Skip to main content

Lung Cancer: Mechanisms of Carcinogenesis

  • Chapter
  • First Online:
Occupational Cancers

Abstract

Inhaled carcinogenic chemicals, mineral fibers and particulates, and carcinogenic metals are the most significant occupational causes of lung cancer. The gases, fumes, and particulates in industrial environments form complex mixtures, the carcinogenic potential of which may differ from that of each component separately. Particulate matter can absorb chemicals on its surface, which is thought to enhance the deposition of chemicals in the lung, their penetration into lung cells, and carcinogenic action. Personal or involuntary tobacco smoking complicates the exposures even further, since tobacco smoke is also a complex mixture containing carcinogenic agents in chemical and particulate forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrett JC, Lamb PW, Wiseman RW. Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibers. Environ Health Perspect. 1989;81:81–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Nymark P, Wikman H, Hienonen-Kempas T, Anttila S. Molecular and genetic changes in asbestos-related lung cancer. Cancer Lett. 2008;265(1):1–15.

    CAS  PubMed  Google Scholar 

  3. Puhakka A, Ollikainen T, Soini Y, et al. Modulation of DNA single-strand breaks by intracellular glutathione in human lung cells exposed to asbestos fibers. Mutat Res. 2002;514(1–2):7–17.

    CAS  PubMed  Google Scholar 

  4. Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1666–80.

    CAS  PubMed  Google Scholar 

  5. Donaldson K, Brown G, Brown D, Bolton R, Davis J. Inflammation generating potential of long and short fibre amosite asbestos samples. Br J Ind Med. 1989;46(4):271–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Dodson RF, Atkinson MAL, Levin JL. Asbestos fiber length as related to potential pathogenicity: a critical review. Am J Ind Med. 2003;44(3):291–7.

    PubMed  Google Scholar 

  7. Anttila S, Karjalainen A, Taikina-aho O, Kyyrönen P, Vainio H. Lung cancer in the lower lobe is associated with pulmonary asbestos fiber count and fiber size. Environ Health Perspect. 1993;101(2):166–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Stanton M, Wrench C. Mechanisms of mesothelioma induction with asbestos and fibrous glass. J Natl Cancer Inst. 1972;48(3):797–821.

    CAS  PubMed  Google Scholar 

  9. Bernstein DM, Hoskins JA. The health effects of chrysotile: current perspective based upon recent data. Regul Toxicol Pharmacol. 2006;45(3):252–64.

    CAS  PubMed  Google Scholar 

  10. Kamp DW. Asbestos-induced lung diseases: an update. Transl Res. 2009;153(4):143–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Nicholson W. The carcinogenicity of chrysotile asbestos–a review. Ind Health. 2001;39(2):57–64.

    CAS  PubMed  Google Scholar 

  12. Pezerat H. Chrysotile biopersistence: the misuse of biased studies. Int J Occup Environ Health. 2009;15(1):102–6.

    PubMed  Google Scholar 

  13. Suzuki Y, Yuen S, Ashley R. Short, thin asbestos fibers contribute to the development of human malignant mesothelioma: pathological evidence. Int J Hyg Environ Health. 2005;208(3):201–10.

    CAS  PubMed  Google Scholar 

  14. Landrigan P, Nicholson W, Suzuki Y, Ladou J. The hazards of chrysotile asbestos: a critical review. Ind Health. 1999;37(3):271–80.

    CAS  PubMed  Google Scholar 

  15. Mossman BT, Lippmann M, Hesterberg TW, Kelsey KT, Barchowsky A, Bonner JC. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J Toxicol Environ Health. 2011;14(1–4):76–121.

    Google Scholar 

  16. Lund LG, Aust AE. Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in oX174 RFI DNA. Carcinogenesis. 1992;13(4):637–42.

    CAS  PubMed  Google Scholar 

  17. Gazzano E, Turci F, Foresti E, et al. Iron-loaded synthetic chrysotile: a new model solid for studying the role of iron in asbestos toxicity. Chem Res Toxicol. 2007;20(3):380–7.

    CAS  PubMed  Google Scholar 

  18. Jaurand MC. Mechanisms of fiber-induced genotoxicity. Environ Health Perspect. 1997;105 Suppl 5:1073–84.

    PubMed Central  PubMed  Google Scholar 

  19. Upadhyay D, Kamp DW. Asbestos-induced pulmonary toxicity: role of DNA damage and apoptosis. Exp Biol Med (Maywood, NJ). 2003;228(6):650–9.

    CAS  Google Scholar 

  20. Husgafvel-Pursiainen K, Hackman P, Ridanpaa M, et al. K-ras mutations in human adenocarcinoma of the lung: association with smoking and occupational exposure to asbestos. Int J Cancer. 1993;53(2):250–6.

    CAS  PubMed  Google Scholar 

  21. Nelson HH, Christiani DC, Wiencke JK, Mark EJ, Wain JC, Kelsey KT. k-ras mutation and occupational asbestos exposure in lung adenocarcinoma: asbestos-related cancer without asbestosis. Cancer Res. 1999;59(18):4570–3.

    CAS  PubMed  Google Scholar 

  22. Husgafvel-Pursiainen K, Karjalainen A, Kannio A, et al. Lung cancer and past occupational exposure to asbestos. Role of p53 and K-ras mutations. Am J Respir Cell Mol Biol. 1999;20(4):667–74.

    CAS  PubMed  Google Scholar 

  23. Kamp DW, Shacter E, Weitzman SA. Chronic inflammation and cancer: the role of the mitochondria. Oncology (Williston Park, NY). 2011;25(5):400–410, 413.

    Google Scholar 

  24. Fan J, Wang Q, Liu S. Chrysotile-induced cell transformation and transcriptional changes of c-myc oncogene in human embryo lung cells. Biomed Environ Sci. 2000;13(3):163–9.

    CAS  PubMed  Google Scholar 

  25. Cheng N, Shi X, Ye J, et al. Role of transcription factor NF-[kappa]B in asbestos-induced TNF[alpha] response from macrophages. Exp Mol Pathol. 1999;66(3):201–10.

    CAS  PubMed  Google Scholar 

  26. Xie C, Reusse A, Dai J, Zay K, Harnett J, Churg A. TNF-alpha increases tracheal epithelial asbestos and fiberglass binding via a NF-kappa B-dependent mechanism. Am J Physiol Lung Cell Mol Physiol. 2000;279(3):L608–14.

    CAS  PubMed  Google Scholar 

  27. Bhattacharya K, Dopp E, Kakkar P, et al. Biomarkers in risk assessment of asbestos exposure. Mutation research/fundamental and molecular mechanisms of mutagenesis/inflammation, cellular and redox signalling mechanisms in cancer and degenerative diseases. Mutation Research. 2005;579(1–2):6–21.

    Google Scholar 

  28. Simeonova P, Toriumi W, Kommineni C, et al. Molecular regulation of IL-6 activation by asbestos in lung epithelial cells: role of reactive oxygen species. J Immunol. 1997;159(8):3921–8.

    CAS  PubMed  Google Scholar 

  29. Lange A, Karabon L, Tomeczko J. Interleukin-6- and interleukin-4-related proteins (C-reactive protein and IgE) are prognostic factors of asbestos-related cancer. Ann NY Acad Sci. 1995;762:435–8.

    CAS  PubMed  Google Scholar 

  30. Luster M, Simeonova P. Asbestos induces inflammatory cytokines in the lung through redox sensitive transcription factors. Toxicol Lett. 1998;102–103:271–5.

    PubMed  Google Scholar 

  31. Miura Y, Nishimura Y, Katsuyama H, et al. Involvement of IL-10 and Bcl-2 in resistance against an asbestos-induced apoptosis of T cells. Apoptosis. 2006;11(10):1825–35.

    CAS  PubMed  Google Scholar 

  32. Yuan Z, Taatjes DJ, Mossman BT, Heintz NH. The duration of nuclear extracellular signal-regulated kinase 1 and 2 signaling during cell cycle reentry distinguishes proliferation from apoptosis in response to asbestos. Cancer Res. 2004;64(18):6530–6.

    CAS  PubMed  Google Scholar 

  33. Barlow CA, Barrett TF, Shukla A, Mossman BT, Lounsbury KM. Asbestos-mediated CREB phosphorylation is regulated by protein kinase A and extracellular signal-regulated kinases 1/2. Am J Physiol Lung Cell Mol Physiol. 2007;292(6):L1361–9.

    CAS  PubMed  Google Scholar 

  34. Shukla A, Jung M, Stern M, et al. Asbestos induces mitochondrial DNA damage and dysfunction linked to the development of apoptosis. Am J Physiol Lung Cell Mol Physiol. 2003;285(5):L1018–25.

    CAS  PubMed  Google Scholar 

  35. Zhao Y, Piao C, Hei T. Downregulation of Betaig-h3 gene is causally linked to tumorigenic phenotype in asbestos treated immortalized human bronchial epithelial cells. Oncogene. 2002;21(49):7471–7.

    CAS  PubMed  Google Scholar 

  36. Nymark P, Lindholm P, Korpela M, et al. Specific gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines. BMC Genomics. 2007;8:62.

    Google Scholar 

  37. Kamp D, Panduri V, Weitzman S, Chandel N. Asbestos-induced alveolar epithelial cell apoptosis: role of mitochondrial dysfunction caused by iron-derived free radicals. Mol Cell Biochem. 2002;234–235(1–2):153–60.

    PubMed  Google Scholar 

  38. Wang X, Samet JM, Ghio AJ. Asbestos-induced activation of cell signaling pathways in human bronchial epithelial cells. Exp Lung Res. 2006;32(6):229–43.

    CAS  PubMed  Google Scholar 

  39. Zanella CL, Posada J, Tritton TR, Mossman BT. Asbestos causes stimulation of the extracellular signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor. Cancer Res. 1996;56(23):5334–8.

    CAS  PubMed  Google Scholar 

  40. Mossman BT, Lounsbury KM, Reddy SP. Oxidants and signaling by mitogen-activated protein kinases in lung epithelium. Am J Respir Cell Mol Biol. 2006;34(6):666–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Shukla A, Flanders T, Lounsbury KM, Mossman BT. The {gamma}-glutamylcysteine synthetase and glutathione regulate asbestos-induced expression of activator protein-1 family members and activity. Cancer Res. 2004;64(21):7780–6.

    CAS  PubMed  Google Scholar 

  42. Manning CB, Cummins AB, Jung MW, et al. A mutant epidermal growth factor receptor targeted to lung epithelium inhibits asbestos-induced proliferation and proto-oncogene expression. Cancer Res. 2002;62(15):4169–75.

    CAS  PubMed  Google Scholar 

  43. Timblin CR, Janssen YWM, Mossman BT. Transcriptional activation of the proto-oncogene c-jun by asbestos and H2O2 is directly related to increased proliferation and transformation of tracheal epithelial cells. Cancer Res. 1995;55(13):2723–6.

    CAS  PubMed  Google Scholar 

  44. Zhao YL, Piao CQ, Wu LJ, Suzuki M, Hei TK. Differentially expressed genes in asbestos-induced tumorigenic human bronchial epithelial cells: implication for mechanism. Carcinogenesis. 2000;21(11):2005–10.

    CAS  PubMed  Google Scholar 

  45. Haegens A, van der Vliet A, Butnor KJ, et al. Asbestos-induced lung inflammation and epithelial cell proliferation are altered in myeloperoxidase-null mice. Cancer Res. 2005;65(21):9670–7.

    CAS  PubMed  Google Scholar 

  46. Brody A. Asbestos-induced lung disease. Environ Health Perspect. 1993;100:21–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Shukla A, Barrett TF, Nakayama KI, Nakayama K, Mossman BT, Lounsbury KM. Transcriptional up-regulation of MMP12 and MMP13 by asbestos occurs via a PKC{delta}-dependent pathway in murine lung. FASEB J. 2006;20(7):997–9.

    CAS  PubMed  Google Scholar 

  48. Morimoto Y, Tsuda T, Nakamura H, et al. Expression of matrix metalloproteinases, tissue inhibitors of metalloproteinases, and extracellular matrix mRNA following exposure to mineral fibers and cigarette smoke in vivo. Environ Health Perspect. 1997;105 Suppl 5:1247–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Lounsbury KM, Stern M, Taatjes D, Jaken S, Mossman BT. Increased localization and substrate activation of protein kinase C{delta} in lung epithelial cells following exposure to asbestos. Am J Pathol. 2002;160(6):1991–2000.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Shukla A, Lounsbury KM, Barrett TF, et al. Asbestos-induced peribronchiolar cell proliferation and cytokine production are attenuated in lungs of protein kinase C-{delta} knockout mice. Am J Pathol. 2007;170(1):140–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Wikman H, Ruosaari S, Nymark P, et al. Gene expression and copy number profiling suggests the importance of allelic imbalance in 19p in asbestos-associated lung cancer. Oncogene. 2007;26(32):4730–7.

    CAS  PubMed  Google Scholar 

  52. Scapoli L, Ramos-Nino M, Martinelli M, Mossman B. Src-dependent ERK5 and Src/EGFR-dependent ERK1/2 activation is required for cell proliferation by asbestos. Oncogene. 2004;23(3):805–13.

    CAS  PubMed  Google Scholar 

  53. Barchowsky A, Lannon B, Elmore L, Treadwell M. Increased focal adhesion kinase- and urokinase-type plasminogen activator receptor-associated cell signaling in endothelial cells exposed to asbestos. Environ Health Perspect. 1997;105 Suppl 5:1131–7.

    PubMed Central  PubMed  Google Scholar 

  54. Daniel F. In vitro assessment of asbestos genotoxicity. Environ Health Perspect. 1983;53:163–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Hei TK, Piao CQ, He ZY, Vannais D, Waldren CA. Chrysotile fiber is a strong mutagen in mammalian cells. Cancer Res. 1992;52(22):6305–9.

    CAS  PubMed  Google Scholar 

  56. Dopp E, Schuler M, Schiffmann D, Eastmond DA. Induction of micronuclei, hyperdiploidy and chromosomal breakage affecting the centric/pericentric regions of chromosomes 1 and 9 in human amniotic fluid cells after treatment with asbestos and ceramic fibers. Mutation Res/Fundam Mol Mech Mutagen. 1997;377(1):77–87.

    CAS  Google Scholar 

  57. Dopp E, Yadav S, Ansari F, et al. ROS-mediated genotoxicity of asbestos-cement in mammalian lung cells in vitro. Part Fibre Toxicol 2005;2:9.

    Google Scholar 

  58. Fatma N, Jain A, Rahman Q. Frequency of sister chromatid exchange and chromosomal aberrations in asbestos cement workers. Br J Ind Med. 1991;48(2):103–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Fatma N, Khan S, Aslam M, Rahman Q. Induction of chromosomal aberrations in bone marrow cells of asbestotic rats. Environ Res. 1992;57(2):175–80.

    CAS  PubMed  Google Scholar 

  60. Hardy JA, Aust AE. The effect of iron binding on the ability of crocidolite asbestos to catalyze DNA single-strand breaks. Carcinogenesis. 1995;16(2):319–25.

    CAS  PubMed  Google Scholar 

  61. Lu J, Keane M, Ong T, Wallace W. In vitro genotoxicity studies of chrysotile asbestos fibers dispersed in simulated pulmonary surfactant. Mutat Res. 1994;320(4):253–9.

    CAS  PubMed  Google Scholar 

  62. Marczynski B, Czuppon A, Marek W, Reichel G, Baur X. Increased incidence of DNA double-strand breaks and anti-ds DNA antibodies in blood of workers occupationally exposed to asbestos. Hum Exp Toxicol. 1994;13(1):3–9.

    Google Scholar 

  63. Hei TK, He ZY, Suzuki K. Effects of antioxidants on fiber mutagenesis. Carcinogenesis. 1995;16(7):1573–8.

    CAS  PubMed  Google Scholar 

  64. Msiska Z, Pacurari M, Mishra A, Leonard SS, Castranova V, Vallyathan V. DNA double strand breaks by asbestos, silica and titanium dioxide: possible biomarker of carcinogenic potential. Am J Respir Cell Mol Biol 2009:2009-0062OC.

    Google Scholar 

  65. Huang S, Saggioro D, Michelmann H, Malling H. Genetic effects of crocidolite asbestos in Chinese hamster lung cells. Mutat Res. 1978;57(2):225–32.

    CAS  PubMed  Google Scholar 

  66. Lohani M, Dopp E, Becker H-H, Seth K, Schiffmann D, Rahman Q. Smoking enhances asbestos-induced genotoxicity, relative involvement of chromosome 1: a study using multicolor FISH with tandem labeling. Toxicol Lett. 2002;136(1):55–63.

    CAS  PubMed  Google Scholar 

  67. Xu A, Smilenov L, He P, et al. New insight into intrachromosomal deletions induced by chrysotile in the gpt delta transgenic mutation assay. Environ Health Perspect. 2007;115(1):87–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Jensen C, Jensen L, Rieder C, Cole R, Ault J. Long crocidolite asbestos fibers cause polyploidy by sterically blocking cytokinesis. Carcinogenesis. 1996;17(9):2013–21.

    CAS  PubMed  Google Scholar 

  69. Valerio F, De Ferrari M, Ottaggio L, Repetto E, Santi L. Cytogenetic effects of Rhodesian chrysotile on human lymphocytes in vitro. IARC Sci Publ. 1980;30:485–9.

    CAS  PubMed  Google Scholar 

  70. Andujar P, Wang J, Descatha A, et al. p16INK4A inactivation mechanisms in non-small-cell lung cancer patients occupationally exposed to asbestos. Lung Cancer (Amsterdam, Netherlands). 2010;67(1):23–30.

    Google Scholar 

  71. Kettunen E, Aavikko M, Nymark P, et al. DNA copy number loss and allelic imbalance at 2p16 in lung cancer associated with asbestos exposure. Br J Cancer. 2009;100(8):1336–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Marsit CJ, Hasegawa M, Hirao T, et al. Loss of heterozygosity of chromosome 3p21 is associated with mutant TP53 and better patient survival in non-small-cell lung cancer. Cancer Res. 2004;64(23):8702–7.

    CAS  PubMed  Google Scholar 

  73. Nymark P, Wikman H, Ruosaari S, et al. Identification of specific gene copy number changes in asbestos-related lung cancer. Cancer Res. 2006;66(11):5737–43.

    CAS  PubMed  Google Scholar 

  74. Nymark P, Kettunen E, Aavikko M, et al. Molecular alterations at 9q33.1 and polyploidy in asbestos-related lung cancer. Clin Cancer Res. 2009;15(2):468–75.

    CAS  PubMed  Google Scholar 

  75. Ruosaari ST, Nymark PE, Aavikko MM, et al. Aberrations of chromosome 19 in asbestos-associated lung cancer and in asbestos-induced micronuclei of bronchial epithelial cells in vitro. Carcinogenesis. 2008;29(5):913–7.

    CAS  PubMed  Google Scholar 

  76. Dehan E, Ben-Dor A, Liao W, et al. Chromosomal aberrations and gene expression profiles in non-small cell lung cancer. Lung Cancer. 2007;56(2):175–84.

    CAS  PubMed  Google Scholar 

  77. Suzuki M, Piao C, Zhao Y, Hei T. Karyotype analysis of tumorigenic human bronchial epithelial cells transformed by chrysolite asbestos using chemically induced premature chromosome condensation technique. Int J Mol Med. 2001;8(1):43–7.

    CAS  PubMed  Google Scholar 

  78. Ivanov SV, Miller J, Lucito R, et al. Genomic events associated with progression of pleural malignant mesothelioma. Int J Cancer. 2009;124(3):589–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Mossman BT, Lippmann M, Hesterberg TW, Kelsey KT, Barchowsky A, Bonner JC. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J Toxicol Environ Health Part B. 2011;14(1–4):76–121.

    CAS  Google Scholar 

  80. Dammann R, Strunnikova M, Schagdarsurengin U, et al. CpG island methylation and expression of tumour-associated genes in lung carcinoma. Eur J Cancer. 2005;41(8):1223–36.

    CAS  PubMed  Google Scholar 

  81. Kraunz KS, Nelson HH, Lemos M, Godleski JJ, Wiencke JK, Kelsey KT. Homozygous deletion of p16/INK4a and tobacco carcinogen exposure in nonsmall cell lung cancer. Int J Cancer. 2006;118(6):1364–9.

    CAS  PubMed  Google Scholar 

  82. Nymark P, Guled M, Borze I, et al. Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos- and histology-related changes in lung cancer. Genes Chromosomes Cancer. 2011;50(8):585–97.

    CAS  PubMed  Google Scholar 

  83. Ruosaari S, Hienonen-Kempas T, Puustinen A, et al. Pathways affected by asbestos exposure in normal and tumour tissue of lung cancer patients. BMC Med Genomics. 2008;1:55.

    PubMed Central  PubMed  Google Scholar 

  84. Nelson H, Kelsey K. The molecular epidemiology of asbestos and tobacco in lung cancer. Oncogene. 2002;21(48):7284–8.

    CAS  PubMed  Google Scholar 

  85. Henderson D, Rödelsperger K, Woitowitz H, Leigh J. After Helsinki: a multidisciplinary review of the relationship between asbestos exposure and lung cancer, with emphasis on studies published during 1997–2004. Pathology. 2004;36(6):517–50.

    CAS  PubMed  Google Scholar 

  86. Churg A, Hobson J, Berean K, Wright J. Scavengers of active oxygen species prevent cigarette smoke-induced asbestos fiber penetration in rat tracheal explants. Am J Pathol. 1989;135(4):599–603.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Fournier J, Pezerat H. Studies on surface properties of asbestos: III. Interactions between asbestos and polynuclear aromatic hydrocarbons. Environ Res. 1986;41(1):276–95.

    CAS  PubMed  Google Scholar 

  88. Flowers N, Miles P. Alterations of pulmonary benzo[a]pyrene metabolism by reactive oxygen metabolites. Toxicology. 1991;68(3):259–74.

    CAS  PubMed  Google Scholar 

  89. Haugen A, Harris C. Asbestos carcinogenesis: asbestos interactions and epithelial lesions in cultured human tracheobronchial tissues and cells. Recent Results Cancer Res. 1982;82:32–42.

    CAS  PubMed  Google Scholar 

  90. Liu G, Beri R, Mueller A, Kamp DW. Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis. Chem Biol Interact. 2010;188(2):309–18.

    CAS  PubMed  Google Scholar 

  91. Moyer V, Cistulli C, Vaslet C, Kane A. Oxygen radicals and asbestos carcinogenesis. Environ Health Perspect. 1994;102 Suppl 10:131–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Loli P, Topinka J, Georgiadis P, et al. Benzo[a]pyrene-enhanced mutagenesis by asbestos in the lung of lambda-lacI transgenic rats. Mutat Res. 2004;553(1–2):79–90.

    CAS  PubMed  Google Scholar 

  93. Hansen AM, Mathiesen L, Pedersen M, Knudsen LE. Urinary 1-hydroxypyrene (1-HP) in environmental and occupational studies–a review. Int J Hyg Environ Health. 2008;211(5–6):471–503.

    CAS  PubMed  Google Scholar 

  94. Georgiadis P, Stoikidou M, Topinka J, et al. Personal exposures to PM(2.5) and polycyclic aromatic hydrocarbons and their relationship to environmental tobacco smoke at two locations in Greece. J Expo Anal Environ Epidemiol. 2001;11(3):169–83.

    CAS  PubMed  Google Scholar 

  95. Liu HH, Yang HH, Chou CD, Lin MH, Chen HL. Risk assessment of gaseous/particulate phase PAH exposure in foundry industry. J Hazard Mater. 2010;181(1–3):105–111.

    Google Scholar 

  96. Knecht U, Elliehausen HJ, Woitowitz HJ. Gaseous and adsorbed PAH in an iron foundry. Br J Ind Med. 1986;43(12):834–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Pleil JD, Vette AF, Rappaport SM. Assaying particle-bound polycyclic aromatic hydrocarbons from archived PM2.5 filters. J Chromatogr. 2004;1033(1):9–17.

    CAS  Google Scholar 

  98. Luceri F, Pieraccini G, Moneti G, Dolara P. Primary aromatic amines from side-stream cigarette smoke are common contaminants of indoor air. Toxicol Ind Health. 1993;9(3):405–13.

    CAS  PubMed  Google Scholar 

  99. Grimmer G, Naujack KW, Dettbarn G. Gas chromatographic determination of polycyclic aromatic hydrocarbons, aza-arenes, aromatic amines in the particle and vapor phase of mainstream and sidestream smoke of cigarettes. Toxicol Lett. 1987;35(1):117–24.

    CAS  PubMed  Google Scholar 

  100. Guerin M, Jenkins RA, Tomkins BA. Mainstream and sidestream cigarette smoke. In: Eisenberg M, editor. The chemistry of environmental tobacco smoke: composition and measurement. Chelsea: Lewis Publishers; 1992.

    Google Scholar 

  101. IARC. Tobacco smoke and involuntary smoking. IARC monographs on the evaluation of carcinogenic risks to human. Lyon: IARC; 2004.

    Google Scholar 

  102. Lodovici M, Akpan V, Evangelisti C, Dolara P. Sidestream tobacco smoke as the main predictor of exposure to polycyclic aromatic hydrocarbons. J Appl Toxicol. 2004;24(4):277–81.

    CAS  PubMed  Google Scholar 

  103. Lee HL, Hsieh DP, Li LA. Polycyclic aromatic hydrocarbons in cigarette sidestream smoke particulates from a Taiwanese brand and their carcinogenic relevance. Chemosphere. 2011;82(3):477–482.

    Google Scholar 

  104. Bock KW, Köhle C. The mammalian aryl hydrocarbon (Ah) receptor: from mediator of dioxin toxicity toward physiological functions in skin and liver. Biol Chem. 2009;390(12):1225–35.

    CAS  PubMed  Google Scholar 

  105. Fujii-Kuriyama Y, Kawajiri K. Molecular mechanisms of the physiological functions of the aryl hydrocarbon (dioxin) receptor, a multifunctional regulator that senses and responds to environmental stimuli. Proc Jpn Acad. 2010;86(1):40–53.

    Google Scholar 

  106. Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet. 2006;21(4):257–76.

    CAS  PubMed  Google Scholar 

  107. Bui PH, Hankinson O. Functional characterization of human cytochrome P450 2S1 using a synthetic gene-expressed protein in Escherichia coli. Mol Pharmacol. 2009;76(5):1031–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Anttila S, Raunio H, Hakkola J. Cytochrome p450-mediated pulmonary metabolism of carcinogens: regulation and cross-talk in lung carcinogenesis. Am J Respir Cell Mol Biol. 2011;44(5):583–90.

    CAS  PubMed  Google Scholar 

  109. Melendez-Colon VJ, Luch A, Seidel A, Baird WM. Comparison of cytochrome P450- and peroxidase-dependent metabolic activation of the potent carcinogen dibenzo[a, l]pyrene in human cell lines: formation of stable DNA adducts and absence of a detectable increase in apurinic sites. Cancer Res. 1999;59(7):1412–6.

    CAS  PubMed  Google Scholar 

  110. Jiang H, Shen YM, Quinn AM, Penning TM. Competing roles of cytochrome P450 1A1/1B1 and aldo-keto reductase 1A1 in the metabolic activation of (+/−)-7,8-dihydroxy-7,8-dihydro-benzo[a]pyrene in human bronchoalveolar cell extracts. Chem Res Toxicol. 2005;18(2):365–74.

    CAS  PubMed  Google Scholar 

  111. Palackal NT, Burczynski ME, Harvey RG, Penning TM. The ubiquitous aldehyde reductase (AKR1A1) oxidizes proximate carcinogen trans-dihydrodiols to o-quinones: potential role in polycyclic aromatic hydrocarbon activation. Biochemistry. 2001;40(36):10901–10.

    CAS  PubMed  Google Scholar 

  112. Denissenko MF, Pao A, Tang M, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Sci (New York, NY). 1996;274(5286):430–2.

    CAS  Google Scholar 

  113. Hussain SP, Amstad P, Raja K, et al. Mutability of p53 hotspot codons to benzo(a)pyrene diol epoxide (BPDE) and the frequency of p53 mutations in nontumorous human lung. Cancer Res. 2001;61(17):6350–5.

    CAS  PubMed  Google Scholar 

  114. Yoon JH, Smith LE, Feng Z, Tang M, Lee CS, Pfeifer GP. Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers. Cancer Res. 2001;61(19):7110–7.

    CAS  PubMed  Google Scholar 

  115. Köhle C, Bock KW. Coordinate regulation of Phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2. Biochem Pharmacol. 2007;73(12):1853–62.

    PubMed  Google Scholar 

  116. Yeager RL, Reisman SA, Aleksunes LM, Klaassen CD. Introducing the “TCDD-inducible AhR-Nrf2 gene battery”. Toxicol Sci. 2009;111(2):238–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–22.

    CAS  PubMed  Google Scholar 

  118. Jaiswal AK. Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med. 2000;29(3–4):254–62.

    CAS  PubMed  Google Scholar 

  119. Shibata T, Ohta T, Tong KI, et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci U S A. 2008;105(36):13568–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Singh A, Misra V, Thimmulappa RK, et al. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 2006;3(10):e420.

    PubMed Central  PubMed  Google Scholar 

  121. Wang R, An J, Ji F, Jiao H, Sun H, Zhou D. Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem Biophys Res Commun. 2008;373(1):151–4.

    CAS  PubMed  Google Scholar 

  122. Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci. 2009;34(4):176–88.

    CAS  PubMed  Google Scholar 

  123. Kotlo KU, Yehiely F, Efimova E, et al. Nrf2 is an inhibitor of the Fas pathway as identified by Achilles’ Heel method, a new function-based approach to gene identification in human cells. Oncogene. 2003;22(6):797–806.

    CAS  PubMed  Google Scholar 

  124. Morito N, Yoh K, Itoh K, et al. Nrf2 regulates the sensitivity of death receptor signals by affecting intracellular glutathione levels. Oncogene. 2003;22(58):9275–81.

    CAS  PubMed  Google Scholar 

  125. Kim SY, Kim TJ, Lee KY. A novel function of peroxiredoxin 1 (Prx-1) in apoptosis signal-regulating kinase 1 (ASK1)-mediated signaling pathway. FEBS Lett. 2008;582(13):1913–8.

    CAS  PubMed  Google Scholar 

  126. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1–40.

    CAS  PubMed  Google Scholar 

  127. Kasai H, Iwamoto-Tanaka N, Miyamoto T, et al. Life style and urinary 8-hydroxydeoxyguanosine, a marker of oxidative DNA damage: effects of exercise, working conditions, meat intake, body mass index, and smoking. Jpn J Cancer Res. 2001;92(1):9–15.

    CAS  PubMed  Google Scholar 

  128. Tamae K, Kawai K, Yamasaki S, et al. Effect of age, smoking and other lifestyle factors on urinary 7-methylguanine and 8-hydroxydeoxyguanosine. Cancer Sci. 2009;100(4):715–21.

    CAS  PubMed  Google Scholar 

  129. Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol. 2004;26(3):249–61.

    CAS  PubMed  Google Scholar 

  130. Tarantini A, Maitre A, Lefebvre E, et al. Relative contribution of DNA strand breaks and DNA adducts to the genotoxicity of benzo[a]pyrene as a pure compound and in complex mixtures. Mutat Res. 2009;671(1–2):67–75.

    CAS  PubMed  Google Scholar 

  131. Huang C, Ke Q, Costa M, Shi X. Molecular mechanisms of arsenic carcinogenesis. Mol Cell Biochem. 2004;255(1–2):57–66.

    CAS  PubMed  Google Scholar 

  132. Shi H, Shi X, Liu KJ. Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem. 2004;255(1–2):67–78.

    CAS  PubMed  Google Scholar 

  133. Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008;21(1):28–44.

    PubMed Central  PubMed  Google Scholar 

  134. Arita A, Costa M. Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics. 2009;1(3):222–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Hollins DM, McKinley MA, Williams C, et al. Beryllium and lung cancer: a weight of evidence evaluation of the toxicological and epidemiological literature. Crit Rev Toxicol. 2009;39 Suppl 1:1–32.

    PubMed  Google Scholar 

  136. Gordon T, Bowser D. Beryllium: genotoxicity and carcinogenicity. Mutat Res. 2003;533(1–2):99–105.

    CAS  PubMed  Google Scholar 

  137. Joseph P. Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol. 2009;238(3):272–9.

    CAS  PubMed  Google Scholar 

  138. Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol. 2009;238(3):209–14.

    CAS  PubMed  Google Scholar 

  139. Nickens KP, Patierno SR, Ceryak S. Chromium genotoxicity: a double-edged sword. Chem Biol Interact. 2010;188(2):276–288.

    Google Scholar 

  140. Zhitkovich A. Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium(VI). Chem Res Toxicol. 2005;18(1):3–11.

    CAS  PubMed  Google Scholar 

  141. Lu H, Shi X, Costa M, Huang C. Carcinogenic effect of nickel compounds. Mol Cell Biochem. 2005;279(1–2):45–67.

    CAS  PubMed  Google Scholar 

  142. Cameron KS, Buchner V, Tchounwou PB. Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: a literature review. Rev Environ Health. 2011;26(2):81–92.

    Google Scholar 

  143. IARC. Some metals and metallic compounds. IARC monographs on the evaluation of carcinogenic risk to human. Lyon: IARC; 1980.

    Google Scholar 

  144. Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD. Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit Rev Toxicol. 2006;36(2):99–133.

    CAS  PubMed  Google Scholar 

  145. Kitchin KT. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol. 2001;172(3):249–61.

    CAS  PubMed  Google Scholar 

  146. Styblo M, Del Razo LM, Vega L, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol. 2000;74(6):289–99.

    CAS  PubMed  Google Scholar 

  147. Yamanaka K, Takabayashi F, Mizoi M, An Y, Hasegawa A, Okada S. Oral exposure of dimethylarsinic acid, a main metabolite of inorganic arsenics, in mice leads to an increase in 8-Oxo-2′-deoxyguanosine level, specifically in the target organs for arsenic carcinogenesis. Biochem Biophys Res Commun. 2001;287(1):66–70.

    CAS  PubMed  Google Scholar 

  148. Matsui M, Nishigori C, Toyokuni S, et al. The role of oxidative DNA damage in human arsenic carcinogenesis: detection of 8-hydroxy-2′-deoxyguanosine in arsenic-related Bowen’s disease. J Invest Dermatol. 1999;113(1):26–31.

    CAS  PubMed  Google Scholar 

  149. Wanibuchi H, Hori T, Meenakshi V, et al. Promotion of rat hepatocarcinogenesis by dimethylarsinic acid: association with elevated ornithine decarboxylase activity and formation of 8-hydroxydeoxyguanosine in the liver. Jpn J Cancer Res. 1997;88(12):1149–54.

    CAS  PubMed  Google Scholar 

  150. Hei TK, Liu SX, Waldren C. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci USA. 1998;95(14):8103–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Barrett JC, Lamb PW, Wang TC, Lee TC. Mechanisms of arsenic-induced cell transformation. Biol Trace Elem Res. 1989;21:421–9.

    CAS  PubMed  Google Scholar 

  152. Nakamuro K, Sayato Y. Comparative studies of chromosomal aberration induced by trivalent and pentavalent arsenic. Mutat Res. 1981;88(1):73–80.

    CAS  PubMed  Google Scholar 

  153. Dong JT, Luo XM. Arsenic-induced DNA-strand breaks associated with DNA-protein crosslinks in human fetal lung fibroblasts. Mutat Res. 1993;302(2):97–102.

    CAS  PubMed  Google Scholar 

  154. Mouron SA, Golijow CD, Dulout FN. DNA damage by cadmium and arsenic salts assessed by the single cell gel electrophoresis assay. Mutat Res. 2001;498(1–2):47–55.

    CAS  PubMed  Google Scholar 

  155. Lee-Chen SF, Gurr JR, Lin IB, Jan KY. Arsenite enhances DNA double-strand breaks and cell killing of methyl methanesulfonate-treated cells by inhibiting the excision of alkali-labile sites. Mutat Res. 1993;294(1):21–8.

    CAS  PubMed  Google Scholar 

  156. Hartmann A, Speit G. Comparative investigations of the genotoxic effects of metals in the single cells gel (SCG) assay and the sister chromatid exchange (SCE) test. Environ Mol Mutagen. 1994;23(4):299–305.

    CAS  PubMed  Google Scholar 

  157. Wang TS, Hsu TY, Chung CH, Wang AS, Bau DT, Jan KY. Arsenite induces oxidative DNA adducts and DNA-protein cross-links in mammalian cells. Free Radic Biol Med. 2001;31(3):321–30.

    CAS  PubMed  Google Scholar 

  158. Li JH, Rossman TG. Inhibition of DNA ligase activity by arsenite: a possible mechanism of its comutagenesis. Mol Toxicol. 1989;2(1):1–9.

    CAS  PubMed  Google Scholar 

  159. Lynn S, Lai HT, Gurr JR, Jan KY. Arsenite retards DNA break rejoining by inhibiting DNA ligation. Mutagenesis. 1997;12(5):353–8.

    CAS  PubMed  Google Scholar 

  160. Hu Y, Su L, Snow ET. Arsenic toxicity is enzyme specific and its affects on ligation are not caused by the direct inhibition of DNA repair enzymes. Mutat Res. 1998;408(3):203–18.

    CAS  PubMed  Google Scholar 

  161. Taeger D, Johnen G, Wiethege T, et al. Major histopathological patterns of lung cancer related to arsenic exposure in German uranium miners. Int Arch Occup Environ Health. 2009;82(7):867–75.

    CAS  PubMed  Google Scholar 

  162. Guo HR, Wang NS, Hu H, Monson RR. Cell type specificity of lung cancer associated with arsenic ingestion. Cancer Epidemiol Biomarkers Prev. 2004;13(4):638–43.

    CAS  PubMed  Google Scholar 

  163. Martinez VD, Buys TP, Adonis M, et al. Arsenic-related DNA copy-number alterations in lung squamous cell carcinomas. Br J Cancer. 2010;103(8):1277–1283.

    Google Scholar 

  164. Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A. 1997;94(20):10907–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Zhou X, Sun H, Ellen TP, Chen H, Costa M. Arsenite alters global histone H3 methylation. Carcinogenesis. 2008;29(9):1831–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Marsit CJ, Karagas MR, Schned A, Kelsey KT. Carcinogen exposure and epigenetic silencing in bladder cancer. Ann N Y Acad Sci. 2006;1076:810–21.

    CAS  PubMed  Google Scholar 

  167. Cui X, Wakai T, Shirai Y, Hatakeyama K, Hirano S. Chronic oral exposure to inorganic arsenate interferes with methylation status of p16INK4a and RASSF1A and induces lung cancer in A/J mice. Toxicol Sci. 2006;91(2):372–81.

    CAS  PubMed  Google Scholar 

  168. Chai CY, Huang YC, Hung WC, Kang WY, Chen WT. Arsenic salt-induced DNA damage and expression of mutant p53 and COX-2 proteins in SV-40 immortalized human uroepithelial cells. Mutagenesis. 2007;22(6):403–8.

    CAS  PubMed  Google Scholar 

  169. Chen WT, Hung WC, Kang WY, Huang YC, Chai CY. Urothelial carcinomas arising in arsenic-contaminated areas are associated with hypermethylation of the gene promoter of the death-associated protein kinase. Histopathology. 2007;51(6):785–92.

    PubMed  Google Scholar 

  170. Mass MJ, Wang L. Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res. 1997;386(3):263–77.

    CAS  PubMed  Google Scholar 

  171. Chanda S, Dasgupta UB, Guhamazumder D, et al. DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci. 2006;89(2):431–7.

    CAS  PubMed  Google Scholar 

  172. Zhou X, Li Q, Arita A, Sun H, Costa M. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol. 2009;236(1):78–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Rossman TG, Uddin AN, Burns FJ. Evidence that arsenite acts as a cocarcinogen in skin cancer. Toxicol Appl Pharmacol. 2004;198(3):394–404.

    CAS  PubMed  Google Scholar 

  174. Li JH, Rossman TG. Mechanism of comutagenesis of sodium arsenite with n-methyl-n-nitrosourea. Biol Trace Elem Res. 1989;21:373–81.

    CAS  PubMed  Google Scholar 

  175. Li JH, Rossman TG. Comutagenesis of sodium arsenite with ultraviolet radiation in Chinese hamster V79 cells. Biol Metals. 1991;4(4):197–200.

    CAS  Google Scholar 

  176. Lee TC, Huang RY, Jan KY. Sodium arsenite enhances the cytotoxicity, clastogenicity, and 6-thioguanine-resistant mutagenicity of ultraviolet light in Chinese hamster ovary cells. Mutat Res. 1985;148(1–2):83–9.

    CAS  PubMed  Google Scholar 

  177. Wiencke JK, Yager JW. Specificity of arsenite in potentiating cytogenetic damage induced by the DNA crosslinking agent diepoxybutane. Environ Mol Mutagen. 1992;19(3):195–200.

    CAS  PubMed  Google Scholar 

  178. Tran HP, Prakash AS, Barnard R, Chiswell B, Ng JC. Arsenic inhibits the repair of DNA damage induced by benzo(a)pyrene. Toxicol Lett. 2002;133(1):59–67.

    CAS  PubMed  Google Scholar 

  179. Rossman TG, Uddin AN, Burns FJ, Bosland MC. Arsenite cocarcinogenesis: an animal model derived from genetic toxicology studies. Environ Health Perspect. 2002;110 Suppl 5:749–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Chiang HC, Tsou TC. Arsenite enhances the benzo[a]pyrene diol epoxide (BPDE)-induced mutagenesis with no marked effect on repair of BPDE-DNA adducts in human lung cells. Toxicol In Vitro. 2009;23(5):897–905.

    CAS  PubMed  Google Scholar 

  181. Chen CL, Hsu LI, Chiou HY, et al. Ingested arsenic, cigarette smoking, and lung cancer risk: a follow-up study in arseniasis-endemic areas in Taiwan. JAMA. 2004;292(24):2984–90.

    CAS  PubMed  Google Scholar 

  182. Ferreccio C, Gonzalez C, Milosavjlevic V, Marshall G, Sancha AM, Smith AH. Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology (Cambridge, Mass). 2000;11(6):673–9.

    CAS  Google Scholar 

  183. Chen CL, Chiou HY, Hsu LI, Hsueh YM, Wu MM, Chen CJ. Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan. Environ Res. 2010;110(5):455–462.

    Google Scholar 

  184. Lee HL, Chang LW, Wu JP, et al. Enhancements of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism and carcinogenic risk via NNK/arsenic interaction. Toxicol Appl Pharmacol. 2008;227(1):108–14.

    CAS  PubMed  Google Scholar 

  185. Wu JP, Chang LW, Yao HT, et al. Involvement of oxidative stress and activation of aryl hydrocarbon receptor in elevation of CYP1A1 expression and activity in lung cells and tissues by arsenic: an in vitro and in vivo study. Toxicol Sci. 2009;107(2):385–93.

    CAS  PubMed  Google Scholar 

  186. IARC. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. IARC monographs on the evaluation of carcinogenic risks to human. Lyon: IARC; 1993.

    Google Scholar 

  187. Belinsky SA, Snow SS, Nikula KJ, Finch GL, Tellez CS, Palmisano WA. Aberrant CpG island methylation of the p16(INK4a) and estrogen receptor genes in rat lung tumors induced by particulate carcinogens. Carcinogenesis. 2002;23(2):335–9.

    CAS  PubMed  Google Scholar 

  188. Pääkkö P, Anttila S, Kokkonen P, Kalliomäki PL. Cadmium in lung tissue as marker for smoking. Lancet. 1988;1(8583):477.

    PubMed  Google Scholar 

  189. Misra RR, Page JE, Smith GT, Waalkes MP, Dipple A. Effect of cadmium exposure on background and anti-5 methylchrysene-1,2-dihydrodiol 3,4-epoxide-induced mutagenesis in the supF gene of pS189 in human Ad293 cells. Chem Res Toxicol. 1998;11(3):211–6.

    CAS  PubMed  Google Scholar 

  190. Misra RR, Smith GT, Waalkes MP. Evaluation of the direct genotoxic potential of cadmium in four different rodent cell lines. Toxicology. 1998;126(2):103–14.

    CAS  PubMed  Google Scholar 

  191. Ochi T, Ohsawa M. Participation of active oxygen species in the induction of chromosomal aberrations by cadmium chloride in cultured Chinese hamster cells. Mutat Res. 1985;143(3):137–42.

    CAS  PubMed  Google Scholar 

  192. Price DJ, Joshi JG. Ferritin. Binding of beryllium and other divalent metal ions. J Biol Chem. 1983;258(18):10873–80.

    CAS  PubMed  Google Scholar 

  193. Achanzar WE, Webber MM, Waalkes MP. Altered apoptotic gene expression and acquired apoptotic resistance in cadmium-transformed human prostate epithelial cells. Prostate. 2002;52(3):236–44.

    CAS  PubMed  Google Scholar 

  194. Giaginis C, Gatzidou E, Theocharis S. DNA repair systems as targets of cadmium toxicity. Toxicol Appl Pharmacol. 2006;213(3):282–90.

    CAS  PubMed  Google Scholar 

  195. Mikhailova MV, Littlefield NA, Hass BS, Poirier LA, Chou MW. Cadmium-induced 8-hydroxydeoxyguanosine formation, DNA strand breaks and antioxidant enzyme activities in lymphoblastoid cells. Cancer Lett. 1997;115(2):141–8.

    CAS  PubMed  Google Scholar 

  196. O’Connor TR, Graves RJ, de Murcia G, Castaing B, Laval J. Fpg protein of Escherichia coli is a zinc finger protein whose cysteine residues have a structural and/or functional role. J Biol Chem. 1993;268(12):9063–70.

    PubMed  Google Scholar 

  197. Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res. 2003;286(2):355–65.

    CAS  PubMed  Google Scholar 

  198. Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP. Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect. 2007;115(10):1454–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Huang D, Zhang Y, Qi Y, Chen C, Ji W. Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicol Lett. 2008;179(1):43–7.

    CAS  PubMed  Google Scholar 

  200. IARC. Chromium, nickel and welding. IARC monographs on the evaluation of carcinogenic risks to human. Lyon: IARC; 1990.

    Google Scholar 

  201. Ding M, Shi X, Castranova V, Vallyathan V. Predisposing factors in occupational lung cancer: inorganic minerals and chromium. J Environ Pathol Toxicol Oncol. 2000;19(1–2):129–38.

    PubMed  Google Scholar 

  202. Liu K, Husler J, Ye J, et al. On the mechanism of Cr (VI)-induced carcinogenesis: dose dependence of uptake and cellular responses. Mol Cell Biochem. 2001;222(1–2):221–9.

    CAS  PubMed  Google Scholar 

  203. Liu KJ, Shi X. In vivo reduction of chromium (VI) and its related free radical generation. Mol Cell Biochem. 2001;222(1–2):41–7.

    CAS  PubMed  Google Scholar 

  204. Holmes AL, Wise SS, Sandwick SJ, Wise Sr JP. The clastogenic effects of chronic exposure to particulate and soluble Cr(VI) in human lung cells. Mutat Res. 2006;610(1–2):8–13.

    CAS  PubMed  Google Scholar 

  205. Wise Sr JP, Wise SS, Little JE. The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mutat Res. 2002;517(1–2):221–9.

    CAS  PubMed  Google Scholar 

  206. O’Brien TJ, Ceryak S, Patierno SR. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat Res. 2003;533(1–2):3–36.

    PubMed  Google Scholar 

  207. Hirose T, Kondo K, Takahashi Y, et al. Frequent microsatellite instability in lung cancer from chromate-exposed workers. Mol Carcinog. 2002;33(3):172–80.

    CAS  PubMed  Google Scholar 

  208. Takahashi Y, Kondo K, Hirose T, et al. Microsatellite instability and protein expression of the DNA mismatch repair gene, hMLH1, of lung cancer in chromate-exposed workers. Mol Carcinog. 2005;42(3):150–8.

    CAS  PubMed  Google Scholar 

  209. Rodrigues CF, Urbano AM, Matoso E, et al. Human bronchial epithelial cells malignantly transformed by hexavalent chromium exhibit an aneuploid phenotype but no microsatellite instability. Mutat Res. 2009;670(1–2):42–52.

    CAS  PubMed  Google Scholar 

  210. Ewis AA, Kondo K, Lee J, et al. Occupational cancer genetics: infrequent ras oncogenes point mutations in lung cancer samples from chromate workers. Am J Ind Med. 2001;40(1):92–7.

    CAS  PubMed  Google Scholar 

  211. Kondo K, Hino N, Sasa M, et al. Mutations of the p53 gene in human lung cancer from chromate-exposed workers. Biochem Biophys Res Commun. 1997;239(1):95–100.

    CAS  PubMed  Google Scholar 

  212. Schnekenburger M, Talaska G, Puga A. Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Mol Cell Biol. 2007;27(20):7089–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Wei YD, Tepperman K, Huang MY, Sartor MA, Puga A. Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. J Biol Chem. 2004;279(6):4110–9.

    CAS  PubMed  Google Scholar 

  214. Sun H, Zhou X, Chen H, Li Q, Costa M. Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium. Toxicol Appl Pharmacol. 2009;237(3):258–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Kondo K, Takahashi Y, Hirose Y, et al. The reduced expression and aberrant methylation of p16(INK4a) in chromate workers with lung cancer. Lung Cancer (Amsterdam, Netherlands). 2006;53(3):295–302.

    Google Scholar 

  216. Ali AH, Kondo K, Namura T, et al. Aberrant DNA methylation of some tumor suppressor genes in lung cancers from workers with chromate exposure. Mol Carcinog. 2011;50(2):89–99.

    Google Scholar 

  217. Vincent JH, Werner MA. Critical evaluation of historical occupational aerosol exposure records: applications to nickel and lead. Ann Occup Hyg. 2003;47(1):49–59.

    PubMed  Google Scholar 

  218. Barceloux DG. Nickel. J Toxicol. 1999;37(2):239–58.

    CAS  Google Scholar 

  219. Patierno SR, Dirscherl LA, Xu J. Transformation of rat tracheal epithelial cells to immortal growth variants by particulate and soluble nickel compounds. Mutat Res. 1993;300(3–4):179–93.

    CAS  PubMed  Google Scholar 

  220. Tveito G, Hansteen IL, Dalen H, Haugen A. Immortalization of normal human kidney epithelial cells by nickel(II). Cancer Res. 1989;49(7):1829–35.

    CAS  PubMed  Google Scholar 

  221. Fletcher GG, Rossetto FE, Turnbull JD, Nieboer E. Toxicity, uptake, and mutagenicity of particulate and soluble nickel compounds. Environ Health Perspect. 1994;102 Suppl 3:69–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Biggart NW, Costa M. Assessment of the uptake and mutagenicity of nickel chloride in salmonella tester strains. Mutat Res. 1986;175(4):209–15.

    CAS  PubMed  Google Scholar 

  223. Kargacin B, Klein CB, Costa M. Mutagenic responses of nickel oxides and nickel sulfides in Chinese hamster V79 cell lines at the xanthine-guanine phosphoribosyl transferase locus. Mutat Res. 1993;300(1):63–72.

    CAS  PubMed  Google Scholar 

  224. Costa M. Molecular mechanisms of nickel carcinogenesis. Annu Rev Pharmacol Toxicol. 1991;31:321–37.

    CAS  PubMed  Google Scholar 

  225. Das KK, Buchner V. Effect of nickel exposure on peripheral tissues: role of oxidative stress in toxicity and possible protection by ascorbic acid. Rev Environ Health. 2007;22(2):157–73.

    CAS  PubMed  Google Scholar 

  226. Das KK, Das SN, Dhundasi SA. Nickel, its adverse health effects & oxidative stress. Indian J Med Res. 2008;128(4):412–25.

    CAS  PubMed  Google Scholar 

  227. Higinbotham KG, Rice JM, Diwan BA, Kasprzak KS, Reed CD, Perantoni AO. GGT to GTT transversions in codon 12 of the K-ras oncogene in rat renal sarcomas induced with nickel subsulfide or nickel subsulfide/iron are consistent with oxidative damage to DNA. Cancer Res. 1992;52(17):4747–51.

    CAS  PubMed  Google Scholar 

  228. Kawanishi S, Oikawa S, Inoue S, Nishino K. Distinct mechanisms of oxidative DNA damage induced by carcinogenic nickel subsulfide and nickel oxides. Environ Health Perspect. 2002;110 Suppl 5:789–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Sutherland JE, Costa M. Epigenetics and the environment. Ann N Y Acad Sci. 2003;983:151–60.

    CAS  PubMed  Google Scholar 

  230. Lee YW, Klein CB, Kargacin B, et al. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol. 1995;15(5):2547–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Kang J, Zhang Y, Chen J, et al. Nickel-induced histone hypoacetylation: the role of reactive oxygen species. Toxicol Sci. 2003;74(2):279–86.

    CAS  PubMed  Google Scholar 

  232. Yan Y, Kluz T, Zhang P, Chen HB, Costa M. Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicol Appl Pharmacol. 2003;190(3):272–7.

    CAS  PubMed  Google Scholar 

  233. Chen H, Ke Q, Kluz T, Yan Y, Costa M. Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol. 2006;26(10):3728–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Chen H, Kluz T, Zhang R, Costa M. Hypoxia and nickel inhibit histone demethylase JMJD1A and repress Spry2 expression in human bronchial epithelial BEAS-2B cells. Carcinogenesis. 2010;31(12):2136–2144.

    Google Scholar 

  235. Chen H, Giri NC, Zhang R, et al. Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J Biol Chem. 2010;285(10):7374–7383.

    Google Scholar 

  236. Govindarajan B, Klafter R, Miller MS, et al. Reactive oxygen-induced carcinogenesis causes hypermethylation of p16(Ink4a) and activation of MAP kinase. Mol Med (Cambridge, Mass). 2002;8(1):1–8.

    CAS  Google Scholar 

  237. Zhang J, Zhang J, Li M, et al. Methylation of RAR-beta2, RASSF1A, and CDKN2A genes induced by nickel subsulfide and nickel-carcinogenesis in rats. Biomed Environ Sci. 2011;24(2):163–171.

    Google Scholar 

  238. Salnikow K, Davidson T, Zhang Q, Chen LC, Su W, Costa M. The involvement of hypoxia-inducible transcription factor-1-dependent pathway in nickel carcinogenesis. Cancer Res. 2003;63(13):3524–30.

    CAS  PubMed  Google Scholar 

  239. Chen H, Costa M. Iron- and 2-oxoglutarate-dependent dioxygenases: an emerging group of molecular targets for nickel toxicity and carcinogenicity. Biometals. 2009;22(1):191–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Kang GS, Li Q, Chen H, Costa M. Effect of metal ions on HIF-1alpha and Fe homeostasis in human A549 cells. Mutat Res. 2006;610(1–2):48–55.

    CAS  PubMed  Google Scholar 

  241. Witkiewicz-Kucharczyk A, Bal W. Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Toxicol Lett. 2006;162(1):29–42.

    CAS  PubMed  Google Scholar 

  242. Brugge D, de Lemos JL, Oldmixon B. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review. Rev Environ Health. 2005;20(3):177–93.

    CAS  PubMed  Google Scholar 

  243. Kusiak RA, Ritchie AC, Muller J, Springer J. Mortality from lung cancer in Ontario uranium miners. Br J Ind Med. 1993;50(10):920–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Jostes RF. Genetic, cytogenetic, and carcinogenic effects of radon: a review. Mutat Res. 1996;340(2–3):125–39.

    PubMed  Google Scholar 

  245. Bao CY, Ma AH, Evans HH, et al. Molecular analysis of hypoxanthine phosphoribosyltransferase gene deletions induced by alpha- and X-radiation in human lymphoblastoid cells. Mutat Res. 1995;326(1):1–15.

    CAS  PubMed  Google Scholar 

  246. Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95–125.

    CAS  PubMed  Google Scholar 

  247. Richardson DB. Exposure to ionizing radiation in adulthood and thyroid cancer incidence. Epidemiology (Cambridge, Mass). 2009;20(2):181–7.

    Google Scholar 

  248. Richardson RB. Ionizing radiation and aging: rejuvenating an old idea. Aging. 2009;1(11):887–902.

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Richardson D, Sugiyama H, Nishi N, et al. Ionizing radiation and leukemia mortality among Japanese atomic bomb survivors, 1950–2000. Radiat Res. 2009;172(3):368–82.

    CAS  PubMed  Google Scholar 

  250. Richardson DB, Sugiyama H, Wing S, et al. Positive associations between ionizing radiation and lymphoma mortality among men. Am J Epidemiol. 2009;169(8):969–76.

    PubMed Central  PubMed  Google Scholar 

  251. Kadhim MA, Macdonald DA, Goodhead DT, Lorimore SA, Marsden SJ, Wright EG. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature. 1992;355(6362):738–40.

    CAS  PubMed  Google Scholar 

  252. Liu D, Momoi H, Li L, Ishikawa Y, Fukumoto M. Microsatellite instability in thorotrast-induced human intrahepatic cholangiocarcinoma. Int J Cancer. 2002;102(4):366–71.

    CAS  PubMed  Google Scholar 

  253. Chaudhry MA. Base excision repair of ionizing radiation-induced DNA damage in G1 and G2 cell cycle phases. Cancer Cell Int. 2007;7:15.

    PubMed Central  PubMed  Google Scholar 

  254. Taylor JA, Watson MA, Devereux TR, Michels RY, Saccomanno G, Anderson M. p53 mutation hotspot in radon-associated lung cancer. Lancet. 1994;343(8889):86–7.

    CAS  PubMed  Google Scholar 

  255. Hussain SP, Kennedy CH, Amstad P, Lui H, Lechner JF, Harris CC. Radon and lung carcinogenesis: mutability of p53 codons 249 and 250 to 238Pu alpha-particles in human bronchial epithelial cells. Carcinogenesis. 1997;18(1):121–5.

    CAS  PubMed  Google Scholar 

  256. Su S, Jin Y, Zhang W, et al. Aberrant promoter methylation of p16(INK4a) and O(6)-methylguanine-DNA methyltransferase genes in workers at a Chinese uranium mine. J Occup Health. 2006;48(4):261–6.

    CAS  PubMed  Google Scholar 

  257. Gilliland FD, Harms HJ, Crowell RE, Li YF, Willink R, Belinsky SA. Glutathione S-transferase P1 and NADPH quinone oxidoreductase polymorphisms are associated with aberrant promoter methylation of P16(INK4a) and O(6)-methylguanine-DNA methyltransferase in sputum. Cancer Res. 2002;62(8):2248–52.

    CAS  PubMed  Google Scholar 

  258. Belinsky SA, Klinge DM, Liechty KC, et al. Plutonium targets the p16 gene for inactivation by promoter hypermethylation in human lung adenocarcinoma. Carcinogenesis. 2004;25(6):1063–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The writing of this chapter was financially supported by the Jalmari and Rauha Ahokas Foundation, Helsinki (PN), and Helsinki and Uusimaa Health Care District Research Funds (SA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sisko Anttila MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Anttila, S., Nymark, P.E.H. (2014). Lung Cancer: Mechanisms of Carcinogenesis. In: Anttila, S., Boffetta, P. (eds) Occupational Cancers. Springer, London. https://doi.org/10.1007/978-1-4471-2825-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2825-0_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2824-3

  • Online ISBN: 978-1-4471-2825-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics