Skip to main content

Genetics and Gene-Environment Interactions

  • Chapter
  • First Online:
  • 1131 Accesses

Abstract

The field of genetics is generally considered to have originated with Charles Darwin’s famous book On the Origin of Species (1854), in which he presented his novel theory of evolution. This was followed by Gregor Johann Mendel’s 1866 publication of his work on heritability. Nearly a century later, in 1953, Watson and Crick would uncover the double-helical structure of DNA, unleashing a chain of discoveries pertinent to molecular genetics, which, when combined with the description of the DNA polymerase chain reaction (PCR) methodology, would allow rapid, accurate, and affordable characterization of genetic variation. This forms the basis of modern genetic and molecular epidemiology, with which came the recognition of specific genetic susceptibilities to chronic diseases, such as cancer, and their interactions with our environment. Alterations in certain genes may influence the response to DNA damage or the way that environmental toxicants (or their metabolites) are processed and excreted. The remainder of this chapter will focus in detail on genetic susceptibility due to variation and interaction with environmental exposures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Darwin C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. 1st ed. London: John Murran; 1859.

    Google Scholar 

  2. Mendel G. Versuche über Pflanzen-Hybriden. Transactions of Verhandlungen des naturforschenden Vereines in Brünn. 1866;4(1865):3–270.

    Google Scholar 

  3. Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8.

    Article  CAS  PubMed  Google Scholar 

  4. Mullis KB. The unusual origin of the polymerase chain reaction. Sci Am. 1990;262(4):56–61, 64–55.

    Article  CAS  PubMed  Google Scholar 

  5. Klug WS, Cummings MR. Genetics: a molecular perspective. Upper Saddle River: Pearson Education, Inc.; 2003.

    Google Scholar 

  6. Stein LD. Human genome: end of the beginning. Nature. 2004;431(7011):915–6.

    Article  CAS  PubMed  Google Scholar 

  7. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.

    Article  Google Scholar 

  8. Kumar V, Abbas A, Fausto N, Mitchell R, editors. Basic pathology. 8th ed. Philadelphia: Saunders Elsevier; 2007.

    Google Scholar 

  9. Morey C, Avner P. Genetics and epigenetics of the X chromosome. Ann N Y Acad Sci. 2010;1214:E18–33.

    Article  PubMed  Google Scholar 

  10. Human genome project information: the science behind the human genome project. US Department of Energy, Biological and Environmental Research Information System (BERIS). http://www.ornl.gov/sci/techresources/Human_Genome/project/info.shtml. Accessed 14 Aug 2011.

  11. Abdelhaleem M. Helicases: an overview. Methods Mol Biol. 2010;587:1–12.

    Article  CAS  PubMed  Google Scholar 

  12. Ferla R, Calo V, Cascio S, et al. Founder mutations in BRCA1 and BRCA2 genes. Ann Oncol. 2007;18 Suppl 6:vi93–8.

    PubMed  Google Scholar 

  13. Human genome project information: SNP fact sheet. US Department of Energy, Biological and Environmental Research Information System (BERIS). http://www.ornl.gov/sci/techresources/Human_Genome/faq/snps.shtml. Accessed 12 Aug 2011.

  14. Fletcher O, Houlston RS. Architecture of inherited susceptibility to common cancer. Nat Rev Cancer. 2010;10(5):353–61.

    Article  CAS  PubMed  Google Scholar 

  15. Vineis P. The relationship between polymorphisms of xenobiotic metabolizing enzymes and susceptibility to cancer. Toxicology. 2002;181–182:457–62.

    Article  PubMed  Google Scholar 

  16. Antoniou A, Pharoah PD, Narod S, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Petrucelli N, Daly MB, Feldman GL. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med. 2010;12(5):245–59.

    Article  CAS  PubMed  Google Scholar 

  18. Rowley PT. Inherited susceptibility to colorectal cancer. Annu Rev Med. 2005;56:539–54.

    Article  CAS  PubMed  Google Scholar 

  19. Desai TK, Barkel D. Syndromic colon cancer: lynch syndrome and familial adenomatous polyposis. Gastroenterol Clin North Am. 2008;37(1):47–72, vi.

    Article  PubMed  Google Scholar 

  20. Fontenot AP, Maier LA. Genetic susceptibility and immune-mediated destruction in beryllium-induced disease. Trends Immunol. 2005;26(10):543–9.

    Article  CAS  PubMed  Google Scholar 

  21. Richeldi L, Sorrentino R, Saltini C. HLA-DPB1 glutamate 69: a genetic marker of beryllium disease. Science. 1993;262(5131):242–4.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z, White PS, Petrovic M, et al. Differential susceptibilities to chronic beryllium disease contributed by different Glu69 HLA-DPB1 and -DPA1 alleles. J Immunol. 1999;163(3):1647–53.

    CAS  PubMed  Google Scholar 

  23. Richeldi L, Kreiss K, Mroz MM, Zhen B, Tartoni P, Saltini C. Interaction of genetic and exposure factors in the prevalence of berylliosis. Am J Ind Med. 1997;32(4):337–40.

    Article  CAS  PubMed  Google Scholar 

  24. Saltini C, Richeldi L, Losi M, et al. Major histocompatibility locus genetic markers of beryllium sensitization and disease. Eur Respir J. 2001;18(4):677–84.

    Article  CAS  PubMed  Google Scholar 

  25. Rossman MD, Stubbs J, Lee CW, Argyris E, Magira E, Monos D. Human leukocyte antigen class II amino acid epitopes: susceptibility and progression markers for beryllium hypersensitivity. Am J Respir Crit Care Med. 2002;165(6):788–94.

    PubMed  Google Scholar 

  26. Omiecinski CJ, Vanden Heuvel JP, Perdew GH, Peters JM. Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci. 2011;120 Suppl 1:S49–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kohle C, Bock KW. Coordinate regulation of Phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2. Biochem Pharmacol. 2007;73(12):1853–62.

    Article  PubMed  Google Scholar 

  28. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. 1999;286(5439):487–91.

    Article  CAS  PubMed  Google Scholar 

  29. Singh MS, Michael M. Role of xenobiotic metabolic enzymes in cancer epidemiology. Methods Mol Biol. 2009;472:243–64.

    Article  CAS  PubMed  Google Scholar 

  30. Autrup H. Genetic polymorphisms in human xenobiotica metabolizing enzymes as susceptibility factors in toxic response. Mutat Res. 2000;464(1):65–76.

    Article  CAS  PubMed  Google Scholar 

  31. Hecht SS. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol. 1998;11(6):559–603.

    Article  CAS  PubMed  Google Scholar 

  32. CYP1A1 Allele Nomenclature. 2009. http://www.cypalleles.ki.se/cyp1a1.htm. Accessed 15 Aug 2011.

  33. Bozina N, Bradamante V, Lovric M. Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arh Hig Rada Toksikol. 2009;60(2):217–42.

    Article  CAS  PubMed  Google Scholar 

  34. Bogaards JJ, van Ommen B, van Bladeren PJ. Interindividual differences in the in vitro conjugation of methylene chloride with glutathione by cytosolic glutathione S-transferase in 22 human liver samples. Biochem Pharmacol. 1993;45(10):2166–9.

    Article  CAS  PubMed  Google Scholar 

  35. Raucy JL, Kraner JC, Lasker JM. Bioactivation of halogenated hydrocarbons by cytochrome P4502E1. Crit Rev Toxicol. 1993;23(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  36. Thier R, Bruning T, Roos PH, et al. Markers of genetic susceptibility in human environmental hygiene and toxicology: the role of selected CYP, NAT and GST genes. Int J Hyg Environ Health. 2003;206(3):149–71.

    Article  CAS  PubMed  Google Scholar 

  37. Bolt HM, Roos PH, Thier R. The cytochrome P-450 isoenzyme CYP2E1 in the biological processing of industrial chemicals: consequences for occupational and environmental medicine. Int Arch Occup Environ Health. 2003;76(3):174–85.

    CAS  PubMed  Google Scholar 

  38. Eaton DL. Biotransformation enzyme polymorphism and pesticide susceptibility. Neurotoxicology. 2000;21(1–2):101–11.

    CAS  PubMed  Google Scholar 

  39. Neafsey P, Ginsberg G, Hattis D, Sonawane B. Genetic polymorphism in cytochrome P450 2D6 (CYP2D6): population distribution of CYP2D6 activity. J Toxicol Environ Health B Crit Rev. 2009;12(5–6):334–61.

    Article  CAS  PubMed  Google Scholar 

  40. Frova C. Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng. 2006;23(4):149–69.

    Article  CAS  PubMed  Google Scholar 

  41. Parl FF. Glutathione S-transferase genotypes and cancer risk. Cancer Lett. 2005;221(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  42. Ali-Osman F, Akande O, Antoun G, Mao JX, Buolamwini J. Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J Biol Chem. 1997;272(15):10004–12.

    Article  CAS  PubMed  Google Scholar 

  43. Garte S, Gaspari L, Alexandrie AK, et al. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev. 2001;10(12):1239–48.

    CAS  PubMed  Google Scholar 

  44. Aromatic amines etc. IARC monographs on the evaluation of carcinogenic risks to humans. IARC Monographs, Vol. 99, IARC 2010.

    Google Scholar 

  45. Indulski JA, Lutz W. Metabolic genotype in relation to individual susceptibility to environmental carcinogens. Int Arch Occup Environ Health. 2000;73(2):71–85.

    Article  CAS  PubMed  Google Scholar 

  46. Cascorbi I, Drakoulis N, Brockmoller J, Maurer A, Sperling K, Roots I. Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals: correlation with phenotypic activity. Am J Hum Genet. 1995;57(3):581–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Ishibe N, Kelsey KT. Genetic susceptibility to environmental and occupational cancers. Cancer Causes Control. 1997;8(3):504–13.

    Article  CAS  PubMed  Google Scholar 

  48. Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys. 2010;501(1):116–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kelsey KT, Ross D, Traver RD, et al. Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy. Br J Cancer. 1997;76(7):852–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact. 2000;129(1–2):77–97.

    Article  CAS  PubMed  Google Scholar 

  51. Traver RD, Horikoshi T, Danenberg KD, et al. NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res. 1992;52(4):797–802.

    CAS  PubMed  Google Scholar 

  52. Ginsberg G, Angle K, Guyton K, Sonawane B. Polymorphism in the DNA repair enzyme XRCC1: utility of current database and implications for human health risk assessment. Mutat Res. 2011;727(1–2):1–15.

    Article  CAS  PubMed  Google Scholar 

  53. Taioli E, Pedotti P, Garte S. Importance of allele frequency estimates in epidemiological studies. Mutat Res. 2004;567(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  54. Wacholder S, Rothman N, Caporaso N. Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J Natl Cancer Inst. 2000;92(14):1151–8.

    Article  CAS  PubMed  Google Scholar 

  55. Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994;265(5181):2037–48.

    Article  CAS  PubMed  Google Scholar 

  56. Vineis P, Anttila S, Benhamou S, et al. Evidence of gene-gene interactions in lung carcinogenesis in a large pooled analysis. Carcinogenesis. 2007;28(9):1902–5.

    Article  CAS  PubMed  Google Scholar 

  57. Shah PP, Singh AP, Singh M, et al. Interaction of cytochrome P4501A1 genotypes with other risk factors and susceptibility to lung cancer. Mutat Res. 2008;639(1–2):1–10.

    Article  CAS  PubMed  Google Scholar 

  58. Stadler ZK, Vijai J, Thom P, et al. Genome-wide association studies of cancer predisposition. Hematol Oncol Clin North Am. 2010;24(5):973–96.

    Article  PubMed  Google Scholar 

  59. Varghese JS, Easton DF. Genome-wide association studies in common cancers–what have we learnt? Curr Opin Genet Dev. 2010;20(3):201–9.

    Article  CAS  PubMed  Google Scholar 

  60. Grisanzio C, Freedman ML. Chromosome 8q24-Associated Cancers and MYC. Genes Cancer. 2010;1(6):555–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Calvanese V, Lara E, Kahn A, Fraga MF. The role of epigenetics in aging and age-related diseases. Ageing Res Rev. 2009;8(4):268–76.

    Article  CAS  PubMed  Google Scholar 

  62. Tost J. DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Mol Biotechnol. 2010;44(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  63. Miranda TB, Jones PA. DNA methylation: the nuts and bolts of repression. J Cell Physiol. 2007;213(2):384–90.

    Article  CAS  PubMed  Google Scholar 

  64. Ehrlich M. DNA hypomethylation, cancer, the immunodeficiency, centromeric region instability, facial anomalies syndrome and chromosomal rearrangements. J Nutr. 2002;132(8 Suppl):2424S–9.

    CAS  PubMed  Google Scholar 

  65. Hoffmann MJ, Schulz WA. Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol. 2005;83(3):296–321.

    Article  CAS  PubMed  Google Scholar 

  66. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11): 1148–59.

    Article  CAS  PubMed  Google Scholar 

  67. Gronbaek K, Hother C, Jones PA. Epigenetic changes in cancer. APMIS. 2007;115(10):1039–59.

    Article  PubMed  Google Scholar 

  68. Langevin SM, Houseman EA, Christensen BC, et al. The influence of aging, environmental exposures and local sequence features on the variation of DNA methylation in blood. Epigenetics. 2011;6(7):908–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Christensen BC, Houseman EA, Marsit CJ, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5(8):e1000602.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Lujambio A, Esteller M. How epigenetics can explain human metastasis: a new role for microRNAs. Cell Cycle. 2009;8(3): 377–82.

    Article  CAS  PubMed  Google Scholar 

  71. Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102(30):10604–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Chen H, Liu J, Zhao CQ, Diwan BA, Merrick BA, Waalkes MP. Association of c-myc overexpression and hyperproliferation with arsenite-induced malignant transformation. Toxicol Appl Pharmacol. 2001;175(3):260–8.

    Article  CAS  PubMed  Google Scholar 

  73. Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A. 1997;94(20):10907–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Davis CD, Uthus EO, Finley JW. Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon. J Nutr. 2000;130(12):2903–9.

    CAS  PubMed  Google Scholar 

  75. Marsit CJ, Houseman EA, Schned AR, Karagas MR, Kelsey KT. Promoter hypermethylation is associated with current smoking, age, gender and survival in bladder cancer. Carcinogenesis. 2007;28(8):1745–51.

    Article  CAS  PubMed  Google Scholar 

  76. Herceg Z. Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis. 2007;22(2):91–103.

    Article  CAS  PubMed  Google Scholar 

  77. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21(1):103–7.

    Article  CAS  PubMed  Google Scholar 

  78. Broday L, Cai J, Costa M. Nickel enhances telomeric silencing in Saccharomyces cerevisiae. Mutat Res. 1999;440(2):121–30.

    Article  CAS  PubMed  Google Scholar 

  79. Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood). 2004;229(10): 988–95.

    CAS  Google Scholar 

  80. Weidman JR, Dolinoy DC, Murphy SK, Jirtle RL. Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer J. 2007;13(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  81. Poirier LA, Vlasova TI. The prospective role of abnormal methyl metabolism in cadmium toxicity. Environ Health Perspect. 2002;110 Suppl 5:793–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res. 2003;286(2):355–65.

    Article  CAS  PubMed  Google Scholar 

  83. Furumai R, Matsuyama A, Kobashi N, et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 2002;62(17):4916–21.

    CAS  PubMed  Google Scholar 

  84. Barker DJ. The developmental origins of adult disease. J Am Coll Nutr. 2004;23(6 Suppl):588S–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Langevin PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Langevin, S.M., Kelsey, K.T. (2014). Genetics and Gene-Environment Interactions. In: Anttila, S., Boffetta, P. (eds) Occupational Cancers. Springer, London. https://doi.org/10.1007/978-1-4471-2825-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2825-0_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2824-3

  • Online ISBN: 978-1-4471-2825-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics