Skip to main content

Coronary Artery Disease: Pathological Anatomy and Pathogenesis

  • Chapter
  • First Online:
Book cover Coronary Artery Disease

Part of the book series: Cardiovascular Medicine ((CVM))

Abstract

Coronary atherosclerosis is the major anatomic substrate for the diverse clinical syndromes of coronary heart disease. Coronary atherosclerosis is a disease that develops as an inflammatory response of the arterial wall to chronic, multifactorial injury. Acute ischemic heart disease is usually initiated by erosion, rupture, thrombosis and/or spasm superimposed on vulnerable atherosclerotic plaques with active inflammation. The process may be self-limited (angina pectoris), may trigger a lethal ventricular arrhythmia (sudden cardiac death), or result in death of heart muscle, myocardial infarction (MI). MI progresses as a wavefront of necrosis extending from subendocardium into subepicardium with complete evolution in 3–4 h. The pathogenesis of irreversible myocardial cell injury involves metabolic and electrolyte changes, and activation of necroptotic and apopotic mechanisms of cell injury and death. Timely reperfusion has a profound influence resulting in some further loss of critically injured cells (reperfusion injury) and net salvage of a significant amount of myocardium. Preconditioning by repetitive short intervals of coronary occlusion and reperfusion can significantly retard the subsequent development of MI. Reperfusion can be achieved clinically with coronary angioplasty and cardiac bypass surgery, but associated pathologic changes in coronary arteries can influence long-term outcomes. Progress in understanding the pathobiology of myocardial ischemic injury is leading to new therapeutic approaches to combine with established approaches for reperfusion and salvage of myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willerson JT, Hillis LD, Buja LM. Ischemic heart disease: clinical and pathophysiological aspects. New York: Raven; 1982.

    Google Scholar 

  2. Buja LM, Willerson JT. The role of coronary artery lesions in ischemic heart disease: insights from recent clinicopathologic, coronary arteriographic, and experimental studies. Hum Pathol. 1987;18:451–61.

    Article  CAS  PubMed  Google Scholar 

  3. Buja LM, McAllister Jr HA. Coronary artery disease: pathological anatomy and pathogenesis. In: Willerson JT, Cohn JN, Wellens HJJ, Holmes Jr DR, editors. Cardiovascular medicine. 3rd ed. London: Springer; 2007. p. 593–610.

    Chapter  Google Scholar 

  4. Buja LM, McAllister Jr HA. Atherosclerosis: pathologic anatomy and pathogenesis. In: Willerson JT, Cohn JN, Wellens HJJ, Holmes Jr DR, editors. Cardiovascular medicine. 3rd ed. London: Springer; 2007. p. 1581–91.

    Chapter  Google Scholar 

  5. Buja LM, Clubb Jr FJ, Bilheimer DW, Willerson JT. Pathobiology of human familial hypercholesterolemia and a related animal model, the Watanabe heritable hyperlipidaemic rabbit. Eur Heart J. 1990;11(Suppl E):41–52.

    Article  CAS  PubMed  Google Scholar 

  6. Gimbrone MA. The Gordon Wilson lecture. Understanding vascular endothelium: a pilgrim’s progress. Endothelial dysfunction, biomechanical forces and the pathobiology of atherosclerosis. Trans Am Clin Climatol Assoc. 2010;121:115–27.

    PubMed Central  PubMed  Google Scholar 

  7. Gimbrone Jr MA, Garcia-Cardeña G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol. 2013;22:9–15.

    Article  CAS  PubMed  Google Scholar 

  8. Van Vré EA, Ait-Oufella H, Tedgui A, Mallat Z. Apoptotic cell death and efferocytosis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:887–93.

    Article  PubMed  Google Scholar 

  9. Andersson J, Libby P, Hansson GK. Adaptive immunity and atherosclerosis. Clin Immunol. 2010;134:33–46.

    Article  CAS  PubMed  Google Scholar 

  10. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.

    Article  CAS  PubMed  Google Scholar 

  11. Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res. 2014;114:1867–79.

    Article  CAS  PubMed  Google Scholar 

  12. Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists’ view. Eur Heart J. 2013;34:719–28.

    Article  CAS  PubMed  Google Scholar 

  13. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–66.

    Article  CAS  PubMed  Google Scholar 

  14. Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation. 2004;109(Suppl II):II-2–10.

    Google Scholar 

  15. Glagov S, Zarins C, Giddens DP, Nu DN. Hemodynamics and atherosclerosis: insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med. 1988;112:1018–31.

    CAS  PubMed  Google Scholar 

  16. Burke AP, Kolodgie FD, Farb A, Weber D, Virmani R. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation. 2002;105:297–303.

    Article  PubMed  Google Scholar 

  17. Heusch G, Libby P, Gersh B, Yellon D, Böhn M, Lopaschuk G, Opie L. Cardiovascular remodeling in coronary artery disease and heart failure. Lancet. 2014;383:1933–43.

    Article  PubMed  Google Scholar 

  18. Johnson NP, Tóth GG, Lai D, et al. Prognostic value of fractional flow reserve: linking physiological severity to clinical outcomes. J Am Coll Cardiol. 2014;64:1641–54.

    Article  PubMed  Google Scholar 

  19. Davies MJ, Thomas AEC. Plaque fissuring – the cause of acute myocardial infarction, sudden ischemic death, and crescendo angina. Br Heart J. 1985;53:363–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.

    Article  CAS  PubMed  Google Scholar 

  21. Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, Colombo A, Stefanadis C, Casscells SW, Moreno PR, Maseri A, van der Steen AFW. Terminology for high-risk and vulnerable coronary artery plaques. Eur Heart J. 2004;25:1077–82.

    Article  PubMed  Google Scholar 

  22. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med. 1992;326:242–50, 310–8.

    Article  CAS  PubMed  Google Scholar 

  23. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013;368:2004–13.

    Article  CAS  PubMed  Google Scholar 

  24. Buja LM, Hillis LD, Petty CS, Willerson JT. The role of coronary arterial spasm in ischemic heart disease. Arch Pathol Lab Med. 1981;105:221–6.

    CAS  PubMed  Google Scholar 

  25. Lanza GA, Careri G, Crea F. Mechanisms of coronary artery spasm. Circulation. 2011;124:1774–82.

    Article  PubMed  Google Scholar 

  26. Laine P, Kaartinen M, Pentillä A, Panula P, Paavonen T, Kovanen PT. Association between myocardial infarction and the mast cells in the adventitia of the infarct-related artery. Circulation. 1999;26:361–9.

    Article  Google Scholar 

  27. Cheitlin MD, McAllister HA, de Castro CM. Myocardial infarction without atherosclerosis. JAMA. 1975;231:951–9.

    Article  CAS  PubMed  Google Scholar 

  28. Kloner RA, Hale S, Alker K, Rezkalla S. The effects of acute and chronic cocaine use on the heart. Circulation. 1992;85:407–19.

    Article  CAS  PubMed  Google Scholar 

  29. Buja LM. Modulation of the myocardial response to ischemia. Lab Invest. 1998;78:1345–73.

    CAS  PubMed  Google Scholar 

  30. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med. 2001;345:1473–82.

    Article  CAS  PubMed  Google Scholar 

  31. Buja LM, Willerson JT. Relationship of ischemic heart disease to sudden cardiac death. J Forensic Sci. 1991;36:25–33.

    CAS  PubMed  Google Scholar 

  32. Davies MJ, Bland JM, Hangartner JR, Angelini A, Thomas AC. Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur Heart J. 1989;10:203–8.

    CAS  PubMed  Google Scholar 

  33. Farb A, Tang AL, Burke AP, Sessums L, Liang Y, Virmani R. Sudden coronary death. Frequency of active lesions, inactive coronary lesions, and myocardial infarction. Circulation. 1995;92:1701–9.

    Article  CAS  PubMed  Google Scholar 

  34. Virmani R, Burke AP, Farb A. Sudden cardiac death. Cardiovasc Pathol. 2001;10:211–8.

    Article  CAS  PubMed  Google Scholar 

  35. Hillis LD, Braunwald E. Myocardial ischemia. N Engl J Med. 1977;296:971–8, 1034–41, 1093–6.

    Article  CAS  PubMed  Google Scholar 

  36. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death: II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest. 1979;40:633–44.

    CAS  PubMed  Google Scholar 

  37. Reimer KA, Ideker RE. Myocardial ischemia and infarction: anatomic and biochemical substrates for ischemic cell death and ventricular arrhythmias. Hum Pathol. 1987;18:462–75.

    Article  CAS  PubMed  Google Scholar 

  38. Lavie CJ, Gersh BJ. Mechanical and electrical complications of acute myocardial infarction. Mayo Clin Proc. 1990;65:709–30.

    Article  CAS  PubMed  Google Scholar 

  39. Burke AP, Virmani R. Pathophysiology of acute myocardial infarction. Med Clin North Am. 2007;91:553–72.

    Article  PubMed  Google Scholar 

  40. Buja LM, Willerson JT. Infarct size – can it be measured or modified in humans? Prog Cardiovasc Dis. 1987;29:271–89.

    Article  CAS  PubMed  Google Scholar 

  41. Buja LM, Weerasinghe P. Unresolved issues in myocardial reperfusion injury. Cardiovasc Pathol. 2010;19:29–35.

    Article  PubMed  Google Scholar 

  42. Buja LM, Willerson JT. Experimental analysis of myocardial ischemia. In: Silver MD, editor. Cardiovascular pathology. 2nd ed. New York: Churchill Livingstone; 1991. p. 621.

    Google Scholar 

  43. Buja LM. Basic pathological processes of the heart: relationship to cardiomyopathies. In: Sperelakis N, editor. Physiology and pathophysiology of the heart. 3rd ed. Boston: Kluwer Academic Publishers; 1995. p. 37–53.

    Google Scholar 

  44. Buja LM. Pathobiology of myocardial ischemic injury – implications for pharmacology and toxicology. In: Acosta Jr D, editor. Cardiovascular toxicology. 4th ed. New York: Informa Healthcare Inc.; 2008. p. 27–65.

    Google Scholar 

  45. Buja LM. The pathobiology of acute coronary syndromes: clinical implications and central role of the mitochondria. Tex Heart Inst J. 2013;40:221–8.

    PubMed Central  PubMed  Google Scholar 

  46. Webster KA. Mitochondrial death channels. Am Sci. 2009;97:384–91.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Buja LM. Myocardial ischemia and reperfusion injury. Cardiovasc Pathol. 2005;14:170–5.

    Article  CAS  PubMed  Google Scholar 

  48. Willerson JT, Buja LM. Myocardial reperfusion: biology, benefits and consequences. Dialog Cardiovasc Med. 2006;11:267–78.

    Google Scholar 

  49. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35.

    Article  CAS  PubMed  Google Scholar 

  50. Majno G, Joris I. Apoptosis, oncosis, and necrosis: an overview of cell death. Am J Pathol. 1995;146:3–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Buja LM, Vela D. Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol. 2008;17:349–74.

    Article  PubMed  Google Scholar 

  52. Weerasinghe P, Hallock S, Brown RE, Loose DS, Buja LM. A model for cardiomyocyte cell death: insights into mechanisms of oncosis. Exp Mol Pathol. 2012;94(1):289–300.

    Article  PubMed  Google Scholar 

  53. Golstein P, Kroemer G. Cell death by necrosis: toward a molecular definition. Trends Biochem Sci. 2007;32:37–43.

    Article  CAS  PubMed  Google Scholar 

  54. Kung G, Konstantinidis K, Kitsis RN. Programmed necrosis, not apoptosis, in the heart. Circ Res. 2011;108:1017–36.

    Article  CAS  PubMed  Google Scholar 

  55. Whelan RS, Konstantinidis K, Wei AC, Chen Y, Reyna DE, Jha S, Yang Y, Calvert JW, Lindsten T, Thompson CB, Crow MT, Gavathiotis E, Dorn II GW, O’Rourke B, Kitsis RN. Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci U S A. 2012;109:6566–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Anversa P. Myocyte death in the pathological heart. Circ Res. 2000;86:121–4.

    Article  CAS  PubMed  Google Scholar 

  57. Reed JC. Mechanisms of apoptosis. Am J Pathol. 2000;157:1415–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205–19.

    Article  CAS  PubMed  Google Scholar 

  59. Kang PM, Izumo S. Apoptosis and heart failure: a critical review of the literature. Circ Res. 2000;86:1107–13.

    Article  CAS  PubMed  Google Scholar 

  60. Foo RS, Mani K, Kitsis RN. Death begets failure in the heart. J Clin Invest. 2005;115:565–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Gottlieb RA. Cell death pathways in acute ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther. 2011;16:233–8.

    Article  CAS  PubMed  Google Scholar 

  62. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493:433–37.

    Google Scholar 

  63. Liehn EA, Postea O, Curaj A, Marx N. Repair after myocardial infarction, between fantasy and reality: the role of chemokines. J Am Coll Cardiol. 2011;58:2357–62.

    Article  PubMed  Google Scholar 

  64. Johnson FL. Pathophysiology and etiology of heart failure. Cardiovasc Clin. 2014;32:9–19.

    Article  Google Scholar 

  65. Suma H, Anyanwu AC. Current status of surgical ventricular restoration of ischemic cardiomyopathy. Semin Thoracic Surg. 2012;24:294–301.

    Article  Google Scholar 

  66. Murry CE, Richard VJ, Reimer KA, Jennings RB. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res. 1990;66:913–31.

    Article  CAS  PubMed  Google Scholar 

  67. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003;83:1113–51.

    Article  CAS  PubMed  Google Scholar 

  68. Krieg T, Cohen MV, Downey JM. Mitochondria and their role in preconditioning’s trigger phase. Basic Res Cardiol. 2003;98:228–34.

    CAS  PubMed  Google Scholar 

  69. Yang X-M, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004;44:1103–10.

    Article  PubMed  Google Scholar 

  70. Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 1999;79:609–34.

    CAS  PubMed  Google Scholar 

  71. Bush LR, Buja LM, Tilton G, Wathen M, Apprill P, Ashton J, Willerson JT. Effects of propranolol and diltiazem alone and in combination on the recovery of left ventricular segmental function after temporary coronary occlusion and long term reperfusion in conscious dogs. Circulation. 1985;72:413–30.

    Article  CAS  PubMed  Google Scholar 

  72. Webster KA. Programmed death as a therapeutic target to reduce myocardial infarction. Trends Pharmacol Sci. 2007;9:492–9.

    Article  Google Scholar 

  73. Babu GG, Walker JM, Yellon DM, Hausenloy DJ. Peri-procedural myocardial injury during percutaneous coronary intervention: an important target for cardioprotection. Eur Heart J. 2011;32:23–32.

    Article  CAS  PubMed  Google Scholar 

  74. Ivanes F, Mewton N, Rioufol G, Piot C, Elbaz M, Revel D, Croisille P, Ovize M. Cardioprotection in the clinical setting. Cardiovasc Drugs Ther. 2010;24:281–7.

    Article  PubMed  Google Scholar 

  75. Oerlemans MI, Koudstaal S, Chamuleau SA, de Kleijn DP, Doevendans PA, Sluijter JPG. Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection. Int J Cardiol. 2012;165(3):410–22.

    Article  PubMed  Google Scholar 

  76. Hausenloy DJ, Boston-Griffiths EA, Yellon DM. Cyclosporin A and cardioprotection: from investigative tool to therapeutic agent. Br J Pharmacol. 2012;165:1235–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Bell RM, Yellon DM. Conditioning the whole heart – not just the cardiomyocyte. J Mol Cell Cardiol. 2012;53:24–32.

    Article  CAS  PubMed  Google Scholar 

  78. Lie JT, Lawrie GM, Morris Jr GC. Aortocoronary bypass saphenous vein graft atherosclerosis: anatomic study of 99 vein grafts from normal and hyperlipoproteinemic patients up to 75 months postoperatively. Am J Cardiol. 1977;40:906–13.

    Article  CAS  PubMed  Google Scholar 

  79. Shelton ME, Forman MB, Virmani R, Bajaj A, Stoney WS, Atkinson JB. A comparison of morphologic and angiographic findings in long-term internal mammary artery and saphenous vein bypass grafts. J Am Coll Cardiol. 1988;11:297–307.

    Article  CAS  PubMed  Google Scholar 

  80. Hayward PAR, Buxton BF. Contemporary coronary graft patency: 5-year observational data from a randomized trial of conduits. Ann Thorac Surg. 2007;84:795–800.

    Article  PubMed  Google Scholar 

  81. Buxton BF, Hayward PA, Newcomb AE, Moten S, Seevanayagam S, Gordon I. Choice of conduits for coronary bypass grafting: craft or science? Eur J Cardiothorac Surg. 2009;35:658–70.

    Article  PubMed  Google Scholar 

  82. Topaz O, McIvor M, Stone GW, Krucoff MW, Perin EC, Eoschi AE, Sutton J, Nair R, de Marchena E. Acute results, complications, and effect of lesion characteristics on outcome with the solid-state, pulsed-wave, mid-infrared laser angioplasty system: final multicenter registry report. Lasers Surg Med. 1998;22:228–39.

    Article  CAS  PubMed  Google Scholar 

  83. Farb A, Roberts DK, Pichard AD, Kent KM, Virmani R. Coronary artery morphologic features after coronary rotational atherectomy: insights into mechanisms of lumen enlargement and embolization. Am Heart J. 1995;129:1058–67.

    Article  CAS  PubMed  Google Scholar 

  84. Zimarino M, Corcos T, Bramucci E, Tamburinco C. Rotational atherectomy: a “survivor” in the drug-eluting stent era. Cardiovasc Revasc Med. 2012;13:185–92.

    Article  PubMed  Google Scholar 

  85. Farb A, Weber DK, Kolodgie FD, Burke AP, Virmani R. Morphological predictors of restenosis after coronary stenting in humans. Circulation. 2002;105:2974–80.

    Article  PubMed  Google Scholar 

  86. Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endotheliazation. Circulation. 2007;115:2435–41.

    Article  PubMed  Google Scholar 

  87. Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants: bare metal and drug eluting stents. J Am Coll Cardiol. 2011;57:1314–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Clubb Jr FJ, Darrouzet SD, Roberts AW, Weeks BR, Buja LM. Integrated microscopy techniques for analyzing postmortem intravascular stents. Modern Pathol. 2011;24:74A.

    Article  Google Scholar 

  89. Buja LM. Vascular responses to percutaneous coronary intervention with bare-metal stents and drug-eluting stents: a perspective based on insights from pathological and clinical studies. J Am Coll Cardiol. 2011;15:1323–6.

    Article  Google Scholar 

  90. Willerson JT, Yao SK, McNatt J, Benedict CR, Anderson HV, Golino P, Murphree SS, Buja LM. Frequency and severity of cyclic flow alteration and platelet aggregation predict the severity of neointimal proliferation following experimental coronary stenosis and endothelial injury. Proc Natl Acad Sci U S A. 1991;88:10624–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. O’Donnell CJ, Nabel EG. Genomics of cardiovascular disease. N Engl J Med. 2011;365:2098–109.

    Article  PubMed  Google Scholar 

  92. Tulis DA, Mnjoyan ZH, Schiesser RL, Shelat HS, Evans AJ, Zoldhelyi P, Fujise K. Adenovirus gene transfer of fortilin attenuates neointima formation through suppression of vascular smooth muscle cell proliferation and migration. Circulation. 2003;107:98–105.

    Article  CAS  PubMed  Google Scholar 

  93. Ganesh SK, Skelding KA, Mehta L, O’Neill K, Joo J, Zheng G, Goldstein J, Simari R, Billings E, Geller NL, Holmes D, O’Neill WW, Nabel EG. Rationale and study design of the CardioGene Study: genomics of in-stent restenosis. Pharmacogenomics. 2004;5:952–1004.

    Article  PubMed  Google Scholar 

  94. Folkman J. Angiogenic therapy of the human heart. Circulation. 1998;97:628–9.

    Article  CAS  PubMed  Google Scholar 

  95. Roncalli J, Tongers J, Losordo DW. Update on gene therapy for myocardial ischaemia and left ventricular systolic dysfunction or heart failure. Arch Cardiovasc Dis. 2010;103:469–76.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Rota M, Leri A, Anversa P. Human heart failure: is cell therapy a valid option? Biochem Pharmacol. 2014;88:129–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Stauer BE, Steinhoff G. 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart. J Am Coll Cardiol. 2011;58:1095–104.

    Article  Google Scholar 

  98. Rosen MR, Myerburg RJ, Francis DP, Cole GD, Marbán E. Translating stem cell research to cardiac disease therapies: pitfalls and prospects for improvement. J Am Coll Cardiol. 2014;64:922–37.

    Article  PubMed  Google Scholar 

  99. Buja LM, Vela D. Immunologic and inflammatory reactions to exogenous stem cells: implications for experimental studies and clinical trials for myocardial repair. J Am Coll Cardiol. 2010;16:1693–700.

    Article  Google Scholar 

  100. Buja LM, Vela D. Current status of the role of stem cells in myocardial biology and repair. Cardiovasc Pathol. 2011;20:297–301.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Maximilian Buja MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Buja, L.M. (2015). Coronary Artery Disease: Pathological Anatomy and Pathogenesis. In: Willerson, J., Holmes, Jr., D. (eds) Coronary Artery Disease. Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-2828-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2828-1_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2827-4

  • Online ISBN: 978-1-4471-2828-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics