Advertisement

Decoupling Congestion Control from TCP: Semi-TCP

  • Shengming Jiang
Part of the Computer Communications and Networks book series (CCN)

Abstract

It is well known that the Transmission Control Protocol (TCP) performs poorly in multi-hop wireless networks. This problem also appears in bandwidth-abundant all-optical networks, in which data loss may occur frequently due to not only congestion but also collision because of the poor photonic computing and buffering capabilities available at all-optical nodes. This problem is due to the end-to-end nature of TCP, in which only the source and destination nodes are involved in congestion control. However, these nodes cannot learn exactly the congestion status in the network and often react slowly to congestion states, especially when a congested node is far away from the source node. Although much research has been conducted on this topic, the problem has not been solved completely. Inspired by findings from the quantitative end-to-end arguments discussed in Chaps.  7,  8 and  9, in this chapter a Semi-TCP approach is discussed to solve this problem. The basic idea of Semi-TCP is to decouple the congestion control function from TCP and shift it down to lower layers.

Keywords

Medium Access Control Transmission Control Protocol Congestion Control Medium Access Control Protocol Optical Burst Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Clark, D.: The design philosophy of the DARPA Internet protocols. In: SIGCOMM ’88: Symposium Proceedings on Communications Architectures and Protocols, pp. 106–114 (1988) CrossRefGoogle Scholar
  2. 2.
    Fu, Z., Zerfos, P., Luo, H., Lu, S.W., Zhang, L.X., Gerla, M.: The impact of multihop wireless channel on TCP throughput and loss. IEEE Trans. Mob. Comput. 4(2), 209–221 (2005) CrossRefGoogle Scholar
  3. 3.
    Kawadia, V., Kumar, P.R.: Experimental investigations into TCP performance over wireless multihop networks. In: Proc. 2005 ACM SIGCOMM Workshop on Experimental Approaches to Wireless Network Design and Analysis, New York, USA, pp. 29–34 (2005) CrossRefGoogle Scholar
  4. 4.
    Balakrishnan, H., Sehan, S., Katz, R.H.: Improving reliable transport and handoff performance in cellular wireless networks. Wirel. Netw. 1(4), 469–481 (1995) CrossRefGoogle Scholar
  5. 5.
    Vangala, S., Mehta, M.: The TCP SACK-aware-snoop protocol for TCP over wireless networks. In: Proc. IEEE Veh. Tech. Conf. (VTC) – Fall, Orlando, FL, USA, vol. 4, pp. 2624–2628 (2003) Google Scholar
  6. 6.
    Sun, F.L., Li, V.O.K., Liew, S.C.: Design of SNACK mechanism for wireless TCP with new snoop. In: Proc. IEEE Wireless Commun. & Networking Conf. (WCNC), Atlanta, Georgia, USA, vol. 5, pp. 1046–1051 (2004) Google Scholar
  7. 7.
    Floyd, S.: TCP and explicit congestion notification. Comput. Commun. Rev. 24(5), 10–23 (1994) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ramakrishnan, K., Floyd, S.: A proposal to add explicit congestion notification (ECN) to IP. IETF RFC 2481 (1999) Google Scholar
  9. 9.
    Tsaoussidis, V., Badr, H.: TCP-probing: towards an error control scheme with energy and throughput performance gains. In: Proc. IEEE Int. Conf. Net. Protocols (ICNP), Osaka, Japan, pp. 12–21 (2000) Google Scholar
  10. 10.
    Gerla, M., Sanadidi, M.Y., Wang, R., Zanella, A., Casetti, C., Mascolo, S.: TCP Westwood: congestion window control using bandwidth estimation. In: Proc. IEEE Global Tele. Conf. (GLOBOCOM), San Antonio, TX, USA, vol. 3, pp. 1698–1702 (2001) Google Scholar
  11. 11.
    Chlamtac, I., Conti, M., Liu, J.: Mobile ad hoc networking: imperatives and challenges. Ad Hoc Netw. 1(1), 13–64 (2003) CrossRefGoogle Scholar
  12. 12.
    Hanbali, A.A., Altman, E., Nain, P.: A survey of TCP over ad hoc networks. IEEE Commun. Surv. Tutor. 7(3), 22–36 (2005) CrossRefGoogle Scholar
  13. 13.
    Leung, K.C., Li, V.O.K.: Transmission control protocol (TCP) in wireless networks: issues, approaches, and challenges. IEEE Commun. Surv. Tutor. 8(4), 64–79 (2006) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sardar, B., Saha, D.: Survey of TCP enhancements for last-hop wireless networks. IEEE Commun. Surv. Tutor. 8(3), 20–34 (2006) CrossRefGoogle Scholar
  15. 15.
    Sadeghi, B., Yamdad, A., Fujiwara, A., Yang, L.: A simple and efficient hop-by-hop congestion control protocol for wireless mesh networks. In: Proc. Annual Int. Wireless Internet Conf. (WICON), Boston, USA (2006) Google Scholar
  16. 16.
    Yi, Y., Shakkottai, S.: Hop-by-hop congestion control over a wireless multi-hop network. IEEE/ACM Trans. Netw. 15(1), 133–144 (2007) CrossRefGoogle Scholar
  17. 17.
    Camp, J.D., Knightly, E.W.: The IEEE 802.11s extended service set mesh networking standard (2007). http://networks.rice.edu/papers/mesh80211s.pdf
  18. 18.
    Scheuermann, B., Locherta, C., Mauve, M.: Implicit hop-by-hop congestion control in wireless multihop networks. Ad Hoc Netw. 6, 260–288 (2008) CrossRefGoogle Scholar
  19. 19.
    Wang, X.Y., Perkins, D.: Cross-layer hop-by-hop congestion control in mobile ad hoc networks. In: Proc. IEEE Wireless Commun. & Networking Conf. (WCNC), Las Vegas, USA (2008) Google Scholar
  20. 20.
    Gladisch, A., Braun, R.P., Breuer, D., Ehrhardt, A., Foisel, H.M., Jaeger, M., Leppla, R., Schneiders, M., Vorbeck, S., Weiershausen, W., Westphal, F.J.: Evolution of terrestrial optical system and core network architecture. Proc. IEEE 94(5), 869–891 (2006) CrossRefGoogle Scholar
  21. 21.
    Menth, M., Martin, R., Charzinski, J.: Capacity overprovisioning for networks with resilience requirements. In: Proc. ACM SIGCOMM, Pisa, Italy (2006) Google Scholar
  22. 22.
    Chandran, K., Raghunathan, S., Venkatesan, S., Prakash, R.: A feedback-based scheme for improving TCP performance in ad hoc wireless networks. IEEE Pers. Commun. Mag. 8(1), 34–39 (2001) CrossRefGoogle Scholar
  23. 23.
    Holland, S.G., Vaidya, N.: Analysis of TCP performance on mobile ad hoc network on wireless. Wirel. Netw. 8(2–3), 275–288 (2002) MATHCrossRefGoogle Scholar
  24. 24.
    Kim, D., Toh, C., Choi, Y.: TCP-BuS: improving TCP performance in wireless ad hoc networks. J. Commun. Netw. 3(2), 175–186 (2001) Google Scholar
  25. 25.
    Liu, J., Singh, S.: ATCP: TCP for mobile ad hoc networks. IEEE J. Sel. Areas Commun. 19(7), 1300–1315 (2001) CrossRefGoogle Scholar
  26. 26.
    Akyildiz, I.F., Morabito, G., Palazzo, S.: TCP-peach: a new congestion control scheme for satellite IP networks. IEEE/ACM Trans. Netw. 9(3), 307–321 (2001) CrossRefGoogle Scholar
  27. 27.
    Akyildiz, I.F., Zhang, X., Fang, J.: TCP-peach+: enhancement of TCP-peach for satellite IP networks. IEEE Commun. Lett. 6(7), 303–305 (2002) CrossRefGoogle Scholar
  28. 28.
    Lahanas, A., Tsaoussidis, V.: Improving TCP performance over networks with wireless components using probing devices. Int. J. Commun. Syst. 15(6), 495–511 (2002) MATHCrossRefGoogle Scholar
  29. 29.
    Dyer, T., Boppana, R.: A comparison of TCP performance over three routing protocols for mobile ad hoc networks. In: Proc. ACM Int. Symp. Mobile Ad Hoc Networking and Computing (MobiHoc), Long Beach, CA, USA, pp. 56–66 (2001) CrossRefGoogle Scholar
  30. 30.
    Wang, F., Zhang, Y.: Improving TCP performance over mobile ad hoc networks with out-of-order detection and response. In: Proc. ACM Int. Symp. Mobile Ad Hoc Networking and Computing (MobiHoc), Lausanne, Switzerland, pp. 217–225 (2002) CrossRefGoogle Scholar
  31. 31.
    Fu, C.P., Liew, S.C.: TCP Veno: TCP enhancement for transmission over wireless access networks. IEEE J. Sel. Areas Commun. 21(2), 216–228 (2003) CrossRefGoogle Scholar
  32. 32.
    Wu, E.H.K., Chen, M.Z.: TJTCP: jitter-based TCP for heterogeneous wireless networks. IEEE J. Sel. Areas Commun. 22(4), 757–766 (2004) CrossRefGoogle Scholar
  33. 33.
    Bhandarkar, S., Sadry, N.E., Reddy, A.L.N., Vaidya, N.H.: TCP-DCR: a novel protocol for tolerating wireless channel errors. IEEE Trans. Mob. Comput. 4(5), 517–529 (2005) CrossRefGoogle Scholar
  34. 34.
    ElRakabawy, S.M., Alexander, K., Christoph, L.: TCP with adaptive pacing for multihop wireless networks. In: Proc. ACM Int. Symp. Mobile Ad Hoc Networking and Computing (MobiHoc), New York, NY, USA, pp. 288–299 (2005) CrossRefGoogle Scholar
  35. 35.
    Altman, E., Jimenez, T.: Novel delayed ACK techniques for improving TCP performance in multihop wireless networks. In: Proc. IEEE Int. Conf. on Personal Wireless Comm., Venice, Italy, pp. 237–242 (2003) Google Scholar
  36. 36.
    Singh, A.K., Kankipati, K.: DTCP-ADA: TCP with adaptive delayed acknowledgement for mobile ad hoc networks. In: Proc. IEEE Wireless Commun. & Networking Conf. (WCNC), Atlanta, Georgia, USA, vol. 3, pp. 1685–1690 (2004) Google Scholar
  37. 37.
    Cordeiro, C., Das, S., Agrawal, D.: COPAS: dynamic contention-balancing to enhance the performance of TCP over multi-hop wireless networks, Miami, USA, pp. 382–387 (2003) Google Scholar
  38. 38.
    Sundaresan, K., Anantharaman, V., Hsieh, H.Y., Sivakumar, R.: ATP: a reliable transport protocol for ad hoc networks. IEEE Trans. Mob. Comput. 4(6), 588–603 (2005) CrossRefGoogle Scholar
  39. 39.
    Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M.Y., Wang, R.: TCP Westwood: end-to-end congestion control for wired/wireless networks. Wirel. Netw. 8(5), 467–479 (2002) MATHCrossRefGoogle Scholar
  40. 40.
    Mascolo, S., Grieco, L.A., Ferorelli, R., Camarda, P., Piscitelli, G.: Performance evaluation of Westwood+ TCP congestion control. Perform. Eval. 55(1–2), 93–111 (2004) CrossRefGoogle Scholar
  41. 41.
    Xu, K., Tian, Y., Ansari, N.: TCP-Jersey for wireless IP communications. IEEE J. Sel. Areas Commun. 22(4), 747–756 (2004) CrossRefGoogle Scholar
  42. 42.
    IEEE Std 802.11: Medium Access Control (MAC) Sub Layer and 3 Physical Layer Specifications (1997) Google Scholar
  43. 43.
    Chen, K., Nahrstedt, K., Vaidya, N.: The utility of explicit rate-based flow control in mobile ad hoc networks. In: Proc. IEEE Wireless Commun. & Networking Conf. (WCNC), Atlanta, Georgia, USA, vol. 3, pp. 1921–1926 (2004) Google Scholar
  44. 44.
    Qiao, Q.M., Yeo, M.: Optical burst switching (OBS) – a new paradigm for an optical Internet. J. High Speed Netw. 8(1), 69–84 (1999) Google Scholar
  45. 45.
    He, J.Y., Gary Chan, S.H.: TCP and UDP performance for Internet over optical packet-switched networks. In: Proc. IEEE Int. Conf. Commun. (ICC), Anchorage, Alaska, USA, vol. 1, pp. 1350–1354 (2003) Google Scholar
  46. 46.
    Cameron, C., Vu, H.L., Choi, J., Bilgrami, S., Zukerman, M., Kang, M.H.: TCP over OBS – fixed-point load and loss. Opt. Express 13(23), 9167–9174 (2005) CrossRefGoogle Scholar
  47. 47.
    Zhang, Q., Vokkarane, V.M., Wang, Y., Jue, J.P.: Analysis of TCP over optical burst-switched networks with burst retransmission. In: Proc. IEEE Global Tele. Conf. (GLOBOCOM), Missouri, USA, vol. 4, pp. 1978–1983 (2005) Google Scholar
  48. 48.
    Luo, J.T., Huang, J., Chang, H., Qiu, S.F., Guo, X.J., Zhang, Z.Z.: ROBS: A novel architecture of Reliable Optical Burst Switching with congestion control. J. High Speed Netw. 16(2), 123–131 (2007) Google Scholar
  49. 49.
    Perelló, J., Gunreben, S., Spadaro, S.: A quantitative evaluation of reordering in OBS networks and its impact on TCP performance. In: Proc. Int. Conf. Optical Network Design and Modeling, Vilanova i la Geltru, Spain, pp. 1–6 (2008) CrossRefGoogle Scholar
  50. 50.
    Gunreben, S.: An optical burst reordering model for time-based and random selection assembly strategies. Perform. Eval. 68(3), 237–255 (2010) CrossRefGoogle Scholar
  51. 51.
    Komatireddy, B., Charbonneau, N., Vokkarane, V.M.: Source-ordering for improved TCP performance over load-balanced optical burst-switched (OBS) networks. Photonic Netw. Commun. 19(1), 1–8 (2010) CrossRefGoogle Scholar
  52. 52.
    Cai, Y., Wolf, T., Gong, W.B.: Delaying transmissions in data communication networks to improve transport-layer performance. IEEE J. Sel. Areas Commun. 29(5), 916–927 (2011) CrossRefGoogle Scholar
  53. 53.
    Padmanabhan, D., Bikram, R., Vokkarane, V.M.: TCP over optical burst switching (OBS): to split or not to split? In: Proc. IEEE Conf. Comp. Commun. Net. (ICCCN), St. Thomas, US Virgin Islands, pp. 1–6 (2008) Google Scholar
  54. 54.
    Bikram, R.R.C., Vokkarane, V.M.: TCP over optical burst switching: to split or not to split? J. Lightwave Technol. 27(22), 5208–5219 (2009) CrossRefGoogle Scholar
  55. 55.
    Xie, F., Jiang, N., Ho, Y.H., Hua, K.A.: Semi-split TCP: maintaining end-to-end semantics for split TCP. In: Proc. IEEE Conf. Local Computer Net. (LCN), Dublin, Ireland, pp. 301–314 (2007) Google Scholar
  56. 56.
    Floyd, S., Fall, K.: Promoting the use of end-to-end congestion control. IEEE/ACM Trans. Netw. 7(4), 458–472 (1999) CrossRefGoogle Scholar
  57. 57.
    Xu, S., Saadawi, T.: Does the IEEE 802.11 MAC protocol work well in multihop wireless ad hoc networks? IEEE Commun. Mag. 39(4), 130–137 (2001) CrossRefGoogle Scholar
  58. 58.
    Zhai, H.Q., Wang, J.F., Fang, Y.G.: Distributed packet scheduling for multihop flows in ad hoc networks. In: Proc. IEEE Wireless Commun. & Networking Conf. (WCNC), Atlanta, Georgia, USA, vol. 2, pp. 1081–1086 (2004) Google Scholar
  59. 59.
    Guo, B.Y., C Mao, H., Jiang, S.M., Guan, Q.S., Deng, X.F.: Domain-by-domain implementation of semi-TCP in all-optical networks. Jinan, China (2011) Google Scholar
  60. 60.
    Bakre, A., Badrinath, B.R.: I-TCP: indirect TCP for mobile hosts. In: Proc. IEEE Int. Conf. Dist. Computing Systems, Vancouver, British Columbia, Canada, pp. 136–143 (1995) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Shengming Jiang
    • 1
    • 2
  1. 1.College of Information EngineeringShanghai Maritime UniversityShanghaiChina
  2. 2.School of Electronic & Information EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations