Top Ten Interaction Challenges in Extreme-Scale Visual Analytics

Abstract

The chapter presents ten selected user interface and interaction challenges in extreme-scale visual analytics. The study of visual analytics is often referred to as “the science of analytical reasoning facilitated by interactive visual interfaces” in the literature. The discussion focuses on applying visual analytics technologies to extreme-scale scientific and non-scientific data ranging from petabyte to exabyte in sizes. The ten challenges are: in situ interactive analysis, user-driven data reduction, scalability and multi-level hierarchy, representation of evidence and uncertainty, heterogeneous data fusion, data summarization and triage for interactive query, analytics of temporally evolving features, the human bottleneck, design and engineering development, and the Renaissance of conventional wisdom. The discussion addresses concerns that arise from the different areas of hardware, software, computation, algorithms, and human factors. The chapter also evaluates the likelihood of success in meeting these challenges in the near future.

Keywords

Extreme-scale visual analytics Interaction User interface Data visualization Top-10 challenges 

References

  1. Ahern, S., Shoshani, A., Ma, K.-L., Choudhary, A., Critchlow, T., Klasky, S., Pascucci, V., Ahrens, J., Bethel, W., Childs, H., Huang, J., Joy, K., Koziol, Q., Lofstead, G., Meredith, J., Moreland, K., Ostrouchov, G., Papka, M., Vishwanath, V., Wolf, M., Wright, N., & Wu, K. (2011). Scientific discovery at the exascale: report from the DOE ASCR 2011 workshop on exascale data management, analysis, and visualization. http://www.olcf.ornl.gov/wp-content/uploads/2011/01/Exascale-ASCR-Analysis.pdf.
  2. Ahrens, J., Rogers, D., Springmeyer, B., Brugger, E., Crossno, P., Jiang, M., Harrison, C., Monroe, L., Tomlinson, B., Pavlakos, D., Childs, H., Klasky, S., & Ma, K.-L. (2010). Visualization and data analysis at the exascale—a white paper for the National Nuclear Security Administration (NNSA) Accelerated Strategic Computing (ASC) exascale environment planning process (Lawrence Livermore National Laboratory Technical Report LLNL-TR-474731). https://asc.llnl.gov/exascale/exascale-vdaWG.pdf.
  3. Ashby, S., Beckman, P., Chen, J., Colella, P., Collins, B., Crawford, D., Dongarra, J., Kothe, D., Lusk, R., Messina, P., Mezzacappa, T., Moin, P., Norman, M., Rosner, R., Sarkar, V., Siegel, A., Streitz, F., White, A., & Wright, M. (2010). The opportunities and challenges of exascale computing—summary report of the advanced scientific computing advisory committee (ASCAC) subcommittee. US Department of Energy Office of Science. http://science.energy.gov/~/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf.
  4. Chen, C. (2005). Top 10 unsolved information visualization problems. IEEE Computer Graphics and Applications, 25(4), 12–16. CrossRefGoogle Scholar
  5. Chen, C. (2008). An information-theoretic view of visual analytics. IEEE Computer Graphics and Applications, 28(1), 18–23. CrossRefGoogle Scholar
  6. Chen, C., & Börner, K. (2002). Top ten problems in visual interfaces to digital libraries. In LNCS: Vol. 2539. Visual interfaces to digital libraries (pp. 225–231). Berlin: Springer. CrossRefGoogle Scholar
  7. U.S. Department of Energy (DOE) Office of Science (SC) (2010). Scientific data management and analysis at extreme-scale. http://science.energy.gov/~/media/ascr/pdf/funding/notices/Lab_10_256.pdf.
  8. Foundations of Data and Visual Analytics (FODAVA) (2012). http://nvac.pnl.gov/nsf.stm, http://fodava.gatech.edu/node/3.
  9. Hibbard, B. (1999). Top ten visualization problems. ACM SIGGRAPH Newsletter, 33(2). Google Scholar
  10. Hilbert, M., & Lopez, P. (2011). The world’s technology capacity to store, communicate, and computer information. Science, 332(6025), 60–65. http://www.sciencemag.org/content/332/6025/60.full. CrossRefGoogle Scholar
  11. Institute for Ultra-Scale Visualization (2012). http://ultravis.ucdavis.edu/.
  12. Netezza Data Warehouse (2012). http://www.netezza.com.
  13. Shneiderman, B. (2008). Extreme visualization: squeezing a billion records into a million pixels. In Proceedings of the 2008 ACM SIGMOD international conference on management of data, Vancouver, Canada (pp. 3–12). CrossRefGoogle Scholar
  14. Swanson, B. (2007). The coming exaflood. The Wall Street Journal. http://www.discovery.org/a/3869.
  15. Thomas, J. J., & Cook, K. A. (Eds.) (2005). Illuminating the path—the research and development agenda for visual analytics. Los Alamitos: IEEE Computer Society Press. Google Scholar
  16. VACET (2012). http://www.vacet.org/.
  17. Wray, R. (2009). Internet data heads for 500 bn gigabytes. The Guardian. http://www.guardian.co.uk/business/2009/may/18/digital-content-expansion.
  18. Yost, B., Haciahmetoglu, Y., & North, C. (2007). Beyond visual acuity: the perceptual scalability of information visualizations for large displays. In Proceedings of SIGCHI conference on human factors in computing (CHI ’07) (pp. 101–110). New York: ACM. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.The Ohio State UniversityColumbusUSA
  3. 3.Drexel UniversityPhiladelphiaUSA

Personalised recommendations