Skip to main content

Future Mechanisms of Reversing Kidney Injury

  • Chapter
  • First Online:
Renal Vascular Disease
  • 1185 Accesses

Abstract

The search for effective strategies to protect the stenotic kidney or to facilitate recovery of kidney function has been the holy grail of the field of renal vascular disease and renovascular hypertension. Over the past few years, a number of novel interventions have been applied in an attempt to blunt and reverse functional and structural kidney remodeling distal to renal artery stenosis. Many of these interventions were designed to target specific deleterious cascades that are activated in the post stenotic kidney, such as mitochondrial injury, inadequate intrinsic regeneration mechanisms, downregulation of angiogenic pathways, and processes that promote inflammation or fibrosis. Emerging strategies show promise to revitalize the renal parenchyma regardless of restoration of proximal renal arterial patency. Such developments could improve our success in treating this important cause of kidney injury and cardiovascular morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies of experimental hypertension: I. Production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med. 1934;59:347.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Zhu XY, Daghini E, Chade AR, Versari D, Krier JD, Textor KB, Lerman A, Lerman LO. Myocardial microvascular function during acute coronary artery stenosis: effect of hypertension and hypercholesterolaemia. Cardiovasc Res. 2009;83:371–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Krier JD, Crane JA, Eirin A, Zhu XY, Lerman A, Lerman LO. Hemodynamic determinants of perivascular collateral development in swine renal artery stenosis. Am J Hypertens. 2013;26:209–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Eirin A, Ebrahimi B, Zhang X, Zhu XY, Tang H, Crane JA, Lerman A, Textor SC, Lerman LO. Changes in glomerular filtration rate after renal revascularization correlate with microvascular hemodynamics and inflammation in swine renal artery stenosis. Circ Cardiovasc Interv. 2012;5(5):720–8.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Chade AR, Zhu XY, Krier JD, Jordan KL, Textor SC, Grande JP, Lerman A, Lerman LO. Endothelial progenitor cells homing and renal repair in experimental renovascular disease. Stem Cells. 2010;28:1039–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Eirin A, Gloviczki ML, Tang H, Gossl M, Jordan KL, Woollard JR, Lerman A, Grande JP, Textor SC, Lerman LO. Inflammatory and injury signals released from the post-stenotic human kidney. Eur Heart J. 2013;34:540–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng FY, Zhao Z, Ganger M, Tow CY, Seshan SV. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrol. 2011;22:1041–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Eirin A, Li Z, Zhang X, Krier JD, Woollard JR, Zhu XY, Tang H, Herrmann SM, Lerman A, Textor SC, Lerman LO. A mitochondrial permeability transition pore inhibitor improves renal outcomes after revascularization in experimental atherosclerotic renal artery stenosis. Hypertension. 2012;60:1242–9.

    Article  CAS  PubMed  Google Scholar 

  9. Hackam DG, Wu F, Li P, Austin PC, Tobe SW, Mamdani MM, Garg AX. Statins and renovascular disease in the elderly: a population-based cohort study. Eur Heart J. 2011;32:598–610.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Silva VS, Martin LC, Franco RJ, Carvalho FC, Bregagnollo EA, Castro JH, Gavras I. Pleiotropic effects of statins may improve outcomes in atherosclerotic renovascular disease. Am J Hypertens. 2008;21:1163–8.

    Article  CAS  PubMed  Google Scholar 

  11. Angeli F, Reboldi G, Garofoli M, Ramundo E, Verdecchia P. Very early initiation of statin therapy and mortality in patients with acute coronary syndrome. Acute Card Care. 2012;14:34–9.

    Article  PubMed  Google Scholar 

  12. Shibui T, Nakagomi A, Kusama Y, Atarashi H, Mizuno K. Impact of statin therapy on renal function and long-term prognosis in acute coronary syndrome patients with chronic kidney disease. Int Heart J. 2010;51:312–8.

    Article  CAS  PubMed  Google Scholar 

  13. Patti G, Cannon CP, Murphy SA, Mega S, Pasceri V, Briguori C, Colombo A, Yun KH, Jeong MH, Kim JS, Choi D, Bozbas H, Kinoshita M, Fukuda K, Jia XW, Hara H, Cay S, Di Sciascio G. Clinical benefit of statin pretreatment in patients undergoing percutaneous coronary intervention: a collaborative patient-level meta-analysis of 13 randomized studies. Circulation. 2011;123:1622–32.

    Article  CAS  PubMed  Google Scholar 

  14. Er F, Nia AM, Dopp H, Hellmich M, Dahlem KM, Caglayan E, Kubacki T, Benzing T, Erdmann E, Burst V, Gassanov N. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (Renal Protection Trial). Circulation. 2012;126:296–303.

    Article  CAS  PubMed  Google Scholar 

  15. Eirin A, Zhu XY, Urbieta-Caceres VH, Grande JP, Lerman A, Textor SC, Lerman LO. Persistent kidney dysfunction in swine renal artery stenosis correlates with outer cortical microvascular remodeling. Am J Physiol Renal Physiol. 2011;300:F1394–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Chade AR, Zhu X, Lavi R, Krier JD, Pislaru S, Simari RD, Napoli C, Lerman A, Lerman LO. Endothelial progenitor cells restore renal function in chronic experimental renovascular disease. Circulation. 2009;119:547–57.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Eirin A, Zhu XY, Li Z, Ebrahimi B, Zhang X, Tang H, Korsmo MJ, Chade AR, Grande JP, Ward CJ, Simari RD, Lerman A, Textor SC, Lerman LO. Endothelial outgrowth cells shift macrophage phenotype and improve kidney viability in Swine renal artery stenosis. Arterioscler Thromb Vasc Biol. 2013;33:1006–13.

    Article  CAS  PubMed  Google Scholar 

  18. Ebrahimi B, Li Z, Eirin A, Zhu XY, Textor SC, Lerman LO. Addition of endothelial progenitor cells to renal revascularization restores medullary tubular oxygen consumption in swine renal artery stenosis. Am J Physiol Renal Physiol. 2012;302:F1478–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Eirin A, Zhu XY, Krier JD, Tang H, Jordan KL, Grande JP, Lerman A, Textor SC, Lerman LO. Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. Stem Cells. 2012;30:1030–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zhu XY, Krier JD, Lerman A, Lerman LO. Mesenchymal stem cells and endothelial progenitor cells decrease renal injury in experimental swine renal artery stenosis through different mechanisms. Stem Cells. 2013;31(1):117–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chade AR, Kelsen S. Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach. Am J Physiol Renal Physiol. 2012;302:F1342–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Stewart N, Chade AR. Renoprotective effects of hepatocyte growth factor in the stenotic kidney. Am J Physiol Renal Physiol. 2013;304:F625–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kelsen S, Hall JE, Chade AR. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease. Am J Physiol Renal Physiol. 2011;301:F218–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Warner GM, Cheng J, Knudsen BE, Gray CE, Deibel A, Juskewitch JE, Lerman LO, Textor SC, Nath KA, Grande JP. Genetic deficiency of Smad3 protects the kidneys from atrophy and interstitial fibrosis in 2K1C hypertension. Am J Physiol Renal Physiol. 2012;302:F1455–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zhu XY, Chade AR, Krier JD, Daghini E, Lavi R, Guglielmotti A, Lerman A, Lerman LO. The chemokine monocyte chemoattractant protein-1 contributes to renal dysfunction in swine renovascular hypertension. J Hypertens. 2009;27:2063–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Chade AR, Zhu XY, Grande JP, Krier JD, Lerman A, Lerman LO. Simvastatin abates development of renal fibrosis in experimental renovascular disease. J Hypertens. 2008;26:1651–60.

    Article  CAS  PubMed  Google Scholar 

  27. Chade AR, Rodriguez-Porcel M, Herrmann J, Zhu X, Grande JP, Napoli C, Lerman A, Lerman LO. Antioxidant intervention blunts renal injury in experimental renovascular disease. J Am Soc Nephrol. 2004;15:958–66.

    Article  CAS  PubMed  Google Scholar 

  28. Chade AR, Rodriguez-Porcel M, Herrmann J, Krier JD, Zhu X, Lerman A, Lerman LO. Beneficial effects of antioxidant vitamins on the stenotic kidney. Hypertension. 2003;42:605–12.

    Article  CAS  PubMed  Google Scholar 

  29. Chade AR, Krier JD, Rodriguez-Porcel M, Breen JF, McKusick MA, Lerman A, Lerman LO. Comparison of acute and chronic antioxidant interventions in experimental renovascular disease. Am J Physiol Renal Physiol. 2004;286:F1079–86.

    Article  CAS  PubMed  Google Scholar 

  30. Palm F, Onozato M, Welch WJ, Wilcox CS. Blood pressure, blood flow, and oxygenation in the clipped kidney of chronic 2-kidney, 1-clip rats: effects of tempol and Angiotensin blockade. Hypertension. 2010;55:298–304.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilach O. Lerman MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Lerman, L.O. (2014). Future Mechanisms of Reversing Kidney Injury. In: Lerman, L., Textor, S. (eds) Renal Vascular Disease. Springer, London. https://doi.org/10.1007/978-1-4471-2810-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2810-6_22

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2809-0

  • Online ISBN: 978-1-4471-2810-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics