Modelling and Simulation pp 323-342 | Cite as
Optimization
- 3.1k Downloads
Abstract
The goal of a simulation project is often formulated in terms of an optimization task, and this chapter explores this topic within the CTDS context. A key facet of this task is the identification of a criterion function that measures some aspect of the SUI’s behaviour that is related to the project goal(s). The criterion function is dependent on some set of parameters embedded within the SUI. The optimization task corresponds to finding a ‘best value’ for this set of parameters as indicated by an extreme value (either maximum or minimum) for the selected criterion function. This problem of extremizing the value of a criterion function by locating a best value for a set of parameters has been widely studied in the optimization literature. In the modelling and simulation context, the problem is distinctive inasmuch as the evaluation of the criterion function is linked to a simulation model. Several well-established numerical procedures that can be directly applied when the simulation model falls in the CTDS category are outlined in this chapter. Included here are both a gradient-independent method (the Nelder–Mead Simplex method) and a gradient-dependent method (the conjugate gradient method). Associated issues of gradient evaluation and the linear search problem are discussed.
Keywords
Optimal Control Problem Search Direction Line Search Conjugate Gradient Method Criterion FunctionReferences
- 1.Al-Baali M (1985) Descent property and global convergence of the Fletcher-Reeves method with inexact line search. IMA J Numer Anal 5:121–124MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Beale EML (1972) A derivation of conjugate gradients. In: Lottsma FA (ed) Numerical methods for non-linear optimization. Academic, London, pp 39–43Google Scholar
- 3.Bertsekas DP (1996) Constrained optimization and Lagrange multiplier methods. Athena Scientific, NashuaGoogle Scholar
- 4.Bhatnager S, Kowshik HJ (2005) A discrete parameter stochastic approximation algorithm for simulation optimization. Simulation 81(11):757–772CrossRefGoogle Scholar
- 5.Bonnans JF, Gilbert JC, Lemaréchal C, Sagastizabal CA (2003) Numerical optimization: theoretical and practical aspects. Springer, BerlinCrossRefGoogle Scholar
- 6.Buchholz P (2009) Optimization of stochastic discrete event models and algorithms for optimization logistics, Dagstuhl seminar proceedings 09261, 2009, Dagstuhl, GermanyGoogle Scholar
- 7.Cormen TH, Leisserson CE, Rivest RL (1990) Introduction to algorithms. MIT Press, Cambridge, MAzbMATHGoogle Scholar
- 8.Deroussi L, Gourgand M, Tchernev N (2006) 2006 international conference on service systems and service management, October, pp 495–500, Troyes, FranceGoogle Scholar
- 9.Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, New YorkzbMATHGoogle Scholar
- 10.Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7:149–154MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Fu MC (2002) Optimization for simulation: theory versus practice. INFORMS J Comput 14:192–215MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Gilbert J, Nocedal J (1992) Global convergence properties of conjugate gradient methods for optimization. SIAM J Optim 2:21–42MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Heath MT (2000) Scientific computing, an introductory survey, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
- 14.Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9:112–147MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Law AM, Kelton DW (2000) Simulation modeling and analysis, 3rd edn. McGraw Hill, New YorkGoogle Scholar
- 16.Lewis FL, Syrmos VL (1995) Optimal control, 2nd edn. Wiley, New YorkGoogle Scholar
- 17.Nelder J, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313CrossRefzbMATHGoogle Scholar
- 18.Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New YorkCrossRefzbMATHGoogle Scholar
- 19.Olafason S, Kim J (2002) Simulation optimization. In: Proceeding of the 2002 winter simulation conference, pp 79–84, San Diego, CAGoogle Scholar
- 20.Oretega JM, Rheinboldt WC (1970) Iterative solution of nonlinear equations in several variables. Academic, New YorkGoogle Scholar
- 21.Pedregal P (2004) Introduction to optimization. Springer, New YorkzbMATHGoogle Scholar
- 22.Pichitlamken J, Nelson BL (2003) A combined procedure for optimizing via simulation. ACM Trans Model Simul 13:155–179CrossRefGoogle Scholar
- 23.Pintér JD (2013) LGO – a model development and solver system for global-local nonlinear optimization, User’s guide, 2nd edn. Published and distributed by Pintér Consulting Services, Inc., Halifax. www.pinterconsulting.com (First edition: June 1995)
- 24.Polack E, Ribière G (1969) Note sur la Convergence de Méthodes de Directions Conjuguées. Revue Française d’Informatique et de Recherche Opérationnelle 16:35–43Google Scholar
- 25.Powell MJD (1978) Restart procedures for the conjugate gradient method. Math Prog 12:241–254CrossRefGoogle Scholar
- 26.Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1999) Numerical recipes in C, The art of scientific computing, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
- 27.Rubinstein R, Shapiro A (1993) Discrete event systems: sensitivity analysis and stochastic optimization by the score function method. Wiley, New YorkzbMATHGoogle Scholar
- 28.Rykov A (1983) Simplex algorithms for unconstrained optimization. Probl Control Inf Theory 12:195–208MathSciNetzbMATHGoogle Scholar
- 29.Seierstad A, Sydstaeter K (1987) Optimal control theory with economic applications. North Holland, AmsterdamzbMATHGoogle Scholar
- 30.Sorenson HW (1969) Comparison of some conjugate directions procedures for function minimization. J Franklin Inst 288:421–441MathSciNetCrossRefzbMATHGoogle Scholar
- 31.Wolfe P (1969) Convergence conditions for ascent methods. SIAM Rev 11:226–235MathSciNetCrossRefzbMATHGoogle Scholar
- 32.Zabinsky ZB (2003) Stochastic adaptive search for global optimization. Kluwer Academic Publishers, DordrechtCrossRefzbMATHGoogle Scholar