Skip to main content

Acid–Base Homeostasis and Skeletal Health: Current Thinking and Future Perspectives

  • Chapter
  • First Online:
Nutritional Influences on Bone Health

Abstract

We urgently need public health strategies to help with the prevention of poor bone health across the age ranges. It is especially useful to focus attention on factors that are amenable to change, with nutrition and exercise having clear potential. The aim of this chapter is to review the current evidence for a role of acid–base homeostasis in bone. Analysis of existing literature enabled a combination of observational, clinical, and intervention studies to be assessed in relation to dietary alkalinity, dietary acidity and bone health. Mechanisms of action for a dietary alkalinity “component” effect were examined, and the role that fruit and vegetables can play in bone health was addressed. Natural, pathological, and experimental states of acid loading/acidosis have been associated with hypercalciuria, and negative calcium balance and, more recently, the detrimental effects of “acid” from the diet on bone mineral have been demonstrated. At the cellular level, a reduction in extracellular pH has been shown to enhance osteoclastic activity directly, resulting in increased resorption pit formation.

A number of observational, experimental, clinical, and intervention studies have suggested a positive link between fruit and vegetable consumption and the skeleton. Further research is required, particularly with respect to the influence of dietary manipulation using alkali-forming foods on fracture prevention. There remain no long-term Dietary Approaches to Stop Hypertension (DASH) on bone health in younger and older age cohorts, and this is urgently required. Should the findings of the DASH/fruit and vegetable studies prove conclusive, a “fruit and vegetable” approach to bone health maintenance may provide a very helpful strategy for bone health development and maintenance throughout the life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goulding A. Nutritional strategies for osteoporosis prevention. In: New SA, Bonjour JP, editors. Nutritional aspects of bone health. Cambridge: The Royal Society of Chemistry; 2003. p. 709–32.

    Chapter  Google Scholar 

  2. World Health Organization. Assessment of osteoporotic fracture risk and its role for screening for postmenopausal osteoporosis, WHO technical report series. Geneva: WHO; 1994.

    Google Scholar 

  3. Green J, Kleeman R. Role of bone in regulation of systematic acid–base balance (Editorial Review). Kidney Int. 1991;39:9–26.

    Article  PubMed  CAS  Google Scholar 

  4. Frassetto LA, Morris Jr RC, Sebastian A. Effect of age on blood acid–base composition in adult humans: role of age-related renal functional decline. Am J Physiol. 1996;271:F1114–22 (Renal Fluid Electrolyte Physiol 40).

    PubMed  CAS  Google Scholar 

  5. Frassetto LA, Sebastian A. Age and systemic acid–base equilibrium: analysis of published data. J Gerontol. 1996;51A:B91–9.

    Article  Google Scholar 

  6. Goto K. Mineral metabolism in experimental acidosis. J Biol Chem. 1918;36:355–76.

    CAS  Google Scholar 

  7. Lemann Jr J, Litzow JR, Lennon EJ. The effects of chronic acid load in normal man: further evidence for the participation of bone mineral in the defence against chronic metabolic acidosis. J Clin Invest. 1966;45:1608–14.

    Article  PubMed  CAS  Google Scholar 

  8. Barzel US, Jowsey J. The effects of chronic acid and alkali administration on bone turnover in adult rats. Clin Sci. 1969;36:517–24.

    PubMed  CAS  Google Scholar 

  9. Arnett TR, Dempster DW. Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology. 1986;119:119–24.

    Article  PubMed  CAS  Google Scholar 

  10. Kreiger NA, Sessler NE, Bushinsky DA. Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro. Am J Physiol. 1992;262:F442–8.

    Google Scholar 

  11. Arnett TR, Spowage M. Modulation of the resorptive activity of rat osteoclasts by small changes in extracellular pH near the physiological range. Bone. 1996;18:277–9.

    Article  PubMed  CAS  Google Scholar 

  12. Bushinsky DA. Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol. 1996;271:F216–22 (Renal Fluid Electrolyte Physiol).

    PubMed  CAS  Google Scholar 

  13. Meghji S, Morrison MS, Henderson B, Arnett TR. PH dependence of bone resorption: mouse calvarial osteoclasts are activated by acidosis. Am J Physiol Endocrinol Metab. 2001;280:E112–9.

    PubMed  CAS  Google Scholar 

  14. Bushinsky DA, Sessler NE, Glena RE, Featherstone JDB. Proton induced physicochemical calcium release from ceramic apatite disks. J Bone Miner Res. 1994;9:213–20.

    Article  PubMed  CAS  Google Scholar 

  15. Wachman A, Bernstein DS. Diet and osteoporosis. Lancet. 1968;1:958–9.

    Article  PubMed  CAS  Google Scholar 

  16. Barzel US, Massey LK. Excess dietary protein can adversely affect bone. J Nutr. 1998;128:1051–3.

    PubMed  CAS  Google Scholar 

  17. Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc. 1995;95:791–7.

    Article  PubMed  CAS  Google Scholar 

  18. Fox D. Hard cheese. New Sci. 2001;2329:42–5.

    Google Scholar 

  19. New SA, Macdonald HM, Reid DM, Dixon ASJ. Hold the soda. New Sci. 2002;2330:54–5 [Letter].

    Google Scholar 

  20. Heaney RP. Excess dietary protein may not adversely affect bone. J Nutr. 1998;128:1054–7.

    PubMed  CAS  Google Scholar 

  21. Meyer HE, Pedersen JI, Loken EB, Tverdal A. Dietary factors and the incidence of hip fracture in middle-aged Norwegians. Am J Epidemiol. 1997;145:117–23.

    Article  PubMed  CAS  Google Scholar 

  22. Dawson-Hughes B, Harris SS. Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. Am J Clin Nutr. 2002;75:773–9.

    PubMed  CAS  Google Scholar 

  23. Heaney RP. Protein and calcium: antagonists or synergists? Am J Clin Nutr. 2002;75:609–10.

    PubMed  CAS  Google Scholar 

  24. New SA, Millward DJ. Calcium, protein and fruit & vegetables as dietary determinants of bone health. Am J Clin Nutr. 2003;77:1340–1 [Letter].

    PubMed  CAS  Google Scholar 

  25. Dawson-Hughes B. Calcium, protein and bone health. Am J Clin Nutr. 2003;77:1341 [Letter].

    CAS  Google Scholar 

  26. Frassetto L, Todd K, Morris Jr RC, Sebastian A. Estimation of net endogenous noncarbonic acid production in humans from dietary protein and potassium contents. Am J Clin Nutr. 1998;68:576–83.

    PubMed  CAS  Google Scholar 

  27. Lemann Jr J, Pleuss JA, Gray RW, Hoffmann RG. Potassium administration increases and potassium deprivation reduces urinary calcium excretion in healthy adults. Kidney Int. 1991;39:973–83.

    Article  PubMed  Google Scholar 

  28. Bushinsky DA. Decreased potassium stimulates bone resorption. Am J Physiol. 1997;272:F774–80 (Renal Fluid Electrolyte Physiology).

    PubMed  CAS  Google Scholar 

  29. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris Jr RC. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med. 1994;330:1776–81.

    Article  PubMed  CAS  Google Scholar 

  30. Wood RJ. Potassium bicarbonate supplementation and calcium-metabolism in postmenopausal women – are we barking up the wrong tree. Nutr Rev. 1994;52(8):278–89.

    PubMed  CAS  Google Scholar 

  31. Morris R, Masud T. Measuring quality of life in osteoporosis. Age Ageing. 2001;30(5):371–3.

    Article  PubMed  CAS  Google Scholar 

  32. Sebastian A, Hernandez RE, Portale AA, Colman J, Tatsuno J, Morris RC. Dietary potassium influences kidney maintenance of serum phosphorus concentration. Kidney Int. 1990;37(5):1341–9.

    Article  PubMed  CAS  Google Scholar 

  33. Kraut JA, Coburn JW. Bone, acid and osteoporosis. N Engl J Med. 1994;330(235):1821–2.

    Article  PubMed  CAS  Google Scholar 

  34. Ceglia L, Harris SS, Abrams SA, Rasmussen HM, Dallal GE, Dawson-Hughes B. Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption. J Clin Endocrinol Metab. 2009;94:645–53.

    Article  PubMed  CAS  Google Scholar 

  35. He FJ, Marciniak M, Carney C, Markandu ND, Anand V, Fraser WD, Dalton RN, Kaski JC, MacGregor GA. Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives. Hypertension. 2010;55:681–8.

    Article  PubMed  CAS  Google Scholar 

  36. MacDonald HM, Black AJ, Aucott L, Duthie G, Duthie S, Sandison R, Hardcastle AC, Lanham-New SA, Fraser WD, Reid DM. Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am J Clin Nutr. 2008;88:465–74.

    PubMed  CAS  Google Scholar 

  37. Marangella M, Di Stefano M, Casalis S, Berutti S, D’Amelio P, Isaia GC. Effects of potassium citrate supplementation on bone metabolism. Calcif Tissue Int. 2004;74:330–5.

    Article  PubMed  CAS  Google Scholar 

  38. Sakhaee K, Maalouf NM, Abrams SA, Pak CYC. Effects of potassium alkali and calcium supplementation on bone turnover in postmenopausal women. J Clin Endocrinol Metab. 2005;90:3528–33.

    Article  PubMed  CAS  Google Scholar 

  39. Sellmeyer DE, Schloetter M, Sebastian A. Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J Clin Endocrinol Metab. 2002;87:2008–12.

    Article  PubMed  CAS  Google Scholar 

  40. Appel LJ, Moore TJ, Obarzanek E, Vallmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336:1117–24.

    Article  PubMed  CAS  Google Scholar 

  41. Barzel US. Dietary patterns and blood pressure. N Engl J Med. 1997;337:637 [Letter].

    PubMed  CAS  Google Scholar 

  42. Lin P, Ginty F, Appel L, Aickin M, Bohannon A, Garnero P, Barclay D, Svetky L. The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults. J Nutr. 2003;133(10):3130–6.

    PubMed  CAS  Google Scholar 

  43. New SA. The role of the skeleton in acid–base homeostasis. The 2001 Nutrition Society Medal Lecture. Proc Nutr Soc. 2002;61:151–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Lambert, H., Huggett, C., Gannon, R., Lanham-New, S.A. (2013). Acid–Base Homeostasis and Skeletal Health: Current Thinking and Future Perspectives. In: Burckhardt, P., Dawson-Hughes, B., Weaver, C. (eds) Nutritional Influences on Bone Health. Springer, London. https://doi.org/10.1007/978-1-4471-2769-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2769-7_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2768-0

  • Online ISBN: 978-1-4471-2769-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics