  Google Scholar 

  21. Mantyla R, Kanto J. Clinical pharmacokinetics of methylergometrine (methylergonovine). Int J Clin Pharmacol Ther Toxicol. 1981;19:386–91.

    CAS  PubMed  Google Scholar 

  22. Harding MB, Leithe ME, Mark DB, Nelson CL, Harrison JK, Hermiller JB, Davidson CJ, Pryor DB, Bashore TM. Ergonovine maleate testing during cardiac catheterzation: a 10-year perspective in 3, 447 patients without significant coronary artery disease or prinzmetal’s variant angina. J Am Coll Cardiol. 1992;20:107–11.

    CAS  PubMed  Google Scholar 

  23. Bertrand ME, LaBlanche JM, Tilmant PY, Thieuleux FA, Delforge MR, Carre AG, Asseman P, Berzin B, Libersa C, Laurent JM. Frequency of provoked coronary arterial spasm in 1089 consecutive patients undergoing coronary arteriography. Circulation. 1982;65:1299–308.

    CAS  PubMed  Google Scholar 

  24. Ogasawara K, Aizawa T, Nishimura K, Satoh H, Fujii J, Katoh K. Beta-thromboglobulin release within coronary circulation – a potential role of platelets in ergonovine-induced coronary vasospasm. Int J Cardiol. 1986;10:15–22.

    CAS  PubMed  Google Scholar 

  25. Yui Y, Hattori R, Takatsu Y, Kawai C. Selective thromboxane A2 synthetase inhibition in vasospastic angina pectoris. J Am Coll Cardiol. 1986;7:25–9.

    CAS  PubMed  Google Scholar 

  26. Maleki M, Manley JC. Venospastic phenomena of saphenous vein bypass grafts: possible causes for unexplained postoperative recurrence of angina or early or late occlusion of vein bypass grafts. Br Heart J. 1989;62:57–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Hosio A, Kotake H, Mashiba H. Significance of coronary artery tone in patients with vasospastic angina. J Am Coll Cardiol. 1989;14:604–9.

    Google Scholar 

  28. Hill JA, Feldman RL, Pepine CJ, Conti CR. Regional coronary artery dilation response in variant angina. Am Heart J. 1982;104:226–33.

    CAS  PubMed  Google Scholar 

  29. Kaski JC, Maseri A, Vejar M, Crea F, Hackett D. Spontaneous coronary artery spasm in variant angina is caused by a local hyperreactivity to a generalized constrictor stimulus. J Am Coll Cardiol. 1989;14:1456–63.

    CAS  PubMed  Google Scholar 

  30. Feldman RL, Pepine CJ, Whittle JL, Curry RC, Conti CR. Coronary hemodynamic findings during spontaneous angina in patients with variant angina. Circulation. 1981;64:76–83.

    CAS  PubMed  Google Scholar 

  31. Bentivoglio LG, Leo LR, Wolf NM, Meister SG. Frequency and importance of unprovoked coronary spasm in patients with angina pectoris undergoing percutaneous transluminal coronary angioplasty. Am J Cardiol. 1983;51:1067–71.

    CAS  PubMed  Google Scholar 

  32. Bott-Silverman C, Heupler FA, Yiannikas J. Variant angina: comparison of patients with and without fixed severe coronary artery disease. Am J Cardiol. 1984;54:1173–5.

    CAS  PubMed  Google Scholar 

  33. Mark DB, Califf RM, Morris KG, Harrell FE, Pryor DB, Hlatky MA, Lee KL, Rosati RA. Clinical characteristics and long-term survival of patients with variant angina. Circulation. 1984;69:880–8.

    CAS  PubMed  Google Scholar 

  34. Egashira K, Kikuchi Y, Sagara T, Sugihara M, Nakamura M. Long-term prognosis of vasospastic angina without significant atherosclerotic coronary artery disease. Jpn Heart J. 1987;28:841–9.

    CAS  PubMed  Google Scholar 

  35. Nobuyoshi M, Tanaka M, Nosaka H, Kimura T, Yokoi H, Hamasaki N, Kim N, Shindo T, Kimura K. Progression of coronary atherosclerosis: is coronary spasm related to progression? J Am Coll Cardiol. 1991;18:904–10.

    CAS  PubMed  Google Scholar 

  36. Caralis DG, Deligonul U, Kern MJ, Cohen JD. Smoking is a risk factor for coronary spasm in young women. Circulation. 1992;85:905–9.

    CAS  PubMed  Google Scholar 

  37. Suzuki Y, Tokunaga S, Ikeguchi S, Miki S, Iwase T, Tomita T, Murakami T, Kawai C. Induction of coronary artery spasm by intracoronary acetylcholine: comparison with intracoronary ergonovine. Am Heart J. 1992;124:39–47.

    CAS  PubMed  Google Scholar 

  38. Wright CM, Engler R, Maisel A. Coronary thrombosis precipitated by hyperventilation-induced vasospasm. Am Heart J. 1988;116:867–9.

    CAS  PubMed  Google Scholar 

  39. Ginsburg R, Bristow MR, Kantrowitz N, Baim DS, Harrison DC. Histamine provocation of clinical coronary artery spasm: implications concerning pathogenesis of variant angina pectoris. Am Heart J. 1981;102:819–22.

    CAS  PubMed  Google Scholar 

Spontaneous Coronary Dissection

  1. DeMaio S, Kinsella SH, Silverman ME. Clinical course and long-term prognosis of spontaneous coronary artery dissection. Am J Cardiol. 1989;64:471–4.

    PubMed  Google Scholar 

  2. Bulkley BH, Roberts WC. Dissecting aneurysm (hematoma) limited to coronary artery. Am J Med. 1973;55:747–56.

    CAS  PubMed  Google Scholar 

  3. Mathieu D, Larde D, Vasile N. Primary dissecting aneurysms of the coronary arteries: case report and literature review. Cardiovasc Intervent Radiol. 1984;7:71–4.

    CAS  PubMed  Google Scholar 

  4. Claudon DG, Claudon DB, Edwards JE. Primary dissecting aneurysm of coronary artery. Circulation. 1972;45:259–66.

    CAS  PubMed  Google Scholar 

  5. Brody GL, Burton JF, Zawadzki ES, French AJ. Dissecting aneurysms of the coronary artery. N Engl J Med. 1965;273:1–5.

    CAS  PubMed  Google Scholar 

  6. Yeoh J, Choo H, Soo C, Lim Y, Yan C. Spontaneous coronary artery dissection in a young man with anterior myocardial infarction. Cathet Cardiovasc Diagn. 1991;24:186–8.

    CAS  PubMed  Google Scholar 

  7. Heilbrunn A, Zimmerman JM. Coronary artery dissection: a complication of cannulation. J Thorac Cardiovasc Surg. 1965;49:767.

    CAS  PubMed  Google Scholar 

  8. Roy P, Finci L, Bopp P, Meier B. Emergency balloon angioplasty and digital subtraction angiography in the management of an acute iatrogenic occlusive dissection of a saphenous vein graft. Cathet Cardiovasc Diagn. 1989;16:176–9.

    CAS  PubMed  Google Scholar 

  9. Thayer JO, Healy RW, Maggs PR. Spontaneous coronary artery dissection. Ann Thorac Surg. 1987;44:97–102.

    CAS  PubMed  Google Scholar 

  10. Orbe LC, Gallego FG, Sobrino N, Sotillo J, Lopez-Sendon JL, Oliver J, Coma I, Frutos A, Sobrino JA, Navarro JM. Acute myocardial infarction after blunt chest trauma in young people. Cathet Cardiovasc Diagn. 1991;24:182–5.

    Google Scholar 

  11. Lee FH, Yeung AC, Fowler MB, Fitzgerald PJ. Spontaneous postpartum dissection. Circulation. 1999;99:721.

    CAS  PubMed  Google Scholar 

  12. Robinowitz M, Virmani R, McAllister H. Spontaneous coronary artery dissection and eosinophilic inflammation: a cause and effect relationship? Am J Med. 1982;72:923–7.

    CAS  PubMed  Google Scholar 

  13. Saw J, Ricci D, Starovoytov A, et al. Spontaneous coronary artery dissection: prevalence of predisposing conditions including fibromuscular dysplasia in a tertiary center cohort. JACC Cardiovasc Interv. 2013;6:44–52.

    PubMed  Google Scholar 

  14. Nishikawa H, Nakanishi S, Nishiyama S, Nishimura S, Seki A, Yamaguchi H. Primary coronary artery dissection observed at coronary angiography. Am J Cardiol. 1988;61:628–45.

    Google Scholar 

  15. Alvarez J, Deal CW. Spontaneous dissection of the left main coronary artery: case report and review of the literature. Aust N Z J Med. 1991;21:891–2.

    CAS  PubMed  Google Scholar 

  16. Himbert D, Makowski S, Laperche T, Steg G, Juliard J, Gourgon R. Left main coronary spontaneous dissection: progressive angiographic healing without coronary surgery. Am Heart J. 1991;22:747–56.

    Google Scholar 

  17. Behnam R, Tillinghast S. Thrombolytic therapy in spontaneous coronary artery dissection. Clin Cardiol. 1991;14:611–4.

    CAS  PubMed  Google Scholar 

  18. Vale PR, Baron DW. Coronary stenting for spontaneous coronary dissection: a case report and review of the literature. Cathet Cardiovasc Diagn. 1998;45:280–6.

    CAS  PubMed  Google Scholar 

Myocardial Infarction with Normal Coronary Arteries

  1. Betrriu A, Pare JC, Sanz GA, Casals F, Magarina J, Castaner A, Narvarro-Lopez F. Myocardial infarction in normal coronary arteries: a prospective clinical-angiographic study. Am J Cardiol. 1981;48:28–38.

    Google Scholar 

  2. Rigatelli G, Rigatelli G, Rossi P, Docali G. Normal angiogram in acute coronary syndromes: the underestimated role of alternative substrates of myocardial ischemia. Int J Cardiovasc Imaging. 2004;20:471–5.

    PubMed  Google Scholar 

  3. Thompson SI, Vieweg WVR, Alpert JS, Hagan AD. Incidence and age distribution of patients with myocardial infarction and normal coronary arteriograms. Cathet Cardiovasc Diagn. 1977;3:1–9.

    CAS  PubMed  Google Scholar 

  4. Thompson EA, Ferraris S, Gress T, Ferraris V. Gender differences and predictors of mortality in spontaneous coronary artery dissection: a review of reported cases. J Invasive Cardiol. 2005;17:59–61.

    PubMed  Google Scholar 

  5. Cipriano PR, Koch FH, Rosenthal SJ, Baim DS, Ginsburg R, Schroeder JS. Myocardial infarction in patients with coronary artery spasm demonstrated by angiography. Am Heart J. 1983;105:542–7.

    CAS  PubMed  Google Scholar 

  6. Gersh BJ, Chesebro JH, Bove AA. Myocardial infarction with angiographically “normal” coronary arteries: is this rapid progression of early coronary artery disease? Chest. 1984;84:654–6.

    Google Scholar 

  7. Legrand V, Deliege M, Henrard L, Boland J, Kulbertus H. Patients with myocardial infarction and normal coronary arteriogram. Chest. 1982;82:678–85.

    CAS  PubMed  Google Scholar 

  8. Lindsay J, Pichard AD. Acute myocardial infarction with normal coronary arteries. Am J Cardiol. 1984;54:902–4.

    PubMed  Google Scholar 

  9. Rosenblatt A, Selzer A. The nature and clinical features of myocardial infarction with normal coronary arteriogram. Circulation. 1977;55:578–80.

    CAS  PubMed  Google Scholar 

  10. Ciraulo DA, Bresnahan GF, Frankel PS, Isely PE, Zimmerman WR, Chesne RB. Transmural myocardial infarction with normal coronary angiograms and with single vessel coronary obstruction. Chest. 1983;83:196–202.

    CAS  PubMed  Google Scholar 

  11. Glover MU, Kuber MT, Warren SE, Vieweg WVR. Myocardial infarction before age 36: risk factor and arteriographic analysis. Am J Cardiol. 1982;49:1600–3.

    CAS  PubMed  Google Scholar 

  12. Smith HWB, Liberman HA, Brody SL, Battey LL, Donohue B, Morris DC. Acute myocardial infarction temporally related to cocaine use: clinical, angiographic and pathophysiologic observations. Ann Intern Med. 1987;107:13–8.

    PubMed  Google Scholar 

  13. Ottervanger JP, Wilson JH, Stricker BH. Drug-induced chest pain and myocardial infarction. Reports to a national centre and review of the literature. Eur J Clin Pharmacol. 1997;53(2):105–10.

    CAS  PubMed  Google Scholar 

  14. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352(6):539–48.

    CAS  PubMed  Google Scholar 

Microcirculatory Angina

  1. Likoff W, Segal BL, Kasparian H. Paradox of normal selective coronary arteriograms in patients considered to have unmistakable coronary heart disease. N Engl J Med. 1967;276:1063.

    CAS  PubMed  Google Scholar 

  2. Kemp HG. Left ventricular function in patients with the anginal syndrome and normal coronary arteriograms. Am J Cardiol. 1973;32:375.

    PubMed  Google Scholar 

  3. Cannon RO, Schenke WH, Leon MB, et al. Limited coronary flow reserve after dipyridamole in patients with ergonovine-induced coronary vasoconstriction. Circulation. 1987;75:163.

    PubMed  Google Scholar 

  4. Cannon RO, Bonow RO, Bacharach SL, et al. Left ventricular dysfunction in patients with angina pectoris, normal epicardial coronary arteries, and abnormal vasodilator reserve. Circulation. 1985;7:218.

    Google Scholar 

  5. Hasdai D, Holmes Jr DR, Higano ST, Burnett Jr JC, Lerman A. Prevalence of coronary blood flow reserve abnormalities among patients with nonobstructive coronary artery disease and chest pain. Mayo Clin Proc. 1998;73:1133–40.

    CAS  PubMed  Google Scholar 

  6. Cannon RO. Microvascular angina: pathophysiology, diagnostic techniques and interventions. In: Braunwald E, editor. Heart disease: a textbook of cardiovascular medicine. 3rd ed. New York: W.B. Saunders; 1991. p. 343–50.

    Google Scholar 

  7. Geltman EM, Henes CG, Senneff MJ, Sobel BE, Bergman SR. Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol. 1990;16:586–95.

    CAS  PubMed  Google Scholar 

  8. Cannon RO, Epstein SE. “Microvascular angina” as a cause of chest pain with angiographically normal coronary arteries. Am J Cardiol. 1988;61:1338.

    PubMed  Google Scholar 

  9. Cannon RO, Watson RM, Rosing DR, et al. Angina caused by reduced vasodilator reserve of the small coronary arteries. J Am Coll Cardiol. 1983;1:1359.

    PubMed  Google Scholar 

  10. Opherk D, Zebe H, Weihe E, et al. Reduced coronary dilatory capacity and ultrastructural changes of the myocardium in patients with angina pectoris but normal coronary arteriograms. Circulation. 1981;63:817.

    CAS  PubMed  Google Scholar 

  11. Cannon III RO. Cardiovascular syndrome X: is it real? Contemp Intern Med. 1998;10:7–16.

    Google Scholar 

  12. Marcus ML, Mueller TM, Gascho JA, Kerber KE. Effects of cardiac hypertrophy secondary to hypertension on the coronary circulation. Am J Cardiol. 1979;44:747–53.

    Google Scholar 

  13. Opherk D, Schwartz F, Mall G, Manthey J, Baller D, Kubler W. Coronary dilatory capacity in idiopathic dilated cardiomyopathy: analysis of 16 patients. Am J Cardiol. 1983;51:1657–62.

    CAS  PubMed  Google Scholar 

  14. Brush JE, Cannon RO, Schenke WH, Bonow RO, Leon MB, Maron BJ, Epstein SE. Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med. 1988;319:1302–7.

    PubMed  Google Scholar 

  15. Ryan TJ, Treasure CB, Yeung AC, Klein JL, Selwyn AP, Ganz P. Impaired endothelium-dependent dilation of the coronary microvasculature in patients with atherosclerosis. Circulation. 1991;84(abst):II624.

    Google Scholar 

  16. Selke FW, Armstrong ML, Harrison DG. Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates. Circulation. 1990;81:1586.

    Google Scholar 

  17. Wilson RF, Christensen BV, Zimmer S, Laxson D. The effects of adenosine on human coronary circulation. Circulation. 1990;82:1595–606.

    CAS  PubMed  Google Scholar 

  18. Sax FL, Cannon RO, Hanson C, Epstein SE. Impaired forearm vasodilator reserve in patients with microvascular angina. N Engl J Med. 1987;317:1366–70.

    CAS  PubMed  Google Scholar 

  19. Egashira K, Inou T, Hirooka Y, Yamada A, Urabe Y, Takeshita A. Evidence of impaired endothelium dependent coronary vasodilation in patients with angina pectoris and normal coronary angiograms. N Engl J Med. 1993;328:1659–64.

    CAS  PubMed  Google Scholar 

  20. Fish RP, Nabel EG, Selwyn AP, Ludmer PL, Mudge GH, Kirshenbaum JM, Schoen FJ, Alexander RW, Ganz P. Responses of coronary arteries of cardiac transplant patients to acetylcholine. J Clin Invest. 1988;81:21–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Davis SF, Yeung AC, Meredith IT, Charbonneau F, Ganz P, Selwyn AP, Anderson TJ. Early endothelial dysfunction predicts the development of transplant coronary artery disease at 1 year posttransplant. Circulation. 1996;93(3):457–62.

    CAS  PubMed  Google Scholar 

  22. Vogt M, Rabenau O, Motz W, Strauer BE. Evidence of endothelial dysfunction in patients with angina pectoris and angiographically normal coronary arteries. Circulation. 1989;80(abst):II436.

    Google Scholar 

Radiation-Induced Coronary Artery Disease

  1. McReynolds RA, Gold GL, Roberts WC. Coronary heart disease after mediastinal irradiation for Hodgkin’s disease. Am J Med. 1976;60:39–45.

    CAS  PubMed  Google Scholar 

  2. Hancock SL, Tucker MA, Hoppe RT. Factors affecting late mortality from heart disease after treatment of Hodgkin disease. JAMA. 1993;270:1949–55.

    CAS  PubMed  Google Scholar 

  3. Reinders JG, Heijmen BJ, Olofsen-van Acht MJ, et al. Ischemic heart disease after mantlefield irradiation for Hodgkin disease in long-term follow-up. Radiother Oncol. 1999;51:35–42.

    CAS  PubMed  Google Scholar 

  4. Steward JR, Cohn KE, Fajardo LF, Hancock EW, Kaplan HS. Radiation-induced heart disease. Radiology. 1967;89:302–10.

    Google Scholar 

  5. Pohjola-Sintonen S, Totterman KJ, Almo M, Siltanen P. Late cardiac effects of mediastinal radiotherapy in patients with Hodgkin’s disease. Cancer. 1987;60:31–7.

    CAS  PubMed  Google Scholar 

  6. Brosius FC, Waller BF, Roberts WC. Radiation heart disease: analysis of 16 young (aged 15–33 years) necropsy patients who received over 3,500 rads to the heart. Am J Med. 1981;70:519–30.

    PubMed  Google Scholar 

  7. Theodoulou M, Seidman AD. Cardiac effects of adjuvant therapy for early breast cancer. Semin Oncol. 2003;30:730–9.

    CAS  PubMed  Google Scholar 

  8. Tracy GP, Brown DE, Johnson LW, Gottlieb AJ. Radiation-induced coronary artery disease. JAMA. 1974;228:1660–2.

    CAS  PubMed  Google Scholar 

  9. Prentice RTW. Myocardial infarction following radiation. Lancet. 1965;2:388.

    CAS  PubMed  Google Scholar 

  10. Stewart RJ, Cohn K, Hancock EW, et al. Radiation induced heart disease. Radiology. 1967;89:302–10.

    Google Scholar 

  11. Carmel RJ, Kaplan HS. Mantle irradiation in Hodgkin’s disease: an analysis of technique, tumor eradication and complications. Cancer. 1976;37:2813–25.

    CAS  PubMed  Google Scholar 

Transplant-Related Arteriopathy

  1. Oguma S, Okazaki H, Jimbo M, Iguchi A, Takahashi H, Ishizaki M. Vascular rejection and arteriosclerosis. Transplant Proc. 1987;19:63–70.

    CAS  PubMed  Google Scholar 

  2. Lurie KG, Billingham ME, Jamieson SW, Harrison DC, Reitz BA. Pathogenesis and prevention of graft arteriosclerosis in an experimental heart transplant model. Transplantation. 1981;31:41–7.

    CAS  PubMed  Google Scholar 

  3. Pucci AM, Forbes RDC, Billingham ME. Pathologic features in long-term cardiac allografts. J Heart Transplant. 1990;9:339–45.

    CAS  PubMed  Google Scholar 

  4. Johnson DE, Gao SZ, Schroeder JS, DeCampli WM, Billinham ME. The spectrum of coronary artery pathologic findings in heart cardiac allografts. J Heart Transplant. 1989;8:349–59.

    CAS  PubMed  Google Scholar 

  5. Libby P, Salomon RN, Payne DD, Schoen FJ, Pober JS. Functions of vascular wall cells related to development of transplantation-associated coronary arteriosclerosis. Transplant Proc. 1989;21:3677–84.

    CAS  PubMed  Google Scholar 

  6. Kapadia SR, Nissen SE, Tuzcu EM. Impact of intravascular ultrasound in understanding transplant coronary artery disease. Curr Opin Cardiol. 1999;14(2):140–50.

    CAS  PubMed  Google Scholar 

  7. Kapadia SR, Nissen SE, Ziada KM, Guetta V, Crowe TD, Hobbs RE, Starling RC, Young JB, Tuzcu EM. Development of transplantation vasculopathy and progression of donor-transmitted atherosclerosis: comparison by serial intravascular ultrasound imaging. Circulation. 1998;98(24):2672–8.

    CAS  PubMed  Google Scholar 

  8. Liang DH, Gao SZ, Botas J, Pinto FJ, Schroeder JS, Alderman EL, Yeung AC. Prediction of angiographic disease by intracoronary ultrasonographic findings in heart transplant recipients. J Heart Lung Transplant. 1996;15(10):980–7.

    CAS  PubMed  Google Scholar 

  9. Gao HZ, Hunt SA, Alderman EL, Liang D, Yeung AC, Schroeder JS. Relation of donor age and preexisting coronary artery disease on angiography and intracoronary ultrasound to later development of accelerated allograft coronary artery disease. J Am Coll Cardiol. 1997;29(3):623–9.

    CAS  PubMed  Google Scholar 

  10. Uretsky BF, Murali S, Reddy PS, Rabin B, Lee A, Griffith BP, Haresty RL, Trento A, Bahnson HT. Development of coronary artery disease in cardiac transplant patients. Circulation. 1987;76:827–34.

    CAS  PubMed  Google Scholar 

  11. Gao SZ, Schroeder JS, Alderman EL, Hunt SA, Valantine HA, Wiederhold V, Stinson EB. Prevalence of accelerated coronary artery disease in heart transplant survivors. Circulation. 1989;80(Suppl III):III100–5.

    CAS  PubMed  Google Scholar 

  12. Gao SZ, Alderman EL, Schroeder JS, Silverman JF, Hunt SA. Accelerated coronary vascular disease in the heart transplant patient: coronary arteriographic findings. J Am Coll Cardiol. 1988;12:334–40.

    CAS  PubMed  Google Scholar 

  13. Olivari MT, Homans DC, Wilson RF, Kubo SH, Ring WS. Coronary artery disease in cardiac transplant patients receiving triple-drug immunosuppressive therapy. Circulation. 1989;80(Suppl III):III-111–5.

    CAS  Google Scholar 

  14. Gao SZ, Alderman EL, Schroeder JS, Hunt SA, Wiederhold V, Stinson EB. Progressive coronary luminal narrowing after cardiac transplantation. Circulation. 1990;82(Suppl IV):IV269–75.

    CAS  PubMed  Google Scholar 

  15. Nitkin RS, Hunt SA, Schroeder JS. Accelerated atherosclerosis in a cardiac transplant patient. J Am Coll Cardiol. 1985;6:243–5.

    CAS  PubMed  Google Scholar 

  16. Mulvagh SL, Thornton B, Frazier OH, Radovancevic B, Norton HJ, Noon GP, Young JB. The older cardiac transplant donor: relation to graft function and recipient survival longer than 6 years. Circulation. 1989;80(Suppl III):III-126–32.

    CAS  Google Scholar 

  17. O’Neill B, Pflugfelder PW, Singh NR, Menkis AH, McKenzie FN, Kostuk WJ. Frequency of angiographic detection and quantitative assessment of coronary arterial disease one and three years after cardiac transplantation. Am J Cardiol. 1989;63:1221–6.

    PubMed  Google Scholar 

  18. Sharples LD, Mullin PA, Cary NRB, Large SR, Schofield PM, Wallwork J. A method of analyzing the onset and progression of coronary occlusive disease after transplantation and its effect on patient survival. J Heart Lung Transplant. 1993;12:381–7.

    CAS  PubMed  Google Scholar 

  19. McGinn AL, Christensen BV, Meyer S, Simon A, Kubo SH, Laxson DD, Wilson RF. Early impairment of nitroglycerine-induced coronary dilation after human cardiac transplantation. J Am Coll Cardiol. 1991;17(2):309A (abstract).

    Google Scholar 

  20. Goldenberg IF, Levine TB. Coronary artery spasm in a denervated orthotopic transplanted human heart. Cathet Cardiovasc Diagn. 1986;12:44–7.

    CAS  PubMed  Google Scholar 

Vasculitis

  1. Lie JT. Coronary vasculitis: a review in the current scheme of classification of vasculitis. Arch Pathol Lab Med. 1987;111:224–33.

    CAS  PubMed  Google Scholar 

  2. Kawai S, Fukuda Y, Okada R. Atherosclerosis of the coronary arteries in collagen disease and allied disorders, with special reference to vasculitis as a preceding lesion of coronary atherosclerosis. Jpn Circ J. 1982;46:1208–21.

    CAS  PubMed  Google Scholar 

  3. Tanaka M, Abe T, Takeuchi E, Watanabe T, Tamaki S. Revascularization for coronary ostial stenosis in Takayasu’s disease with calcified aorta. Ann Thorac Surg. 1992;53:894–5.

    CAS  PubMed  Google Scholar 

  4. Ishikawa K. Diagnostic approach and proposed criteria for the clinical diagnosis of Takayasu’s arteriopathy. J Am Coll Cardiol. 1988;12:964–72.

    CAS  PubMed  Google Scholar 

  5. Cassling RS, Lortz JB, Olson DR, Hubbard TF, McManus BM. Fatal vasculitis (periarteritis nodosa) of the coronary arteries: angiographic ambiguities and absence of aneurysms at autopsy. J Am Coll Cardiol. 1985;6:707–14.

    CAS  PubMed  Google Scholar 

  6. Rallings P, Exner T, Abraham R. Coronary artery vasculitis and myocardial infarction associated with antiphospholipid antibodies in a pregnant woman. Aust N Z J Med. 1989;19:347–50.

    CAS  PubMed  Google Scholar 

  7. Wilson VE, Eck SL, Bates ER. Evaluation and treatment of acute myocardial infarction complicating systemic lupus erythematosus. Chest. 1992;101:420–4.

    CAS  PubMed  Google Scholar 

  8. Bulkley BH, Roberts WC. The heart in systemic lupus erythematosus and changes induced in it by corticosteroid therapy. Am J Med. 1975;58:243–63.

    CAS  PubMed  Google Scholar 

  9. Haider YS, Roberts WC. Coronary arterial disease in systemic lupus erythematosus: quantification of degrees of narrowing in 22 necropsy patients (21 women) aged 16–37. Am J Med. 1981;70:775–8.

    CAS  PubMed  Google Scholar 

  10. Vasquez JJ, San Martin P, Barbado FJ, Geurra GJ, Garcia Puig AJ, Mejias FS. Angiographic findings in systemic vasculitis. Angiology. 1981;11:773–9.

    Google Scholar 

  11. Diaz-Rivera RS, Miller AJ. Periarteritis nodosa: a clinicopathological analysis of seven cases. Ann Intern Med. 1946;24:420–43.

    CAS  PubMed  Google Scholar 

  12. Strauer BE. The significance of coronary reserve in clinical heart disease. J Am Coll Cardiol. 1990;15:775–83.

    CAS  PubMed  Google Scholar 

  13. Nitenberg A, Foult JM, Kahan A, Perennec J, Devaux JY, Menkes CJ, Amor B. Reduced coronary flow and resistance reserve in primary scleroderma myocardial disease. Am Heart J. 1986;112:309–15.

    CAS  PubMed  Google Scholar 

  14. Suzuki A, Kamiya T, Ono Y, Kinoshita Y, Kawamura S, Kimura K. Clinical significance of morphologic classification of coronary arterial segmental stenosis due to Kawasaki disease. Am J Cardiol. 1993;71:1169–73.

    CAS  PubMed  Google Scholar 

  15. Porter GF, Gentles TL. Images in clinical medicine. Giant coronary-artery aneurysm in Kawasaki’s disease. N Engl J Med. 2001;345:98.

    CAS  PubMed  Google Scholar 

  16. Kato H, Ichinose E, Yoshioka F, Takechi T, Matsunaga S, Suzuki K, Rikitake N. Fate of coronary aneurysms in Kawasaki disease: serial coronary angiography and long-term follow-up study. Am J Cardiol. 1982;49:1758–66.

    CAS  PubMed  Google Scholar 

  17. Takahashi M, Mason W, Lewis AB. Regression of coronary aneurysms in patients with Kawasaki syndrome. Circulation. 1987;75:387–94.

    CAS  PubMed  Google Scholar 

  18. Suzuki A, Kamiya T, Kuwahara N, Ono Y, Kohata T, Takahashi O, Kimura K, Takamiya M. Coronary arterial lesions of Kawasaki disease: cardiac catheterization findings of 1100 cases. Pediatr Cardiol. 1986;7:3–9.

    CAS  PubMed  Google Scholar 

  19. Kato H, Inoue O, Kawasaki T, Fujiwara H, Watanabe T, Toshima H. Adult coronary artery disease probably due to childhood Kawasaki disease. Lancet. 1992;340:1127–9.

    CAS  PubMed  Google Scholar 

  20. Kuribayashi S, Ootaki M, Tsuji M, Matsuyama S, Iwasaki H, Oota T. Coronary angiographic abnormalities in mucocutaneous lymph node syndrome: acute findings and long-term follow-up. Radiology. 1989;172:629–33.

    CAS  PubMed  Google Scholar 

  21. Hunsaker DM, Hunsaker 3rd JC, Adams KC, Noonan JA, Ackermann DM. Fatal Kawasaki disease due to coronary aneurysm rupture with massive cardiac tamponade. J Ky Med Assoc. 2003;101:233–8.

    PubMed  Google Scholar 

  22. Furuyama H, Odagawa Y, Katoh C, Iwado Y, Ito Y, Noriyasu K, Mabuchi M, Yoshinaga K, Kuge Y, Kobayashi K, Tamaki N. Altered myocardial flow reserve and endothelial function late after Kawasaki disease. J Pediatr. 2003;142:149–54.

    PubMed  Google Scholar 

Coronary Aneurysm

  1. Tunick PA, Slater J, Kronzon I, Glassman E. Discrete atherosclerotic coronary artery aneurysms: a study of 20 patients. J Am Coll Cardiol. 1990;15:279–82.

    CAS  PubMed  Google Scholar 

  2. Myler RK, Schechtmann NS, Rosenblum J, Collinsworth KA, Bashour TT, Ward K, Murphy MC, Stertzer SH. Multiple coronary artery aneurysms in an adult associated with extensive thrombus formation resulting in acute myocardial infarction: successful treatment with intracoronary urokinase, intravenous heparin, and oral anticoagulation. Cathet Cardiovasc Diagn. 1991;24:51–4.

    CAS  PubMed  Google Scholar 

  3. Rath S, Har-Zahav Y, Battler A, Agranat O, Rotstein Z, Rabinowitz B, Neufeld HN. Fate of nonobstructive aneurysmatic coronary artery disease: angiographic and clinical follow-up report. Am Heart J. 1985;109:785–91.

    CAS  PubMed  Google Scholar 

  4. Koh HK, Yoo DH, Yoo TS, Jun JB, Jung SS, Lee JU, Kim JH, Kim SY. Coexistence of coronary aneurysms and total occlusion of the coronary arteries in systemic lupus erythematosus. Clin Exp Rheumatol. 1998;16:739–42.

    CAS  PubMed  Google Scholar 

  5. Oe H, Ehara S, Yoshikawa J. Crab claw-like appearance on coronary angiography. Heart. 2005;91:437.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Lipton MJ, Pfeifer JF, Lopes MG, Hultgren HN. Aneurysms of the coronary arteries in the adult: clinical and angiographic features. Radiology. 1975;117:11–8.

    CAS  PubMed  Google Scholar 

  7. Eriksen UH, Aunsholt NA, Nielsen TT. Enormous right coronary arterial aneurysm in a patient with type IV Ehlers-Danlos syndrome. Int J Cardiol. 1992;35:259–61.

    CAS  PubMed  Google Scholar 

  8. Cohen AJ, Banks A, Cambier P, Edwards FH. Post-atherectomy coronary artery aneurysm. Ann Thorac Surg. 1992;54:1216–8.

    CAS  PubMed  Google Scholar 

  9. Nakamura F, Kvasnicka J, Decoster HL, Geschwind HJ. Aneurysmal formation after successful pulsed laser coronary angioplasty. Cathet Cardiovasc Diagn. 1992;27:125–9.

    CAS  PubMed  Google Scholar 

  10. Rab ST, King III SB, Roubin GS, Carlin S, Hearn JA, Douglas JS. Coronary aneurysms after stent placement: a suggestion of altered vessel wall healing in the presence of anti-inflammatory agents. J Am Coll Cardiol. 1991;18:1524–8.

    CAS  PubMed  Google Scholar 

  11. de Haan HPJ, Huysmans HA, Weeda HWH, Bosker HA, Buis B. Anastomotic pseudoaneurysm after aorto-coronary bypass grafting. Thorac Cardiovasc Surg. 1985;33:55–6.

    PubMed  Google Scholar 

  12. Saito S, Arai H, Kim K, Aoki N. Pseudoaneurysm of coronary artery following rupture of coronary artery during coronary angioplasty. Cathet Cardiovasc Diagn. 1992;26:304–7.

    CAS  PubMed  Google Scholar 

  13. Vik-Mo H, Wiseth R, Hegbom K. Coronary aneurysm after implantation of a paclitaxel-eluting stent. Scand Cardiovasc J. 2004;38:349–52.

    PubMed  Google Scholar 

Embolization

  1. Walley VM, Giannoccaro P, Beanlands DS, Keon WJ. Death at cardiac catheterization: coronary artery embolization of calcium debris from Ionescu-Shiley bioprosthesis. Cathet Cardiovasc Diagn. 1990;21:92–4.

    CAS  PubMed  Google Scholar 

  2. Johnson D, Gonzalez-Lavin L. Myocardial infarction secondary to calcific embolization: an unusual complication of bioprosthetic valve degeneration. Ann Thorac Surg. 1986;42:102–3.

    CAS  PubMed  Google Scholar 

  3. Taniike M, Nishino M, Egami Y, Kondo I, Shutta R, Tanaka K, Adachi T, Tanouchi J, Yamada Y, Kawano K. Acute myocardial infarction caused by a septic coronary embolism diagnosed and treated with a thrombectomy catheter. Heart. 2005;91(5):e34.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Feiring AJ, et al. The importance of the determination of the myocardial area at risk in the evaluation of the outcome of acute myocardial infarction in patients. Circulation. 1969;75(5):980–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Wilson MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Wilson, R.F. (2015). Coronary Angiography. In: Willerson, J., Holmes, Jr., D. (eds) Coronary Artery Disease. Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-2828-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2828-1_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2827-4

  • Online ISBN: 978-1-4471-2828-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics