Skip to main content

Lung Cancer: Genetic Susceptibility

  • Chapter
  • First Online:
Occupational Cancers
  • 1134 Accesses

Abstract

Genetic susceptibility factors play a role in determining individual risk of developing lung cancer. Gene variants that might affect susceptibility to cancer fall into three categories: rare-risk, moderate-risk, and common low-risk variants. Although family linkage studies have been able to identify the low-frequency highly penetrant susceptibility genes for lung cancer, most of the genetic risk is likely to involve several genes of the last two categories, i.e., moderate and low risk. Such risk variants have been tested on a candidate gene basis. Recently, the genome-wide association (GWA) studies have offered an alternative research method. This chapter will introduce these two different approaches and their most promising outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spyratos D, Zarogoulidis P, Porpodis K, Tsakiridis K, Machairiotis N, Katsikogiannis N, Katsokogiannis N, Kougioumzi I, Dryllis G, Kallianos A, Rapti A, Li C, Zarogouldis K. Occupational exposure and lung cancer. J Thorac Dis. 2013;5:S440–5.

    Google Scholar 

  2. Smith G, Stanley LA, Sim E, Strange R, Wolf CR. Metabolic polymorphisms and cancer susceptibility. Cancer Surv. 1995;25:27–65.

    CAS  PubMed  Google Scholar 

  3. Nebert DW, Mckinnon RA, Puga A. Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol. 1996;15:273–80.

    CAS  PubMed  Google Scholar 

  4. Guengerich FP. Catalytic selectivity of human cytochrome P450 enzymes: relevance to drug metabolism and toxicity. Toxicol Lett. 1994;70:133–8.

    CAS  PubMed  Google Scholar 

  5. Gonzalez FJ, Aoyama T, Gelboin HV. Activation of promutagens by human cDNA expressed cytochrome P450s. Prog Clin Biol Res. 1990;340B:77–86.

    CAS  PubMed  Google Scholar 

  6. Eaton DL, Gallagher EP, Bammler TK, Kunze KL. Role of cytochrome P4501A2 in chemical carcinogenesis: implications for human variability in expression and enzyme activity. Pharmacogenetics. 1995;5:259–74.

    CAS  PubMed  Google Scholar 

  7. Gonzalez FJ. The CYP2D6 subfamily. In: Ioannides C, editor. Cytochromes P450s: metabolic and toxicologic aspects. Boca Raton: CRC Press; 1996. p. 183–210.

    Google Scholar 

  8. Daly AK, Brockmoller J, Broly F, Eichelbaum M, Evans WE, Gonzalez FJ, Huang J-D, Idle JR, Ingelman-sundberg M, Ishizaki T, Jacqz-Aigrain E, Meyer UA, Nebert DW, Steen VM, Wolf CR, Zanger UM. Nomenclature for human CYP2D6 alleles. Pharmacogenetics. 1996;6:193–201.

    CAS  PubMed  Google Scholar 

  9. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Astabrook RW, Gunsalus IC, Nebert DE. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996;6:1–42.

    CAS  PubMed  Google Scholar 

  10. Rostami-Hodjegan A, Lenard MS, Woods HE, Tucker GT. Meta-analysis of studies of the CYP2D6 polymorphism in relation to lung cancer and Parkinson’s disease. Pharmacogenetics. 1998;8:227–38.

    CAS  PubMed  Google Scholar 

  11. Agundez JA. Cytochrome P450 gene polymorphism and cancer. Curr Drug Metab. 2004;5:211–24.

    CAS  PubMed  Google Scholar 

  12. Rojas M, Camus AM, Alexandrov K, Husgafvel-Pursiainen K, Anttila S, Vainio H, Bartsch H. Stereoselective metabolism of (−)-benzoapyrene-7,8-diol by human lung microsomes and peripheral blood lymphocytes: effects of smoking. Carcinogenesis. 1992;13:929–33.

    CAS  PubMed  Google Scholar 

  13. Shou M, Krausz KW, Gonzalez FJ, Gelboin HV. Metabolic activation of the potent carcinogen dibenzo(a)pyrene by human recombinant cytochromes P450, lung and liver microsomes. Carcinogenesis. 1996;17:2429–33.

    CAS  PubMed  Google Scholar 

  14. Bartsch H, Rojas M, Alexandrov K, Camus A-M, Castegnaro M, Malaveille C, Anttila S, Hirvonen A, Husgafvel-Pursiainen K, Hietanen E, Vainio H. Metabolic polymorphism affecting DNA binding and excretion of carcinogens in humans. Pharmacogenetics. 1995;5:S84–90.

    CAS  PubMed  Google Scholar 

  15. Okazaki I, Sugita M, Matsuki H, Billah SM, Watanabe T. Additional candidates to conventional genes susceptible for lung cancer and changing trend in Japan. Oncol Rep. 2010;23:1493–500.

    CAS  PubMed  Google Scholar 

  16. Hecht SS. Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol. 2002;3:461–9.

    CAS  PubMed  Google Scholar 

  17. Brockmoeller J, Cascorbi I, Kerb R, Sachse C, Roots I. Polymorphisms in xenobiotic conjugation and disease predisposition. Toxicol Lett. 1998;102–103:173–83.

    Google Scholar 

  18. Vineis P, Veglia F, Benhamou S, Butkiewicz D, Cascorbi I, Clapper ML, Dolzan V, Haugen A, Hirvonen A, Ingelman-Sundberg M, Kihara M, Kiyohara C, Kremers P, Le Marchand L, Ohshima S, Pastorelli R, Rannug A, Romkes M, Schoket B, Shields P, Strange RC, Stucker I, Sugimura H, Garte S, Gaspari L, Taioli E. CYP1A1 T3801 C polymorphism and lung cancer: a pooled analysis of 2,451 cases and 3,358 controls. Int J Cancer. 2003;104:650–7.

    CAS  PubMed  Google Scholar 

  19. Vineis P, Anttila S, Benhamou S, Spinola M, Hirvonen A, Kiyohara C, Garte SJ, Puntoni R, Rannug A, Strange RC, Taioli E. Evidence of gene-gene interactions in lung carcinogenesis in a large pooled analysis. Carcinogenesis. 2007;28:1902–5.

    CAS  PubMed  Google Scholar 

  20. Houlston RS. CYP1A1 polymorphisms and lung cancer risk: a meta-analysis. Pharmacogenetics. 2000;10:105–14.

    CAS  PubMed  Google Scholar 

  21. Hung RJ, Boffetta P, Brockmoller J, Butkiewicz D, Cascorbi I, Clapper ML, Garte S, Haugen A, Hirvonen A, Anttila S, Kalina I, Le Marchand L, London SJ, Rannug A, Romkes M, Salagovic J, Schoket B, Gaspari L, Taioli E. CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: a pooled analysis. Carcinogenesis. 2003;24:875–82.

    CAS  PubMed  Google Scholar 

  22. Vineis P, Veglia F, Anttila S, Benhamou S, Clapper ML, Dolzan V, Ryberg D, Hirvonen A, Kremers P, Le Marchand L, Pastorelli R, Rannug A, Romkes M, Schoket B, Strange RC, Garte S, Taioli E. CYP1A1, GSTM1 and GSTT1 polymorphisms and lung cancer: a pooled analysis of gene-gene interactions. Biomarkers. 2004;9:298–305.

    CAS  PubMed  Google Scholar 

  23. Le Marchand L, Guo C, Benhamou S, Bouchardy C, Cascorbi I, Clapper ML, Garte S, Haugen A, Ingelman-Sundberg M, Kihara M, Rannug A, Ryberg D, Stücker I, Sugimura H, Taioli E. Pooled analysis of the CYP1A1 exon 7 polymorphism and lung cancer (United States). Cancer Causes Control. 2003;14:339–46.

    PubMed  Google Scholar 

  24. Pavanello S, B’chir F, Pulliero A, Saguem S, Ben Fraj R, El Aziz HA, Clonfero E, Mastrangelo G. Interaction between CYP1A2-T2467DELT polymorphism and smoking in adenocarcinoma and squamous cell carcinoma of the lung. Lung Cancer. 2007;57:266–72.

    PubMed  Google Scholar 

  25. Singh AP, Pant MC, Ruwali M, Shah PP, Prasad R, Mathur N, Parmar D. Polymorphism in cytochrome P450 1A2 and their interaction with risk factors in determining risk of squamous cell lung carcinoma in men. Cancer Biomark. 2010;8:351–9.

    CAS  PubMed  Google Scholar 

  26. Roos PH, Bolt HM. Cytochrome P450 interactions in human cancers: new aspects considering CYP1B1. Expert Opin Drug Metab Toxicol. 2005;1:187–202.

    CAS  PubMed  Google Scholar 

  27. Watanabe J, Shimada T, Gillam EM, Ikuta T, Suemasu K, Higashi Y, Gotoh O, Kawajiri K. Association of CYP1B1 genetic polymorphism with incidence to breast and lung cancer. Pharmacogenetics. 2005;10:25–33.

    Google Scholar 

  28. Liang G, Pu Y, Yin L. Rapid detection of single nucleotide polymorphisms related with lung cancer susceptibility of Chinese population. Cancer Lett. 2005;223:265–74.

    CAS  PubMed  Google Scholar 

  29. Timofeeva MN, Kropp S, Sauter W, Beckmann L, Rosenberger A, Illig T, Jäger B, Mittelstrass K, Dienemann H, LUCY-Consortium, Bartsch H, Bickeböller H, Chang-Claude JC, Risch A, Wichmann HE. CYP450 polymorphisms as risk factors for early-onset lung cancer: gender-specific differences. Carcinogenesis. 2009;30:1161–9.

    CAS  PubMed  Google Scholar 

  30. Rotunno M, Yu K, Lubin JH, Consonni D, Pesatori AC, Goldstein AM, Goldin LR, Wacholder S, Welch R, Burdette L, Chanock SJ, Bertazzi PA, Tucker MA, Caporaso NE, Chatterjee N, Bergen AW, Landi MT. Phase I metabolic genes and risk of lung cancer: multiple polymorphisms and mRNA expression. PLoS One. 2009;4:e5652.

    PubMed  PubMed Central  Google Scholar 

  31. Xu W, Zhou Y, Hang X, Shen D. Current evidence on the relationship between CYP1B1 polymorphisms and lung cancer risk: a meta-analysis. Mol Biol Rep. 2012;39:2821–9.

    CAS  PubMed  Google Scholar 

  32. Di YM, Chow VD, Yang LP, Zhou SF. Structure, function, regulation and polymorphism of human cytochrome P450 2A6. Curr Drug Metab. 2009;10:754–80.

    CAS  PubMed  Google Scholar 

  33. Fernandez-Salguero P, Gonzalez FJ. The CYP2A gene subfamily: species differences, regulation, catalytic activities and role in chemical carcinogenesis. Pharmacogenetics. 1995;5:S123–8.

    CAS  PubMed  Google Scholar 

  34. Fernandez-Salguero P, Hoffman SMG, Cholerton S, Mohrenweiser H, Raunio H, Rautio A, Pelkonen O, Huang J, Evans WE, Idle JR, Gonzalez FJ. A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am J Hum Genet. 1995;57:651–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cholerton S, Idle ME, Vas A, Gonzalez FJ, Idle JR. Comparison of a novel thin layer chromatographic-fluorescence detection method with a spectrofluoromethric method for the determination of 7-hydrocoumarin in human urine. J Chromatogr. 1992;575:325–30.

    CAS  PubMed  Google Scholar 

  36. Tamaki Y, Arai T, Sugimura H, Sasaki T, Honda M, Muroi Y, Matsubara Y, Kanno S, Ishikawa M, Hirasawa N, Hiratsuka M. Association between cancer risk and drug-metabolizing enzyme gene (CYP2A6, CYP2A13, CYP4B1, SULT1A1, GSTM1, and GSTT1) polymorphisms in cases of lung cancer in Japan. Drug Metab Pharmacokinet. 2011;26:516–22.

    CAS  PubMed  Google Scholar 

  37. Wassenaar CA, Dong Q, Wei Q, Amos CI, Spitz MR, Tyndale RF. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J Natl Cancer Inst. 2011;103:1342–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Uematsu F, Kikuchi H, Ohmachi T, Sagami I, Motomiya M, Kamataki T, Komori M, Watanabe M. Two common RFLPs of the human CYP2E1 gene. Nucl Acid Res. 1991;19:2803.

    CAS  Google Scholar 

  39. Uematsu F, Kikuchi H, Motomiya M, Abe T, Sagami I, Ohmachi T, Wakui A, Kanamaru R, Watanabe M. Association between restriction fragment length polymorphism of the human cytochrome P450IIE1 gene and susceptibility to lung cancer. Jpn J Cancer Res. 1991;82:254–6.

    CAS  PubMed  Google Scholar 

  40. Uematsu F, Kikuchi H, Abe T, Motomiya M, Ohmachi T, Sagami I, Watanabe M. Msp I polymorphism of the human CYP2E1 gene. Nucl Acids Res. 1991;19:5797.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hayashi S, Watanabe J, Kawajiri K. Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J Biochem. 1991;110:559–65.

    CAS  PubMed  Google Scholar 

  42. Liu Y, Meng XW, Zhou LY, Zhang PY, Sun X, Zhang P. Genetic polymorphism and mRNA levels of cytochrome P450IIE1 and glutathione S-transferase P1 in patients with alcoholic liver disease in different nationalities. Hepatobiliary Pancreat Dis Int. 2009;8:162–7.

    CAS  PubMed  Google Scholar 

  43. Uematsu F, Kikuchi H, Motomiya M, Abe T, Ishioka C, Kanamaru R, Sagami I, Watanabe M. Human cytochrome P450IIE1 gene: DraI polymorphism and susceptibility to cancer. Tohoku J Exp Med. 1992;168:113–7.

    CAS  PubMed  Google Scholar 

  44. Uematsu F, Ikawa S, Sagami I, Kanamaru R, Abe T, Satoh K, Motomiya M, Watanabe M. Restriction fragment length polymorphism of the human CYP2E1 (cytochrome P450IIE1) gene and susceptibility to lung cancer: possible relevance to low smoking exposure. Pharmacogenetics. 1994;4:58–63.

    CAS  PubMed  Google Scholar 

  45. Hirvonen A, Husgafvel-Pursiainen K, Anttila S, Karjalainen A, Vainio H. The human CYP2E1 gene and lung cancer: DraI and RsaI restriction fragment length polymorphisms in a Finnish study population. Carcinogenesis. 1993;14:85–8.

    CAS  PubMed  Google Scholar 

  46. Rannug A, Alexandrie AK, Persson I, Ingelman-Sundberg M. Genetic polymorphism of cytochromes P450 1A1, 2D6 and 2E1: regulation and toxicological significance. J Occup Environ Med. 1995;37:25–36.

    CAS  PubMed  Google Scholar 

  47. Wang Y, Yang H, Li L, Wang H, Zhang C, Yin G, Zhu B. Association between CYP2E1 genetic polymorphisms and lung cancer risk: a meta-analysis. Eur J Cancer. 2010;46:758–64.

    CAS  PubMed  Google Scholar 

  48. Oesch F. Mammalian epoxide hydrolases: inducible enzymes catalyzing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica. 1973;3:305–40.

    CAS  PubMed  Google Scholar 

  49. Oesch F, Glatt H, Schimassmann H. The apparent ubiquity of epoxide hydrolase in rat organs. Biochem Pharmacol. 1977;26:603–7.

    CAS  PubMed  Google Scholar 

  50. Seidegård J, Ekström G. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect. 1997;105:791–9.

    PubMed  PubMed Central  Google Scholar 

  51. Omiecinski CJ, Aicher L, Holubkov R, Checkoway H. Human peripheral lymphocytes as indicators of microsomal epoxide hydrolase activity in liver and lung. Pharmacogenetics. 1993;3:150–8.

    CAS  PubMed  Google Scholar 

  52. Etter H, Richter C, Ohta Y, Winterhalter KH, Sasabe H, Kawato S. Rotation and interaction with epoxide hydrolase of P-450 in proteoliposomes. J Biol Chem. 1991;266:18600–5.

    CAS  PubMed  Google Scholar 

  53. Sims P, Grover PL, Swaisland A, Pal K, Hewer A. Metabolic activation of benzo(a)pyrene proceeds by a diol epoxide. Nature. 1974;252:326–8.

    CAS  PubMed  Google Scholar 

  54. Hasset C, Robinson KB, Beck NB, Omiecinski CJ. The human microsomal epoxide hydrolase gene (EPHX1): complete nucleotide sequence and structural characterization. Genomics. 1994;23:433–42.

    Google Scholar 

  55. Hasset C, Aicher L, Sidhu JS, Omiecinski CJ. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 1994;3:421–8.

    Google Scholar 

  56. Raaka S, Hasset C, Omiecinski CJ. Human microsomal epoxide hydrolase: 5′-flanking region genetic polymorphism. Carcinogenesis. 1998;19:387–93.

    CAS  PubMed  Google Scholar 

  57. Kiyohara C, Yoshimasu K, Takayama K, Nakanishi Y. EPHX1 polymorphisms and the risk of lung cancer: a HuGE review. Epidemiology. 2006;17:89–99.

    PubMed  Google Scholar 

  58. Li X, Hu Z, Qu X, Zhu J, Li L, Ring BZ, Su L. Putative EPHX1 enzyme activity is related with risk of lung and upper aerodigestive tract cancers: a comprehensive meta-analysis. PLoS One. 2011;6:e14749.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30:445–600.

    CAS  PubMed  Google Scholar 

  60. Coles B, Ketterer B. The role of glutathione and glutathione transferases in chemical carcinogenesis. Crit Rev Biochem Mol Biol. 1990;25:47–70.

    CAS  PubMed  Google Scholar 

  61. Seidegård J, Vorachek WR, Pero RW, Pearson WR. Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci. 1988;85:7293–7.

    PubMed  PubMed Central  Google Scholar 

  62. Widersten M, Pearson WR, Engstrom A, Mannervik B. Heterologous expression of the allelic variant mu-class glutathione transferases mu and psi. Biochem J. 1991;276:519–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gemignani F, Landi S, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout V, Bencko V, Gaborieau V, Gioia-Patricola L, Bellini I, Barale R, Canzian F, Hall J, Boffetta P, Hung RJ, Brennan P. Development of lung cancer before the age of 50: the role of xenobiotic metabolizing genes. Carcinogenesis. 2007;28:1287–93.

    CAS  PubMed  Google Scholar 

  64. Carlsten C, Sagoo GS, Frodsham AJ, Burke W, Higgins JP. Glutathione S-transferase M1 (GSTM1) polymorphisms and lung cancer: a literature-based systematic HuGE review and meta-analysis. Am J Epidemiol. 2008;167:759–74.

    CAS  PubMed  Google Scholar 

  65. Lee KM, Kang D, Clapper ML, Ingelman-Sundberg M, Ono-Kihara M, Kiyohara C, Min S, Lan Q, Le Marchand L, Lin P, Lung ML, Pinarbasi H, Pisani P, Srivatanakul P, Seow A, Sugimura H, Tokudome S, Yokota J, Taioli E. CYP1A1, GSTM1, and GSTT1 polymorphisms, smoking, and lung cancer risk in a pooled analysis among Asian populations. Cancer Epidemiol Biomarkers Prev. 2008;17:1120–6.

    CAS  PubMed  Google Scholar 

  66. Langevin SM, Ioannidis JP, Vineis P, Taioli E, Genetic Susceptibility to Environmental Carcinogens group (GSEC). Assessment of cumulative evidence for the association between glutathione S-transferase polymorphisms and lung cancer: application of the Venice interim guidelines. Pharmacogenet Genomics. 2010;20:586–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. McWilliams JE, Sanderson BJ, Harris EL, Richert-Boe KE, Henner WD. Glutathione S-transferase M1 (GSTM1) deficiency and lung cancer risk. Cancer Epidemiol Biomarkers Prev. 1995;4(6):589–94.

    CAS  PubMed  Google Scholar 

  68. Inskip A, Elexpuru-Camiruaga J, Buxton N, Dias PS, Macintosh J, Campbell D, Jones PW, Yengi L, Talbot JA, Strange RC, Fryer AA. Identification of polymorphism at the glutathione S-transferase, GSTM3 locus: evidence for linkage with GSTM1*A. Biochem J. 1995;312:713–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Anttila S, Hirvonen A, Vainio H, Husgafvel-Pursiainen K, Hayes JD, Ketterer B. Immunohistochemical localization of glutathione S-transferases in human lung. Cancer Res. 1993;53:5643–8.

    CAS  PubMed  Google Scholar 

  70. Anttila S, Luostarinen L, Hirvonen A, Elovaara E, Karjalainen A, Nurminen T, Hayes JD, Vainio H, Ketterer B. Pulmonary expression of glutathione S-transferase M3 in lung cancer patients: association with GSTM1 polymorphism, smoking, and asbestos exposure. Cancer Res. 1995;55:3305–9.

    CAS  PubMed  Google Scholar 

  71. Yengi L, Inskip A, Gilford J, Alldersea J, Bailey L, Smith A, Lear JT, Heagerty AH, Bowers B, Hand P, Hayes JD, Jones PW, Strange RC, Fryer AA. Polymorphism at the glutathione S-transferase locus GSTM3: interactions with cytochrome P450 and glutathione S-transferase genotypes as risk factors for multiple cutaneous basal cell carcinoma. Cancer Res. 1996;56:1974–7.

    CAS  PubMed  Google Scholar 

  72. Matthias C, Bockműhl U, Jahnke V, Jones PW, Hayes JD, Alldersea J, Gilford J, Bailey L, Bath J, Worrall SF, Hand P, Fryer AA, Strange R. Polymorphism in cytochrome P450 CYP2D6, CYP1A1, CYP2E1 and glutathione S-transferase, GSTM1, GSTM3, GSTT1 and susceptibility to tobacco-related cancers: studies in upper aerodigestive tract cancers. Pharmacogenetics. 1998;8:91–100.

    CAS  PubMed  Google Scholar 

  73. Jourenkova-Mirnova N, Wikman H, Bouchardy C, Voho A, Dayer P, Benhamou S, Hirvonen A. Role of glutathione S-transferase GSTM1, GSTM3, GSTP1, and GSTT1 genotypes in modulating susceptibility to smoking related lung cancer. Pharmacogenetics. 1998;8:495–502.

    Google Scholar 

  74. Ali-Osman F, Akande N, Mao J. Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J Biol Chem. 1997;272:10004–12.

    CAS  PubMed  Google Scholar 

  75. Zimniak P, Nanduri B, Pilula S, Bandorowicz-Pikula J, Singhal S, Srivastava SK, Awasthi S, Awasrhi JC. Naturally occurring human glutathione S-transferase GSTP1.1 isoforms with isoleucine and valine at position 104 differ in enzymatic properties. Eur J Biochem. 1994;224:893–9.

    CAS  PubMed  Google Scholar 

  76. Ryberg D, Skaug V, Hewer A, Phillips DH, Harries LW, Wolf CR, Øgreid D, Ulvik A, Vu P, Haugen A. Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis. 1997;18:1285–9.

    CAS  PubMed  Google Scholar 

  77. Jaskula-Sztul R, Reinikainen M, Husgafvel-Pursiainen K, Szmeja Z, Szyfter W, Szyfter K, Hirvonen A. Glutathione S-transferase M1 and T1 genotypes as and susceptibility to smoking-related larynx cancer. Biomarkers. 1998;3:149–55.

    CAS  PubMed  Google Scholar 

  78. Harris MJ, Coggan M, Langton L, Wilson SR, Board PG. Polymorphism of the Pi class glutathione S-transferase in normal populations and cancer patients. Pharmacogenetics. 1998;8:27–31.

    CAS  PubMed  Google Scholar 

  79. Cote ML, Chen W, Smith DW, Benhamou S, Bouchardy C, Butkiewicz D, Fong KM, Gené M, Hirvonen A, Kiyohara C, Larsen JE, Lin P, Raaschou-Nielsen O, Povey AC, Reszka E, Risch A, Schneider J, Schwartz AG, Sorensen M, To-Figueras J, Tokudome S, Pu Y, Yang P, Wenzlaff AS, Wikman H, Taioli E. Meta- and pooled analysis of GSTP1 polymorphism and lung cancer: a HuGE-GSEC review. Am J Epidemiol. 2009;169:802–14.

    PubMed  PubMed Central  Google Scholar 

  80. Ye Z, Song H, Higgins JP, Pharoah P, Danesh J. Five glutathione s-transferase gene variants in 23,452 cases of lung cancer and 30,397 controls: meta-analysis of 130 studies. PLoS Med. 2006;3:e91.

    PubMed  PubMed Central  Google Scholar 

  81. Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylor JB. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J. 1994;300:271–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schröder KR, Hallier E, Peter H, Bolt HM. Dissociation of a new glutathione S-transferase activity in human erythrocytes. Biochem Pharmacol. 1992;43:1671–4.

    PubMed  Google Scholar 

  83. Church SL. Manganese superoxide dismutase: nucleotide and deduced amino acid sequence of a cDNA encoding a new human transcript. Biochim Biophys Acta. 1990;1087:250–2.

    CAS  PubMed  Google Scholar 

  84. Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS, Trent JM. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci. 1993;90:3113–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y. Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun. 1996;226:561–5.

    CAS  PubMed  Google Scholar 

  86. Rosenblum JS, Gilula NB, Lerner RA. On signal sequence polymorphisms and diseases of distribution. Proc Natl Acad Sci. 1996;93:4471–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sutton A, Khoury H, Prip-Buus C, Cepanec C, Pessayre D, Degoul F. The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics. 2003;13:145–57.

    CAS  PubMed  Google Scholar 

  88. Schmekel B, Venge P. The distribution of myeloperoxidase, eosinophil cationic protein, albumin and urea in sequential bronchoalveolar lavage. Eur Respir J. 1991;4:517–23.

    CAS  PubMed  Google Scholar 

  89. Schmekel B, Karlsson SE, Linden M, Sundström C, Tegner H, Venge P. Myeloperoxidase in human lung lavage. I. A marker of local neutrophil activity. Inflammation. 1990;14:447–54.

    CAS  PubMed  Google Scholar 

  90. Piedrafita FJ, Molander RB, Vansant G, Orlova EA, Pfahl M, Reynolds WF. An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem. 1996;271:14412–20.

    CAS  PubMed  Google Scholar 

  91. Wang LI, Neuberg D, Christiani DC. Asbestos exposure, manganese superoxide dismutase (MnSOD) genotype, and lung cancer risk. J Occup Environ Med. 2004;46:556–64.

    CAS  PubMed  Google Scholar 

  92. Wang LI, Miller DP, Sai Y, Liu G, Su L, Wain JC, Lynch TJ, Christiani DC. Manganese superoxide dismutase alanine-to-valine polymorphism at codon 16 and lung cancer risk. J Natl Cancer Inst. 2001;93(23):1818–21.

    CAS  PubMed  Google Scholar 

  93. Lin P, Hsueh YM, Ko JL, Liang YF, Tsai KJ, Chen CY. Analysis of NQO1, GSTP1, and MnSOD genetic polymorphisms on lung cancer risk in Taiwan. Lung Cancer. 2003;40:123–9.

    PubMed  Google Scholar 

  94. Zejnilovic J, Akev N, Yilmar H, Isbir T. Association between manganese superoxide dismutase polymorphism and risk of lung cancer. Cancer Genet Cytogenet. 2009;189:1–4.

    CAS  PubMed  Google Scholar 

  95. Schabath MB, Spitz MR, Delclos GL, Gunn GB, Whitehead LW, Wu X. Association between asbestos exposure, cigarette smoking, myeloperoxidase (MPO) genotypes, and lung cancer risk. Am J Ind Med. 2002;42:29–37.

    CAS  PubMed  Google Scholar 

  96. Hein DW. N-acetyltransferase SNPs: emerging concepts serve as a paradigm for understanding complexities of personalized medicine. Expert Opin Drug Metab Toxicol. 2009;5:353–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Husain A, Zhang X, Doll MA, States JC, Barker DF, Hein DW. Functional analysis of the human N-acetyltransferase 1 major promoter: quantitation of tissue expression and identification of critical sequence elements. Drug Metab Dispos. 2007;35:1649–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sim E, Payton M, Noble M, Minchin R. An update on genetic, structural and functional studies of arylamine N-acetyltransferases in eucaryotes and procaryotes. Hum Mol Genet. 2000;9:2435–41.

    CAS  PubMed  Google Scholar 

  99. Smelt VA, Upton A, Adjaye J, Payton MA, Boukouvala S, Johnson N, Mardon HJ, Sim E. Expression of arylamine N-acetyltransferases in pre-term placentas and in human pre-implantation embryos. Hum Mol Genet. 2000;9:1101–7.

    CAS  PubMed  Google Scholar 

  100. Sim E, Lack N, Wang CJ, Long H, Westwood I, Fullam E, Kawamura A. Arylamine N-acetyltransferases: structural and functional implications of polymorphisms. Toxicology. 2008;254:170–83.

    CAS  PubMed  Google Scholar 

  101. Butcher NJ, Tiang J, Minchin RF. Regulation of arylamine N-acetyltransferases. Curr Drug Metab. 2008;9:498–504.

    CAS  PubMed  Google Scholar 

  102. Evans DA. N-acetyltransferase. In: Kalow W, editor. Pharmacogenetics of drug metabolism. New York: Pergamon Press; 1992. p. 95–178.

    Google Scholar 

  103. Hein DW, Doll MA, Rustan TD, Gray K, Feng Y, Ferguson RJ, Grant DM. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. Carcinogenesis. 1993;14:1633–8.

    CAS  PubMed  Google Scholar 

  104. Vatsis KP, Weber WW, Bell DA, Dupret J-M, Evans DAP, Grant DM, Hein DW, Lin HJ, Meyer UA, Relling MV, Sim E, Suzuki T, Yamazoe Y. Nomenclature for N-acetyltransferases. Pharmacogenetics. 1995;5:1–17.

    CAS  PubMed  Google Scholar 

  105. Hein DW, Boukouvala S, Grant DM, Minchin RF, Sim E. Changes in consensus arylamine N-acetyltransferase gene nomenclature. Pharmacogenet Genomics. 2008;18:367–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen B, Zhang WX, Cai WM. The influence of various genotypes on the metabolic activity of NAT2 in a Chinese population. Eur J Clin Pharmacol. 2006;62:355–9.

    CAS  PubMed  Google Scholar 

  107. Ma JJ, Liu CG, Li JH, Cao XM, Sun SL, Yao X. Effects of NAT2 polymorphism on SASP pharmacokinetics in Chinese population. Clin Chim Acta. 2009;407:30–5.

    CAS  PubMed  Google Scholar 

  108. Doll MA, Zang Y, Moeller T, Hein DW. Codominant expression of N-acetylation and O-acetylation activities catalyzed by N-acetyltransferase 2 in human hepatocytes. J Pharmacol Exp Ther. 2010;334:540–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Walraven JM, Zang Y, Trent JO, Hein DW. Structure/function evaluations of single nucleotide polymorphisms in human N-acetyltransferase 2. Curr Drug Metab. 2008;9:471–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hein DW. N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene. 2006;25:1649–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Walraven JM, Trent JO, Hein DW. Structure-function analyses of single nucleotide polymorphisms in human N-acetyltransferase 1. Drug Metab Rev. 2008;40:169–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhu Y, States C, Wang Y, Hein DW. Functional effects of genetic polymorphisms in the N-acetyltransferase 1 coding and 3′ untranslated regions. Birth Defects Res A Clin Mol Teratol. 2011;91:77–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhu Y, Hein DW. Functional effects of single nucleotide polymorphisms in the coding region of human N-acetyltransferase 1. Pharmacogenomics J. 2008;8:339–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hirvonen A. Polymorphic NATs and cancer proneness. In: Boffetta P, Caporaso N, Cuzick J, Lang M, Vineis P, editors. Metabolic polymorphisms and cancer. Lyon: IARC Scientific Publications; 1998.

    Google Scholar 

  115. Martínez C, Agúndez JAG, Olivera M, Martín R, Ladero JM, Benítez J. Lung cancer and mutations at the polymorphic NAT2 gene locus. Pharmacogenetics. 1995;5:207–14.

    PubMed  Google Scholar 

  116. Cascorbi I, Brockmöller J, Mrozikiewicz PM, Bauer S, Loddenkemper R, Roots I. Homozygous rapid arylamine N-acetyltransferase (NAT2) genotype as a susceptibility factor for lung cancer. Cancer Res. 1996;56:3961–6.

    CAS  PubMed  Google Scholar 

  117. McKay JD, Hashibe M, Hung RJ, Wakefield J, Gaborieau V, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout V, Bencko V, Chabrier A, Hall J, Boffetta P, Canzian F, Brennan P. Sequence variants of NAT1 and NAT2 and other xenometabolic genes and risk of lung and aerodigestive tract cancers in Central Europe. Cancer Epidemiol Biomarkers Prev. 2008;17:141–7.

    CAS  PubMed  Google Scholar 

  118. Bouchardy C, Mitrunen K, Wikman H, Husgafvel-Pursiainen K, Dayer P, Benhamou S, Hirvonen A. N-acetyltransferase NAT1 and NAT2 genotypes and lung cancer risk. Pharmacogenetics. 1998;8:291–8.

    CAS  PubMed  Google Scholar 

  119. Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland LB, Canzian F, Haugen A. A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers. Carcinogenesis. 2008;29:1164–9.

    CAS  PubMed  Google Scholar 

  120. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74.

    CAS  PubMed  Google Scholar 

  121. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;423:316–23.

    Google Scholar 

  122. Wood RD, Mitchell M, Lindahl T. Human DNA repair genes. Mutat Res. 2005;577:275–83.

    CAS  PubMed  Google Scholar 

  123. Lavin MF, Kozlov S. ATM activation and DNA damage response. Cell Cycle. 2007;6:931–42.

    CAS  PubMed  Google Scholar 

  124. Kastan MB, Derheimer DA. Multiple roles of ATM in monitoring and maintaining DNA integrity. Febs Lett. 2010;584:3675–81.

    PubMed  PubMed Central  Google Scholar 

  125. Shen L, Yin Z-H, Wan Y, Zhang Y, Li K, Zhou B-S. Association between ATM polymorphisms and cancer risk: a meta-analysis. Mol Biol Rep. 2012;39:5719–25.

    CAS  PubMed  Google Scholar 

  126. Zhao L, Gu A, Guixiang J, Zhou P, Zhao P, Lu A. The association between ATM IVS 22–77 T>C and cancer risk: a meta-analysis. PLoS One. 2012;6:e29479.

    Google Scholar 

  127. Barzilay G, Hickson ID. Structure and function of apurinic/apyrimidinic endonucleases. Bioessays. 1995;17:713–9.

    CAS  PubMed  Google Scholar 

  128. Tell G, Quadrifoglio F, Tribelli C, Kelley MR. Many functions of APE1/ref-1: not only DNA repair enzyme. Antioxid Redox Signal. 2009;11:601–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Xi T, Jones IM, Mohrenweiser HW. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. Genomics. 2004;83:970–9.

    CAS  PubMed  Google Scholar 

  130. Zhou B, Shan H, Su Y, Xia K, Shao X, Mao W, Shao Q. The association of APE1–656T>G and 1349T>G polymorphism and cancer risk: a meta-analysis based on 37 case-control studies. BMC Cancer. 2011;11:521.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ji Y-N, Zhan P, Wang J, Qiu L-X, Yu L-K. APE1 Asp148Glu gene polymorphism and lung cancer risk: a meta-analysis. Mol Biol Rep. 2011;38:4537–43.

    CAS  PubMed  Google Scholar 

  132. Ma H, Xu L, Yan J, Shao M, Hu Wang F, Wang Y, Yuan W, Qian J, Wang Y, Xun P, Liu H, Chen W, Yang L, Jin G, Huo X, Chen F, Shugart YY, Jin L, Wei Q, Wu T, Shen H, Huang W, Lu D. Tagging single nucleotide polymorphisms in excision repair cross-complementing group 1 (ERCC1) and risk of primary lung cancer in a Chinese population. Pharmacogenet Genomics. 2007;17:417–23.

    CAS  PubMed  Google Scholar 

  133. Yu JJ, Lee KB, Mu C, Li Q, Abernathy TV, Bostick-Bruton F, Reed E. Comparison of two human ovarian carcinoma cell lines (A2780/CP70 and MCAS) that are equally resistant to platinum, but differ at codon 118 of the ERCC1 gene. Int J Oncol. 2000;16:555–60.

    CAS  PubMed  Google Scholar 

  134. Duell EJ, Wiencke JK, Cheng TJ, Varkonyi A, Zuo ZF, Ashok TD, Mark EJ, Wain JC, Christiani DC, Kelsey KT. Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis. 2000;21:965–671.

    CAS  PubMed  Google Scholar 

  135. Lunn RM, Helzlsouer KJ, Parshad R, Umbach DM, Harris EL, Sanford KK, Bell DA. XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis. 2000;21:551–5.

    CAS  PubMed  Google Scholar 

  136. Zhang L, Wang J, Xu L, Zhou J, Guan X, Jiang F, Wu Y, Fan W. Nucleotide excision repair gene ERCC1 polymorphisms contribute to cancer susceptibility: a meta analysis. Mutagenesis. 2011;27:67–76.

    CAS  PubMed  Google Scholar 

  137. Kiyohara C, Yoshimasu K. Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis. Int J Med Sci. 2007;4:59–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hung RJ, Christiani DC, Risch A, Popanda O, Haugen A, Zienolddiny S, Benhamou S, Bouchardy C, Lan Q, Spitz MR, Wichmann HE, LeMarchand L, Vineis P, Matullo G, Kiyohara C, Zhang ZF, Pezeshki B, Harris C, Mechanic L, Seow A, Ng DP, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout V, Bencko V, Caporaso N, Chen C, Duell EJ, Goodman G, Field JK, Houlston RS, Hong YC, Landi MT, Lazarus P, Muscat J, McLaughlin J, Schwartz AG, Shen H, Stucker I, Tajima K, Matsuo K, Thun M, Yang P, Wiencke J, Andrew AS, Monnier S, Boffetta P, Brennan P. International Lung Cancer Consortium: pooled analysis of sequence variants in DNA repair and cell cycle pathways. Cancer Epidemiol Biomarkers Prev. 2008;17:3081–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Janićijević A, Sugasawa K, Shimizu Y, Hanaoka F, Wijgers N, Djurica M, Hoeijmakers JH, Wyman C. DNA bending by the human damage recognition complex XPC-HR23B. DNA Repair (Amst). 2003;2:325–36.

    Google Scholar 

  140. Tapias A, Auriol J, Forget D, Enzlin JH, Schärer OD, Coin F, Coulombe B, Egly JM. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors. J Biol Chem. 2004;279:19074–83.

    CAS  PubMed  Google Scholar 

  141. Rademakers S, Volker M, Hoogstraten D, Nigg AL, Moné MJ, Van Zeeland AA, Hoeijmakers JH, Houtsmuller AB, Vermeulen W. Xeroderma pigmentosum group A protein loads as a separate factor onto DNA lesions. Mol Cell Biol. 2003;23:5755–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Batty DP, Wood RD. Damage recognition in nucleotide excision repair of DNA. Gene. 2000;241:193–204.

    CAS  PubMed  Google Scholar 

  143. Kozak M. Interpreting cDNA sequences: some insights from studies on translation. Mamm Genome. 1996;7:563–74.

    CAS  PubMed  Google Scholar 

  144. Ding D, Zhang Y, Yu H, Guo Y, Jiang L, He X, Ma W, Zheng W. Genetic variation of XPA gene and risk of cancer: a systematic review and pooled analysis. Int J Cancer. 2012;131:488–96.

    CAS  PubMed  Google Scholar 

  145. Qiao Y, Spitz MR, Shen H, Guo Z, Shete S, Hedayati M, Grossman L, Mohrenweiser H, Wei Q. Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcinogenesis. 2002;23:295–9.

    CAS  PubMed  Google Scholar 

  146. Vodicka P, Kumar R, Stetina R, Sanyal S, Soucek P, Haufroid V, Dusinska M, Kuricova M, Zamecnikova M, Musak L, Buchancova J, Norppa H, Hirvonen A, Vodickova L, Naccarati A, Matousu Z, Hemminki K. Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis. 2004;25:757–63.

    CAS  PubMed  Google Scholar 

  147. Qiu L, Wang Z, Shi X, Wang Z. Association between XPC polymorphisms and risk of cancers: a meta-analysis. Eur J Cancer. 2008;44:2241–52.

    CAS  PubMed  Google Scholar 

  148. Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol. 1998;18:3563–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Abdel-Rahman SZ, Soliman AS, Bondy ML, Omar S, El-Badawy SA, Khaled HM, Seifeldin IA, Levin B. Inheritance of the 194Trp and the 399Gln variant alleles of the DNA repair gene XRCC1 are associated with increased risk of early-onset colorectal carcinoma in Egypt. Cancer Lett. 2000;159:79–86.

    CAS  PubMed  Google Scholar 

  150. Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res. 1999;59:2557–61.

    CAS  PubMed  Google Scholar 

  151. Hu JJ, Smith TR, Miller MS, Mohrenweiser HW, Golden A, Case LD. Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. Carcinogenesis. 2001;22:917–1022.

    CAS  PubMed  Google Scholar 

  152. Hao B, Miao X, Li Y, Zhang X, Sun T, Liang G, Zhao Y, Zhou Y, Wang H, Chen X, Zhang L, Tan W, Wei Q, Lin D, He F. A novel T-77C polymorphism in DNA repair gene XRCC1 contributes to diminished promoter activity and increased risk of non-small cell lung cancer. Oncogene. 2006;25:3613–20.

    CAS  PubMed  Google Scholar 

  153. Hao B, Wang H, Zhou K, Li Y, Chen X, Zhou G, Zhu Y, Miao X, Tan W, Wei Q, Lin D, He F. Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer Res. 2004;64:4378–84.

    CAS  PubMed  Google Scholar 

  154. Dai L, Duan F, Wang P, Song C, Wang K, Zhang J. XRCC1 gene polymorphisms and lung cancer susceptibility: a meta-analysis of 44 case-control studies. Mol Biol Rep. 2012;39:9535–47.[Epub ahead of print]. PMID: 22729882.

    CAS  PubMed  Google Scholar 

  155. Spencer CC, Su Z, Donnelly P, Marchini J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 2009;5:1000477.

    Google Scholar 

  156. Orr N, Chanock S. Common genetic variation and human disease. Adv Genet. 2008;62:1–32.

    CAS  PubMed  Google Scholar 

  157. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Chen C, Goodman G, Field JK, Liloglou T, Xinarianos G, Cassidy A, McLaughlin J, Liu G, Narod S, Krokan HE, Skorpen F, Elvestad MB, Hveem K, Vatten L, Linseisen J, Clavel-Chapelon F, Vineis P, Bueno-de-Mesquita HB, Lund E, Martinez C, Bingham S, Rasmuson T, Hainaut P, Riboli E, Ahrens W, Benhamou S, Lagiou P, Trichopoulos D, Holcátová I, Merletti F, Kjaerheim K, Agudo A, Macfarlane G, Talamini R, Simonato L, Lowry R, Conway DI, Znaor A, Healy C, Zelenika D, Boland A, Delepine M, Foglio M, Lechner D, Matsuda F, Blanche H, Gut I, Heath S, Lathrop M, Brennan P. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452:633–7.

    CAS  PubMed  Google Scholar 

  158. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q, Zhang Q, Gu X, Vijayakrishnan J, Sullivan K, Matakidou A, Wang Y, Mills G, Doheny K, Tsai YY, Chen WV, Shete S, Spitz MR, Houlston RS. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40:616–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifsson G, Stefansson H, Ingason A, Stacey SN, Bergthorsson JT, Thorlacius S, Gudmundsson J, Jonsson T, Jakobsdottir M, Saemundsdottir J, Olafsdottir O, Gudmundsson LJ, Bjornsdottir G, Kristjansson K, Skuladottir H, Isaksson HJ, Gudbjartsson T, Jones GT, Mueller T, Gottsäter A, Flex A, Aben KK, de Vegt F, Mulders PF, Isla D, Vidal MJ, Asin L, Saez B, Murillo L, Blondal T, Kolbeinsson H, Stefansson JG, Hansdottir I, Runarsdottir V, Pola R, Lindblad B, van Rij AM, Dieplinger B, Haltmayer M, Mayordomo JI, Kiemeney LA, Matthiasson SE, Oskarsson H, Tyrfingsson T, Gudbjartsson DF, Gulcher JR, Jonsson S, Thorsteinsdottir U, Kong A, Stefansson K. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452:638–42.

    CAS  PubMed  Google Scholar 

  160. Broderick P, Wang Y, Vijayakrishnan J, Matakidou A, Spitz MR, Eisen T, Amos CI, Houlston RS. Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res. 2009;69:6633–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Landi MT, Chatterjee N, Yu K, Goldin LR, Goldstein AM, Rotunno M, Mirabello L, Jacobs K, Wheeler W, Yeager M, Bergen AW, Li Q, Consonni D, Pesatori AC, Wacholder S, Thun M, Diver R, Oken M, Virtamo J, Albanes D, Wang Z, Burdette L, Doheny KF, Pugh EW, Laurie C, Brennan P, Hung R, Gaborieau V, McKay JD, Lathrop M, McLaughlin J, Wang Y, Tsao MS, Spitz MR, Wang Y, Krokan H, Vatten L, Skorpen F, Arnesen E, Benhamou S, Bouchard C, Metspalu A, Vooder T, Nelis M, Välk K, Field JK, Chen C, Goodman G, Sulem P, Thorleifsson G, Rafnar T, Eisen T, Sauter W, Rosenberger A, Bickeböller H, Risch A, Chang-Claude J, Wichmann HE, Stefansson K, Houlston R, Amos CI, Fraumeni Jr JF, Savage SA, Bertazzi PA, Tucker MA, Chanock S, Caporaso NE. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet. 2009;85:679–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, Matakidou A, Qureshi M, Dong Q, Gu X, Chen WV, Spitz MR, Eisen T, Amos CI, Houlston RS. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet. 2008;40:1407–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, Byrnes G, Zaridze D, Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, McLaughlin J, Shepherd F, Montpetit A, Narod S, Krokan HE, Skorpen F, Elvestad MB, Vatten L, Njølstad I, Axelsson T, Chen C, Goodman G, Barnett M, Loomis MM, Lubiñski J, Matyjasik J, Lener M, Oszutowska D, Field J, Liloglou T, Xinarianos G, Cassidy A, Study EPIC, Vineis P, Clavel-Chapelon F, Palli D, Tumino R, Krogh V, Panico S, González CA, Ramón Quirós J, Martínez C, Navarro C, Ardanaz E, Larrañaga N, Kham KT, Key T, Bueno-de-Mesquita HB, Peeters PH, Trichopoulou A, Linseisen J, Boeing H, Hallmans G, Overvad K, Tjønneland A, Kumle M, Riboli E, Zelenika D, Boland A, Delepine M, Foglio M, Lechner D, Matsuda F, Blanche H, Gut I, Heath S, Lathrop M, Brennan P. Lung cancer susceptibility locus at 5p15.33. Nat Genet. 2008;40:1404–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Li Y, Sheu CC, Ye Y, de Andrade M, Wang L, Chang SC, Aubry MC, Aakre JA, Allen MS, Chen F, Cunningham JM, Deschamps C, Jiang R, Lin J, Marks RS, Pankratz VS, Su L, Li Y, Sun Z, Tang H, Vasmatzis G, Harris CC, Spitz MR, Jen J, Wang R, Zhang ZF, Christiani DC, Wu X, Yang P. Genetic variants and risk of lung cancer in never smokers: a genome-wide association study. Lancet Oncol. 2010;11:321–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Truong T, Hung RJ, Amos CI, Wu X, Bickeböller H, Rosenberger A, Sauter W, Illig T, Wichmann HE, Risch A, Dienemann H, Kaaks R, Yang P, Jiang R, Wiencke JK, Wrensch M, Hansen H, Kelsey KT, Matsuo K, Tajima K, Schwartz AG, Wenzlaff A, Seow A, Ying C, Staratschek-Jox A, Nürnberg P, Stoelben E, Wolf J, Lazarus P, Muscat JE, Gallagher CJ, Zienolddiny S, Haugen A, van der Heijden HF, Kiemeney LA, Isla D, Mayordomo JI, Rafnar T, Stefansson K, Zhang ZF, Chang SC, Kim JH, Hong YC, Duell EJ, Andrew AS, Lejbkowicz F, Rennert G, Müller H, Brenner H, Le Marchand L, Benhamou S, Bouchardy C, Teare MD, Xue X, McLaughlin J, Liu G, McKay JD, Brennan P, Spitz MR. Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J Natl Cancer Inst. 2010;102:959–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lansdorp PM. Telomeres and disease. EMBO J. 2009;28:2532–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Fernandez-Garcia I, Ortiz-de-Solorzano C, Montuenga LM. Telomeres and telomerase in lung cancer. J Thorac Oncol. 2008;3:1085–8.

    PubMed  Google Scholar 

  168. Stücker I, Boffetta P, Anttila S, Benhamou S, Hirvonen A, London S, Taioli E. Lack of interaction between asbestos exposure and glutathione S-transferase M1 and T1 genotypes in lung carcinogenesis. Cancer Epidemiol Biomarkers Prev. 2001;10:1253–8.

    PubMed  Google Scholar 

  169. López-Cima MF, Alvarez-Avellón SM, Pascual T, Fernández-Somoano A, Tardón A. Genetic polymorphisms in CYP1A1, GSTM1, GSTP1 and GSTT1 metabolic genes and risk of lung cancer in Asturias. BMC Cancer. 2012;12:433.

    PubMed  PubMed Central  Google Scholar 

  170. Nazar-Stewart V, Vaughan TL, Stapleton P, Van Loo J, Nicol-Blades B, Eaton DL. A population-based study of glutathione S-transferase M1, T1 and P1 genotypes and risk for lung cancer. Lung Cancer. 2003;40:247–58.

    PubMed  Google Scholar 

  171. Jourenkova-Mironova N, Wikman H, Bouchardy C, Voho A, Dayer P, Benhamou S, Hirvonen A. Role of glutathione S-transferase GSTM1, GSTM3, GSTP1 and GSTT1 genotypes in modulating susceptibility to smoking-related lung cancer. Pharmacogenetics. 1998;8:495–502.

    CAS  PubMed  Google Scholar 

  172. Reszka E, Wasowicz W. Significance of genetic polymorphisms in glutathione S-transferase multigene family and lung cancer risk. Int J Occup Med Environ Health. 2001;14:99–113.

    CAS  PubMed  Google Scholar 

  173. Risch A, Wikman H, Thiel S, Schmezer P, Edler L, Drings P, Dienemann H, Kayser K, Schulz V, Spiegelhalder B, Bartsch H. Glutathione-S-transferase M1, M3, T1 and P1 polymorphisms and susceptibility to non-small-cell lung cancer subtypes and hamartomas. Pharmacogenetics. 2001;11:757–64.

    CAS  PubMed  Google Scholar 

  174. Yin L, Pu Y, Liu TY, Tung YH, Chen KW, Lin P. Genetic polymorphisms of NAD(P)H quinone oxidoreductase, CYP1A1 and microsomal epoxide hydrolase and lung cancer risk in Nanjing, China. Lung Cancer. 2001;33:133–41.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari P. Hirvonen PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Hirvonen, A.P. (2014). Lung Cancer: Genetic Susceptibility. In: Anttila, S., Boffetta, P. (eds) Occupational Cancers. Springer, London. https://doi.org/10.1007/978-1-4471-2825-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2825-0_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2824-3

  • Online ISBN: 978-1-4471-2825-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics