Relationships Between Body Fat and Bone Mass

  • Ian R. ReidEmail author


Body weight impacts on both bone turnover and bone density and is therefore an important risk factor for vertebral and hip fractures, ranking in importance alongside that of age. The effect of body weight is probably contributed to by both fat mass and lean mass, though in postmenopausal women, fat mass has been more consistently demonstrated to be important. A number of mechanisms for the fat-bone relationship exist and include the effect of soft tissue mass on skeletal loading and the association of fat mass with the secretion of bone-active hormones from the ­pancreatic beta cell (including insulin, amylin, and preptin). Insulin circulates in increased concentrations in obesity and exerts anabolic effects on bone. The adipocyte is also an important source of factors that act as circulating regulators of bone metabolism. These include estrogens and the adipokines, leptin, and adiponectin. Leptin acts directly on bone cells, and in some experimental models, these effects are modified by its actions on the central nervous system, which impact on appetite, body weight, and insulin sensitivity. Adipokine levels correlate with bone turnover, suggesting that they dynamically influence bone metabolism. In postmenopausal women they may be among the principal regulators of bone turnover, accounting for their increasing importance as determinants of bone density with age. Of the adipokines, adiponectin appears to have the strongest relationships with bone parameters in postmenopausal women.

This area of research has provided important insights in bone biology. Its greatest importance, however, is to emphasize the critical role that weight maintenance plays in osteoporosis prevention.


Adipose tissue Weight BMI Lean mass Insulin Leptin Amylin Adiponectin Visceral fat Multiple regression analysis 



Supported by the Health Research Council of New Zealand


  1. 1.
    Reid IR, Mason B, Horne A, Ames R, Reid HE, Bava U, et al. Randomized controlled trial of calcium in healthy older women. Am J Med. 2006;119(9):777–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Ribot C, Tremollieres F, Pouilles JM, Bonneu M, Germain F, Louvet JP. Obesity and postmenopausal bone loss: the influence of obesity on vertebral density and bone turnover in postmenopausal women. Bone. 1987;8:327–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Khosla S, Atkinson EJ, Riggs BL, Melton LJ. Relationship between body composition and bone mass in women. J Bone Miner Res. 1996;11(6):857–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, Wasnich RD, et al. Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. J Bone Miner Res. 1999;14(9):1622–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Reid IR. Relationships among body mass, its components, and bone. Bone. 2002;31(5):547–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Wu F, Ames R, Clearwater J, Evans MC, Gamble G, Reid IR. Prospective 10-year study of the determinants of bone density and bone loss in normal postmenopausal women, including the effect of hormone replacement therapy. Clin Endocrinol. 2002;56(6):703–11.CrossRefGoogle Scholar
  7. 7.
    Reid IR, Ames R, Evans MC, Sharpe S, Gamble G, France JT, et al. Determinants of total body and regional bone mineral density in normal postmenopausal women – a key role for fat mass. J Clin Endocrinol Metab. 1992;75(1):45–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Reid IR, Plank LD, Evans MC. Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab. 1992;75(3):779–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Reid IR, Legge M, Stapleton JP, Evans MC, Grey AB. Regular exercise dissociates fat mass and bone density in premenopausal women. J Clin Endocrinol Metab. 1995;80(6):1764–8.PubMedCrossRefGoogle Scholar
  10. 10.
    De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16(11):1330–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Lau EMC, Chan YH, Chan M, Woo J, Griffith J, Chan HHL, et al. Vertebral deformity in Chinese men: prevalence, risk factors, bone mineral density, and body composition measurements. Calcif Tissue Int. 2000;66(1):47–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011;124(11):1043–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Reid IR. Fat and bone. Arch Biochem Biophys. 2010;503:20–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Yamaguchi T, Kanazawa I, Yamamoto M, Kurioka S, Yamauchi M, Yano S, et al. Associations between components of the metabolic syndrome versus bone mineral density and vertebral fractures in patients with type 2 diabetes. Bone. 2009;45(2):174–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD. Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab. 2009;94(9):3387–93.PubMedCrossRefGoogle Scholar
  16. 16.
    Steppan CM, Crawford DT, Chidsey-Frink KL, Ke HZ, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept. 2000;92(1–3 Special Issue SI):73–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175(2):405–15.PubMedCrossRefGoogle Scholar
  18. 18.
    Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140(4):1630–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Gordeladze JO, Drevon CA, Syversen U, Reseland JE. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem. 2002;85(4):825–36.PubMedCrossRefGoogle Scholar
  20. 20.
    Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, et al. Leptin inhibits osteoclast generation. J Bone Miner Res. 2002;17(2):200–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Burguera B, Hofbauer LC, Thomas T, Gori F, Evans GL, Khosla S, et al. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology. 2001;142(8):3546–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Baile CA. Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J Bone Miner Res. 2005;20(6):994–1001.PubMedCrossRefGoogle Scholar
  23. 23.
    Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N, Kim CA, et al. Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci U S A. 2004;101(9):3258–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341(12):879–84.PubMedCrossRefGoogle Scholar
  25. 25.
    Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, et al. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med. 2004;351(10):987–97.PubMedCrossRefGoogle Scholar
  26. 26.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207.PubMedCrossRefGoogle Scholar
  27. 27.
    Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang XL, Liu XY, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995;269:546–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Iwaniec UT, Boghossian S, Dube MG, Torto R, Arzaga RR, Wronski TJ, et al. Effects of central leptin gene therapy on weight reduction and cancellous bone mass in female rats. J Bone Miner Res. 2005;20 suppl 1:s13–4.Google Scholar
  30. 30.
    Otukonyong EE, Dube MG, Torto R, Kalra PS, Kalra SP. Central leptin differentially modulates ultradian secretory patterns of insulin, leptin and ghrelin independent of effects on food intake and body weight. Peptides. 2005;26(12):2559–66.PubMedCrossRefGoogle Scholar
  31. 31.
    Brochmann EJ, Duarte ME, Zaidi HA, Murray SS. Effects of dietary restriction on total body, femoral, and vertebral bone in SENCAR, C57BL/6, and DBA/2 Mice. Metabolism. 2003;52:1265–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Hamrick MW, Ding KH, Ponnala S, Ferrari SL, Isales CM. Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J Bone Miner Res. 2008;23(6):870–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Williams GA, Wang Y, Callon KE, Watson M, Lin JM, Lam JBB, et al. In vitro and in vivo effects of adiponectin on bone. Endocrinology. 2009;150(8):3603–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, et al. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone. 2003;33(4):646–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Richards JB, Valdes AM, Burling K, Perks UC, Spector TD. Serum adiponectin and bone mineral density in women. J Clin Endocrinol Metab. 2007;92(4):1517–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Hickman J, McElduff A. Insulin promotes growth of the cultured rat osteosarcoma cell line UMR-106-01: an osteoblast-like cell. Endocrinology. 1989;124:701–76.PubMedCrossRefGoogle Scholar
  37. 37.
    Cornish J, Callon KE, Reid IR. Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int. 1996;59(6):492–5.PubMedGoogle Scholar
  38. 38.
    Cornish J, Callon KE, Bava U, Kamona SA, Cooper GJS, Reid IR. Effects of calcitonin, amylin and calcitonin gene-related peptide on osteoclast development. Bone. 2001;29:162–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Cornish J, Callon KE, Cooper GJS, Reid IR. Amylin stimulates osteoblast proliferation and increases mineralized bone volume in adult mice. Biochem Biophys Res Commun. 1995;207(1):133–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Cornish J, Callon KE, Bava U, Watson M, Xu X, Lin J, et al. Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. Am J Physiol. 2007;292:E117–22.Google Scholar
  41. 41.
    Reid IR, Richards JB. Adipokine effects on bone. Clin Rev Bone Miner Metab. 2009;7:240–8.CrossRefGoogle Scholar
  42. 42.
    Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone. 2002;30(6):886–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Ihle R, Loucks AB. Dose–response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of MedicineUniversity of AucklandAucklandNew Zealand

Personalised recommendations