The Hormonal Milieu in Obesity and Influences on the Trabecular, Cortical, and Geometric Properties of Bone

  • Sue A. ShapsesEmail author
  • Deeptha Sukumar


Obesity is associated with alterations in several endocrine factors, some of which are involved in regulating bone metabolism. The higher serum concentrations of parathyroid hormone (PTH), estradiol, pancreatic hormones, and adipokines such as leptin, resistin, and cytokines and the lower 25-hydroxyvitamin D (25OHD) have specific actions on the skeleton and regulate cortical and trabecular bone differently. Recent evidence suggests that bone quality is altered in obesity with a higher trabecular volumetric bone mineral density (vBMD), while cortical vBMD is lower. Also, the obese are at greater risk of fracture for a given BMD compared to normal weight individuals supporting the evidence that bone quality is altered due to excess adiposity. Higher concentrations of serum PTH have a catabolic effect on cortical bone and may play a role in reducing cortical vBMD in obesity. The lower serum 25OHD, higher leptin and resistin, and lower adiponectin may also independently contribute to the lower cortical vBMD in obesity. There is little evidence to show that higher pancreatic hormones and cytokines influence trabecular and cortical bone in obesity. The altered hormonal milieu in obesity is one important factor that explains bone architectural changes that occur due to excess adiposity. However, other factors such as diet, genetic factors, altered mechanical loading, and/or other environmental factors may also contribute to bone quality and site-specific fracture risk in obesity.


Obesity Hormones Trabecular Cortical Volumetric bone mineral density Body composition 


  1. 1.
    World Health Organization. Obesity and overweight. Geneva: World Health Organization; May 2012. Last Accessed on 29 Aug 2012.
  2. 2.
    Ljungvall A, Zimmerman FJ. Bigger bodies: long-term trends and disparities in obesity and body-mass index among U.S. adults, 1960–2008. Soc Sci Med. 2012;75:109–19.PubMedCrossRefGoogle Scholar
  3. 3.
    FastStats (Centers for Disease Control and Prevention). Obesity and overweight. Atlanta: CDC; 2011. Accessed 9 Sept 2012.
  4. 4.
    Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME. Playing with bone and fat. J Cell Biochem. 2006;98:251–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW. Relationship of obesity with osteoporosis. J Clin Endocrinol Metab. 2007;92:1640–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Frost HM. Obesity, and bone strength and “mass”: a tutorial based on insights from a new paradigm. Bone. 1997;21:211–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Hangartner TN, Johnston CC. Influence of fat on bone measurements with dual-energy absorptiometry. Bone Miner. 1990;9:71–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Bolotin HH. A new perspective on the causal influence of soft tissue composition on DXA-measured in vivo bone mineral density. J Bone Miner Res. 1998;13:1739–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Tothill P. Dual-energy x-ray absorptiometry measurements of total-body bone mineral during weight change. J Clin Densitom. 2005;8:31–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Laslett LL, Just Nee Foley SJ, Quinn SJ, Winzenberg TM, Jones G. Excess body fat is associated with higher risk of vertebral deformities in older women but not in men: a cross-sectional study. Osteoporos Int. 2012;23:67–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC. Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int. 1997;7:564–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Hansen KE, Vallarta-Ast N, Krueger D, Gangnon R, Drezner MK, Binkley N. Use of the lowest vertebral body T-score to diagnose lumbar osteoporosis in men: is “cherry picking” appropriate? J Clin Densitom. 2004;7:376–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14:595–608.PubMedCrossRefGoogle Scholar
  14. 14.
    Rauch F, Tutlewski B, Schonau E. The bone behind a low areal bone mineral density: peripheral quantitative computed tomographic analysis in a woman with osteogenesis imperfecta. J Musculoskelet Neuronal Interact. 2002;2:306–8.PubMedGoogle Scholar
  15. 15.
    Pollock NK, Laing EM, Baile CA, Hamrick MW, Hall DB, Lewis RD. Is adiposity advantageous for bone strength? A peripheral quantitative computed tomography study in late adolescent females. Am J Clin Nutr. 2007;86:1530–8.PubMedGoogle Scholar
  16. 16.
    Wetzsteon RJ, Petit MA, Macdonald HM, Hughes JM, Beck TJ, McKay HA. Bone structure and volumetric BMD in overweight children: a longitudinal study. J Bone Miner Res. 2008;23:1946–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Cole ZA, Harvey NC, Kim M, Ntani G, Robinson SM, Inskip HM, Godfrey KM, Cooper C, Dennison EM. Increased fat mass is associated with increased bone size but reduced volumetric density in pre pubertal children. Bone. 2012;50(2):562–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Ducher G, Bass SL, Naughton GA, Eser P, Telford RD, Daly RM. Overweight children have a greater proportion of fat mass relative to muscle mass in the upper limbs than in the lower limbs: implications for bone strength at the distal forearm. Am J Clin Nutr. 2009;90:1104–11.PubMedCrossRefGoogle Scholar
  19. 19.
    Sukumar D, Schlussel Y, Riedt CS, Gordon C, Stahl T, Shapses SA. Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos Int. 2011;22:635–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Taes YE, Lapauw B, Vanbillemont G, Bogaert V, De BD, Zmierczak H, Goemaere S, Kaufman JM. Fat mass is negatively associated with cortical bone size in young healthy male siblings. J Clin Endocrinol Metab. 2009;94:2325–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Uusi-Rasi K, Laaksonen M, Mikkila V, Tolonen S, Raitakari OT, Viikari J, Lehtimaki T, Kahonen M, Sievanen H. Overweight in childhood and bone density and size in adulthood. Osteoporos Int. 2012;23:1453–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Nielson CM, Marshall LM, Adams AL, Leblanc ES, Cawthon PM, Ensrud K, Stefanick ML, Barrett-Connor E, Orwoll ES. BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res. 2011;26:496–502.PubMedCrossRefGoogle Scholar
  23. 23.
    Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J. Obesity and fractures in postmenopausal women. J Bone Miner Res. 2010;25:292–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Nielson CM, Srikanth P, Orwoll ES. Obesity and fracture in men and women: an epidemiological perspective. J Bone Miner Res. 2012;27:1–10.PubMedCrossRefGoogle Scholar
  25. 25.
    De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton III LJ, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16:1330–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Holmberg AH, Johnell O, Nilsson PM, Nilsson J, Berglund G, Akesson K. Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women. Osteoporos Int. 2006;17:1065–77.PubMedCrossRefGoogle Scholar
  27. 27.
    Gnudi S, Sitta E, Lisi L. Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab. 2009;27:479–84.PubMedCrossRefGoogle Scholar
  28. 28.
    Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Diez-Perez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, Lacroix AZ, Roux C, Sambrook PN, Siris ES. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011;124:1043–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Lang TF, Cauley J, Tylavsky F, Bauer D, Cummings S, Harris T. Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging and body composition study. J Bone Miner Res. 2010;25(3):513–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res. 2005;20:2090–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Di Monaco M, Vallero F, Di Monaco R, Mautino F, Cavanna A. Body mass index and functional recovery after hip fracture: a survey study of 510 women. Aging Clin Exp Res. 2006;18:57–62.PubMedGoogle Scholar
  32. 32.
    Leet AI, Pichard CP, Ain MC. Surgical treatment of femoral fractures in obese children: does excessive body weight increase the rate of complications? J Bone Joint Surg Am. 2005;87:2609–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Salamone LM, Glynn N, Black D, Epstein RS, Palermo L, Meilahn E, Kuller LH, Cauley JA. Body composition and bone mineral density in premenopausal and early perimenopausal women. J Bone Miner Res. 1995;10:1762–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Travison TG, Araujo AB, Esche GR, Beck TJ, McKinlay JB. Lean mass and not fat mass is associated with male proximal femur strength. J Bone Miner Res. 2008;23:189–98.PubMedCrossRefGoogle Scholar
  35. 35.
    Binkley N, Buehring B. Beyond FRAX: it’s time to ­consider “sarco-osteopenia”. J Clin Densitom. 2009;12:413–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Halberg N, Wernstedt-Asterholm I, Scherer PE. The adipocyte as an endocrine cell. Endocrinol Metab Clin North Am. 2008;37:753, xi.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen Z, Lohman TG, Stini WA, Ritenbaugh C, Aickin M. Fat or lean tissue mass: which one is the major determinant of bone mineral mass in healthy postmenopausal women? J Bone Miner Res. 1997;12:144–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Lindsay R, Cosman F, Herrington BS, Himmelstein S. Bone mass and body composition in normal women. J Bone Miner Res. 1992;7:55–63.PubMedCrossRefGoogle Scholar
  39. 39.
    Janicka A, Wren TA, Sanchez MM, Dorey F, Kim PS, Mittelman SD, Gilsanz V. Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab. 2007;92:143–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001;139:509–15.PubMedCrossRefGoogle Scholar
  41. 41.
    Blain H, Vuillemin A, Teissier A, Hanesse B, Guillemin F, Jeandel C. Influence of muscle strength and body weight and composition on regional bone mineral density in healthy women aged 60 years and over. Gerontology. 2001;47:207–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Hla MM, Davis JW, Ross PD, Wasnich RD, Yates AJ, Ravn P, Hosking DJ, McClung MR. A multicenter study of the influence of fat and lean mass on bone mineral content: evidence for differences in their relative influence at major fracture sites. Early Postmenopausal Intervention Cohort (EPIC) Study Group. Am J Clin Nutr. 1996;64:354–60.PubMedGoogle Scholar
  43. 43.
    Glauber HS, Vollmer WM, Nevitt MC, Ensrud KE, Orwoll ES. Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density. J Clin Endocrinol Metab. 1995;80:1118–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Warming L, Ravn P, Christiansen C. Visceral fat is more important than peripheral fat for endometrial thickness and bone mass in healthy postmenopausal women. Am J Obstet Gynecol. 2003;188:349–53.PubMedCrossRefGoogle Scholar
  45. 45.
    Kuwahata A, Kawamura Y, Yonehara Y, Matsuo T, Iwamoto I, Douchi T. Non-weight-bearing effect of trunk and peripheral fat mass on bone mineral density in pre- and post-menopausal women. Maturitas. 2008;60:244–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Makovey J, Naganathan V, Sambrook P. Gender differences in relationships between body composition components, their distribution and bone mineral density: a cross-sectional opposite sex twin study. Osteoporos Int. 2005;16:1495–505.PubMedCrossRefGoogle Scholar
  47. 47.
    Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD. Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab. 2009;94:3387–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Bredella MA, Fazeli PK, Freedman LM, Calder G, Lee H, Rosen CJ, Klibanski A. Young women with cold-activated brown adipose tissue have higher bone mineral density and lower pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J Clin Endocrinol Metab. 2012;97(4):E584–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Shen W, Chen J, Punyanitya M, Shapses S, Heshka S, Heymsfield SB. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int. 2007;18:641–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Rosen CJ, Klibanski A, Miller KK. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring). 2011;19:49–53.CrossRefGoogle Scholar
  51. 51.
    Frumar AM, Meldrum DR, Geola F, Shamonki IM, Tataryn IV, Deftos LJ, Judd HL. Relationship of fasting urinary calcium to circulating estrogen and body weight in postmenopausal women. J Clin Endocrinol Metab. 1980;50:70–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Peng XD, Xie H, Zhao Q, Wu XP, Sun ZQ, Liao EY. Relationships between serum adiponectin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in Chinese men. Clin Chim Acta. 2008;387:31–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Pistilli EE, Gordish-Dressman H, Seip RL, Devaney JM, Thompson PD, Price TB, Angelopoulos TJ, Clarkson PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Hoffman EP, Gordon PM. Resistin polymorphisms are associated with muscle, bone, and fat phenotypes in white men and women. Obesity (Silver Spring). 2007;15:392–402.CrossRefGoogle Scholar
  54. 54.
    Stanworth RD, Jones TH. Testosterone in obesity, metabolic syndrome and type 2 diabetes. Front Horm Res. 2009;37:74–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang C, Jackson G, Jones TH, Matsumoto AM, Nehra A, Perelman MA, Swerdloff RS, Traish A, Zitzmann M, Cunningham G. Low testosterone associated with obesity and the metabolic syndrome contributes to sexual dysfunction and cardiovascular disease risk in men with type 2 diabetes. Diabetes Care. 2011;34:1669–75.PubMedCrossRefGoogle Scholar
  56. 56.
    Khosla S, Melton III LJ, Achenbach SJ, Oberg AL, Riggs BL. Hormonal and biochemical determinants of trabecular microstructure at the ultradistal radius in women and men. J Clin Endocrinol Metab. 2006;91:885–91.PubMedCrossRefGoogle Scholar
  57. 57.
    Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S. A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res. 2008;23:205–14.PubMedCrossRefGoogle Scholar
  58. 58.
    Lorentzon M, Swanson C, Andersson N, Mellstrom D, Ohlsson C. Free testosterone is a positive, whereas free estradiol is a negative, predictor of cortical bone size in young Swedish men: the GOOD study. J Bone Miner Res. 2005;20:1334–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3.PubMedGoogle Scholar
  60. 60.
    Arunabh S, Pollack S, Yeh J, Aloia JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab. 2003;88:157–61.PubMedCrossRefGoogle Scholar
  61. 61.
    Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds J, Yanovski JA. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab. 2004;89:1196–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Mason C, Xiao L, Imayama I, Duggan CR, Bain C, Foster-Schubert KE, Kong A, Campbell KL, Wang CY, Neuhouser ML, Li L, Jeffery W, Robien K, Alfano CM, Blackburn GL, McTiernan A. Effects of weight loss on serum vitamin D in postmenopausal women. Am J Clin Nutr. 2011;94:95–103.PubMedCrossRefGoogle Scholar
  63. 63.
    Lauretani F, Bandinelli S, Russo CR, Maggio M, Di IA, Cherubini A, Maggio D, Ceda GP, Valenti G, Guralnik JM, Ferrucci L. Correlates of bone quality in older persons. Bone. 2006;39:915–21.PubMedCrossRefGoogle Scholar
  64. 64.
    Lee AM, Anderson PH, Sawyer RK, Moore AJ, Forwood MR, Steck R, Morris HA, O’Loughlin PD. Discordant effects of vitamin D deficiency in trabecular and cortical bone architecture and strength in growing rodents. J Steroid Biochem Mol Biol. 2010;121:284–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Stein EM, Dempster DW, Udesky J, Zhou H, Bilezikian JP, Shane E, Silverberg SJ. Vitamin D deficiency influences histomorphometric features of bone in primary hyperparathyroidism. Bone. 2011;48:557–61.PubMedCrossRefGoogle Scholar
  66. 66.
    Barbour KE, Zmuda JM, Horwitz MJ, Strotmeyer ES, Boudreau R, Evans RW, Ensrud KE, Gordon CL, Petit MA, Patrick AL, Cauley JA. The association of serum 25-hydroxyvitamin D with indicators of bone quality in men of Caucasian and African ancestry. Osteoporos Int. 2011;22:2475–85.PubMedCrossRefGoogle Scholar
  67. 67.
    Bolland MJ, Grey AB, Ames RW, Horne AM, Gamble GD, Reid IR. Fat mass is an important predictor of parathyroid hormone levels in postmenopausal women. Bone. 2006;38:317–21.PubMedCrossRefGoogle Scholar
  68. 68.
    Pitroda AP, Harris SS, Dawson-Hughes B. The association of adiposity with parathyroid hormone in healthy older adults. Endocrine. 2009;36:218–23.PubMedCrossRefGoogle Scholar
  69. 69.
    Sukumar D, Partridge NC, Wang X, Shapses SA. The high serum monocyte chemoattractant protein-1 in obesity is influenced by high parathyroid hormone and not adiposity. J Clin Endocrinol Metab. 2011;96:1852–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Grey A, Mitnick MA, Shapses S, Ellison A, Gundberg C, Insogna K. Circulating levels of interleukin-6 and tumor necrosis factor-alpha are elevated in primary hyperparathyroidism and correlate with markers of bone resorption – a clinical research center study. J Clin Endocrinol Metab. 1996;81:3450–4.PubMedCrossRefGoogle Scholar
  71. 71.
    Onishi T, Hruska K. Expression of p27Kip1 in osteoblast-like cells during differentiation with parathyroid hormone. Endocrinology. 1997;138:1995–2004.PubMedCrossRefGoogle Scholar
  72. 72.
    Duan Y, De Luca V, Seeman E. Parathyroid hormone deficiency and excess: similar effects on trabecular bone but differing effects on cortical bone. J Clin Endocrinol Metab. 1999;84:718–22.PubMedCrossRefGoogle Scholar
  73. 73.
    Charopoulos I, Tournis S, Trovas G, Raptou P, Kaldrymides P, Skarandavos G, Katsalira K, Lyritis GP. Effect of primary hyperparathyroidism on volumetric bone mineral density and bone geometry assessed by peripheral quantitative computed tomography in postmenopausal women. J Clin Endocrinol Metab. 2006;91:1748–53.PubMedCrossRefGoogle Scholar
  74. 74.
    Shen L, Xie X, Su Y, Luo C, Zhang C, Zeng B. Parathyroid hormone versus bisphosphonate treatment on bone mineral density in osteoporosis therapy: a meta-analysis of randomized controlled trials. PLoS One. 2011;6:e26267.PubMedCrossRefGoogle Scholar
  75. 75.
    Goode LR, Brolin RE, Chowdhury HA, Shapses SA. Bone and gastric bypass surgery: effects of dietary calcium and vitamin D. Obes Res. 2004;12:40–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, Yoshikawa H, Shimomura I. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun. 2005;331:520–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Barbour KE, Zmuda JM, Boudreau R, Strotmeyer ES, Horwitz MJ, Evans RW, Kanaya AM, Harris TB, Cauley JA. The effects of adiponectin and leptin on changes in bone mineral density. Osteoporos Int. 2012;23(6):1699–710.PubMedCrossRefGoogle Scholar
  78. 78.
    Tubic B, Magnusson P, Swolin-Eide D, Marild S. Relation between bone mineral density, biological markers and anthropometric measures in 4-year-old children: a pilot study within the IDEFICS study. Int J Obes (Lond). 2011;35 Suppl 1:S119–24.CrossRefGoogle Scholar
  79. 79.
    Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, Langefeld CD, Carr JJ, Bowden DW. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone. 2003;33:646–51.PubMedCrossRefGoogle Scholar
  80. 80.
    Jurimae J, Jurimae T. Adiponectin is a predictor of bone mineral density in middle-aged premenopausal women. Osteoporos Int. 2007;18:1253–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Kontogianni MD, Dafni UG, Routsias JG, Skopouli FN. Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res. 2004;19:546–51.PubMedCrossRefGoogle Scholar
  82. 82.
    Napoli N, Pedone C, Pozzilli P, Lauretani F, Ferrucci L, Incalzi RA. Adiponectin and bone mass density: the InCHIANTI study. Bone. 2010;47(6):1001–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Barbour KE, Zmuda JM, Boudreau R, Strotmeyer ES, Horwitz MJ, Evans RW, Kanaya AM, Harris TB, Bauer DC, Cauley JA. Adipokines and the risk of fracture in older adults. J Bone Miner Res. 2011;26:1568–76.PubMedCrossRefGoogle Scholar
  84. 84.
    Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, Cortet B. Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(9):2703–13.PubMedCrossRefGoogle Scholar
  85. 85.
    Johansson H, Oden A, Lerner UH, Jutberger H, Lorentzon M, Barrett-Connor E, Karlsson MK, Ljunggren O, Smith U, McCloskey E, Kanis JA, Ohlsson C, Mellstrom D. High serum adiponectin predicts incident fractures in elderly men: osteoporotic fractures in men (MrOS) Sweden. J Bone Miner Res. 2012;27:1390–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Karsenty G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab. 2006;4:341–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140:1630–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, Grey AB, Broom N, Myers DE, Nicholson GC, Reid IR. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175:405–15.PubMedCrossRefGoogle Scholar
  89. 89.
    Blum M, Harris SS, Must A, Naumova EN, Phillips SM, Rand WM, Dawson-Hughes B. Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int. 2003;73:27–32.PubMedCrossRefGoogle Scholar
  90. 90.
    Pasco JA, Henry MJ, Kotowicz MA, Collier GR, Ball MJ, Ugoni AM, Nicholson GC. Serum leptin levels are associated with bone mass in nonobese women. J Clin Endocrinol Metab. 2001;86:1884–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Yamauchi M, Sugimoto T, Yamaguchi T, Nakaoka D, Kanzawa M, Yano S, Ozuru R, Sugishita T, Chihara K. Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol (Oxf). 2001;55:341–7.CrossRefGoogle Scholar
  92. 92.
    Fujita Y, Watanabe K, Maki K. Serum leptin levels negatively correlate with trabecular bone mineral density in high-fat diet-induced obesity mice. J Musculoskelet Neuronal Interact. 2012;12:84–94.PubMedGoogle Scholar
  93. 93.
    Hamrick MW, Pennington C, Newton D, Xie D, Isales C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone. 2004;34:376–83.PubMedCrossRefGoogle Scholar
  94. 94.
    Cornish J, Callon KE, Bava U, Watson M, Xu X, Lin JM, Chan VA, Grey AB, Naot D, Buchanan CM, Cooper GJ, Reid IR. Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. Am J Physiol Endocrinol Metab. 2007;292:E117–22.PubMedCrossRefGoogle Scholar
  95. 95.
    Bronsky J, Prusa R, Nevoral J. The role of amylin and related peptides in osteoporosis. Clin Chim Acta. 2006;373:9–16.PubMedCrossRefGoogle Scholar
  96. 96.
    Clowes JA, Khosla S, Eastell R. Potential role of pancreatic and enteric hormones in regulating bone turnover. J Bone Miner Res. 2005;20:1497–506.PubMedCrossRefGoogle Scholar
  97. 97.
    Davey RA, Moore AJ, Chiu MW, Notini AJ, Morris HA, Zajac JD. Effects of amylin deficiency on trabecular bone in young mice are sex-dependent. Calcif Tissue Int. 2006;78:398–403.PubMedCrossRefGoogle Scholar
  98. 98.
    Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992;257:88–91.PubMedCrossRefGoogle Scholar
  99. 99.
    Koh JM, Khang YH, Jung CH, Bae S, Kim DJ, Chung YE, Kim GS. Higher circulating hsCRP levels are associated with lower bone mineral density in healthy pre- and postmenopausal women: evidence for a link between systemic inflammation and osteoporosis. Osteoporos Int. 2005;16:1263–71.PubMedCrossRefGoogle Scholar
  100. 100.
    Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature. 1986;319:516–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Mundy GR. Osteoporosis and inflammation. Nutr Rev. 2007;65:S147–51.PubMedCrossRefGoogle Scholar
  102. 102.
    De BF, Rucci N, Del FA, Peruzzi B, Paro R, Longo M, Vivarelli M, Muratori F, Berni S, Ballanti P, Ferrari S, Teti A. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal ­system. Arthritis Rheum. 2006;54:3551–63.CrossRefGoogle Scholar
  103. 103.
    Bhupathiraju SN, Alekel DL, Stewart JW, Hanson LN, Shedd KM, Reddy MB, Hanson KB, Van Loan MD, Genschel U, Koehler KJ. Relationship of circulating total homocysteine and C-reactive protein to trabecular bone in postmenopausal women. J Clin Densitom. 2007;10:395–403.PubMedCrossRefGoogle Scholar
  104. 104.
    Rolland T, Boutroy S, Vilayphiou N, Blaizot S, Chapurlat R, Szulc P. Poor trabecular microarchitecture at the distal radius in older men with increased concentration of high-sensitivity C-reactive protein – the STRAMBO study. Calcif Tissue Int. 2012;90:496–506.PubMedCrossRefGoogle Scholar
  105. 105.
    Brick DJ, Gerweck AV, Meenaghan E, Lawson EA, Misra M, Fazeli P, Johnson W, Klibanski A, Miller KK. Determinants of IGF1 and GH across the weight spectrum: from anorexia nervosa to obesity. Eur J Endocrinol. 2010;163:185–91.PubMedCrossRefGoogle Scholar
  106. 106.
    Nam SY, Lee EJ, Kim KR, Cha BS, Song YD, Lim SK, Lee HC, Huh KB. Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone. Int J Obes Relat Metab Disord. 1997;21:355–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Frystyk J, Brick DJ, Gerweck AV, Utz AL, Miller KK. Bioactive insulin-like growth factor-I in obesity. J Clin Endocrinol Metab. 2009;94:3093–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Boonen S, Cheng XG, Nijs J, Nicholson PH, Verbeke G, Lesaffre E, Aerssens J, Dequeker J. Factors associated with cortical and trabecular bone loss as quantified by peripheral computed tomography (pQCT) at the ultradistal radius in aging women. Calcif Tissue Int. 1997;60:164–70.PubMedCrossRefGoogle Scholar
  109. 109.
    Giustina A, Mazziotti G, Canalis E. Growth ­hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008;29:535–59.PubMedCrossRefGoogle Scholar
  110. 110.
    Costa JL, Naot D, Lin JM, Watson M, Callon KE, Reid IR, Grey AB, Cornish J. Ghrelin is an ­osteoblast mitogen and increases osteoclastic bone resorption in vitro. Int J Pept. 2011;2011:605193.PubMedGoogle Scholar
  111. 111.
    Fukushima N, Hanada R, Teranishi H, Fukue Y, Tachibana T, Ishikawa H, Takeda S, Takeuchi Y, Fukumoto S, Kangawa K, Nagata K, Kojima M. Ghrelin directly regulates bone formation. J Bone Miner Res. 2005;20:790–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Maccarinelli G, Sibilia V, Torsello A, Raimondo F, Pitto M, Giustina A, Netti C, Cocchi D. Ghrelin regulates proliferation and differentiation of osteoblastic cells. J Endocrinol. 2005;184:249–56.PubMedCrossRefGoogle Scholar
  113. 113.
    Kim SW, Her SJ, Park SJ, Kim D, Park KS, Lee HK, Han BH, Kim MS, Shin CS, Kim SY. Ghrelin stimulates proliferation and differentiation and inhibits apoptosis in osteoblastic MC3T3-E1 cells. Bone. 2005;37:359–69.PubMedCrossRefGoogle Scholar
  114. 114.
    Woo DG, Lee BY, Lim D, Kim HS. Relationship between nutrition factors and osteopenia: effects of experimental diets on immature bone quality. J Biomech. 2009;42:1102–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Patsch JM, Kiefer FW, Varga P, Pail P, Rauner M, Stupphann D, Resch H, Moser D, Zysset PK, Stulnig TM, Pietschmann P. Increased bone resorption and impaired bone microarchitecture in short-term and extended high-fat diet-induced obesity. Metabolism. 2011;60:243–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Cao JJ, Sun L, Gao H. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann N Y Acad Sci. 2010;1192:292–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Ionova-Martin SS, Wade JM, Tang S, Shahnazari M, Ager III JW, Lane NE, Yao W, Alliston T, Vaisse C, Ritchie RO. Changes in cortical bone response to high-fat diet from adolescence to adulthood in mice. Osteoporos Int. 2011;22(8):2283–93.PubMedCrossRefGoogle Scholar
  118. 118.
    Lorincz C, Reimer RA, Boyd SK, Zernicke RF. High-fat, sucrose diet impairs geometrical and mechanical properties of cortical bone in mice. Br J Nutr. 2010;103:1302–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Zernicke RF, Salem GJ, Barnard RJ, Schramm E. Long-term, high-fat-sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties. Bone. 1995;16:25–31.PubMedGoogle Scholar
  120. 120.
    Hawkins J, Cifuentes M, Pleshko NL, Ambia-Sobhan H, Shapses SA. Energy restriction is associated with lower bone mineral density of the tibia and femur in lean but not obese female rats. J Nutr. 2010;140:31–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Gerbaix M, Metz L, Mac-Way F, Lavet C, Guillet C, Walrand S, Masgrau A, Linossier MT, Vico L, Daniel C. Impact of an obesogenic diet program on bone densitometry, micro architecture and metabolism in male rat. Lipids Health Dis. 2012;11:91.PubMedCrossRefGoogle Scholar
  122. 122.
    Douard V, Suzuki T, Sabbagh Y, Lee J, Shapses S, Lin S, Ferraris RP. Dietary fructose inhibits lactation-induced adaptations in rat 1,25-(OH)(2)D(3) synthesis and calcium transport. FASEB J. 2012;26:707–21.PubMedCrossRefGoogle Scholar
  123. 123.
    Tsanzi E, Light HR, Tou JC. The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength. Bone. 2008;42:960–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Fried A, Manske SL, Eller LK, Lorincz C, Reimer RA, Zernicke RF. Skim milk powder enhances trabecular bone architecture compared with casein or whey in diet-induced obese rats. Nutrition. 2012;28:331–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Salamone LM, Cauley JA, Black DM, Simkin-Silverman L, Lang W, Gregg E, Palermo L, Epstein RS, Kuller LH, Wing R. Effect of a lifestyle intervention on bone mineral density in premenopausal women: a randomized trial. Am J Clin Nutr. 1999;70:97–103.PubMedGoogle Scholar
  126. 126.
    Langlois JA, Mussolino ME, Visser M, Looker AC, Harris T, Madans J. Weight loss from maximum body weight among middle-aged and older white women and the risk of hip fracture: the NHANES I epidemiologic follow-up study. Osteoporos Int. 2001;12:763–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Ensrud KE, Fullman RL, Barrett-Connor E, Cauley JA, Stefanick ML, Fink HA, Lewis CE, Orwoll E. Voluntary weight reduction in older men increases hip bone loss: the osteoporotic fractures in men study. J Clin Endocrinol Metab. 2005;90:1998–2004.PubMedCrossRefGoogle Scholar
  128. 128.
    Sukumar D, Ambia-Sobhan H, Zurfluh R, Schlussel Y, Stahl TJ, Gordon CL, Shapses SA. Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: a randomized, controlled trial. J Bone Miner Res. 2011;26:1339–48.PubMedCrossRefGoogle Scholar
  129. 129.
    Riedt CS, Cifuentes M, Stahl T, Chowdhury HA, Schlussel Y, Shapses SA. Overweight postmenopausal women lose bone with moderate weight reduction and 1 g/day calcium intake. J Bone Miner Res. 2005;20:455–63.PubMedCrossRefGoogle Scholar
  130. 130.
    Villalon KL, Gozansky WS, Van Pelt RE, Wolfe P, Jankowski CM, Schwartz RS, Kohrt WM. A losing battle: weight regain does not restore weight loss-induced bone loss in postmenopausal women. Obesity (Silver Spring). 2011;19(12):2345–50.CrossRefGoogle Scholar
  131. 131.
    Bleicher K, Cumming RG, Naganathan V, Travison TG, Sambrook PN, Blyth FM, Handelsman DJ, Le Couteur DG, Waite LM, Creasey HM, Seibel MJ. The role of fat and lean mass in bone loss in older men: findings from the CHAMP study. Bone. 2011;49:1299–305.PubMedCrossRefGoogle Scholar
  132. 132.
    Nguyen TV, Sambrook PN, Eisman JA. Bone loss, physical activity, and weight change in elderly women: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res. 1998;13:1458–67.PubMedCrossRefGoogle Scholar
  133. 133.
    Shapses SA, Sukumar D. Bone metabolism in obesity and weight loss. Annu Rev Nutr. 2012;32:287–309.PubMedCrossRefGoogle Scholar
  134. 134.
    Langlois JA, Harris T, Looker AC, Madans J. Weight change between age 50 years and old age is associated with risk of hip fracture in white women aged 67 years and older. Arch Intern Med. 1996;156:989–94.PubMedCrossRefGoogle Scholar
  135. 135.
    Meyer HE, Tverdal A, Selmer R. Weight variability, weight change and the incidence of hip fracture: a prospective study of 39,000 middle-aged Norwegians. Osteoporos Int. 1998;8:373–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Mussolino ME, Looker AC, Madans JH, Langlois JA, Orwoll ES. Risk factors for hip fracture in white men: the NHANES I Epidemiologic Follow-up Study. J Bone Miner Res. 1998;13:918–24.PubMedCrossRefGoogle Scholar
  137. 137.
    Wilsgaard T, Jacobsen BK, Ahmed LA, Joakimsen RM, Stormer J, Jorgensen L. BMI change is associated with fracture incidence, but only in non-smokers. The Tromso Study. Osteoporos Int. 2011;22:1237–45.PubMedCrossRefGoogle Scholar
  138. 138.
    Omsland TK, Schei B, Gronskag AB, Langhammer A, Forsen L, Gjesdal CG, Meyer HE. Weight loss and distal forearm fractures in postmenopausal women: the Nord-Trondelag health study, Norway. Osteoporos Int. 2009;20:2009–16.PubMedCrossRefGoogle Scholar
  139. 139.
    Shapses SA, Von Thun NL, Heymsfield SB, Ricci TA, Ospina M, Pierson Jr RN, Stahl T. Bone turnover and density in obese premenopausal women during moderate weight loss and calcium supplementation. J Bone Miner Res. 2001;16:1329–36.PubMedCrossRefGoogle Scholar
  140. 140.
    Riedt CS, Schlussel Y, von Thun N, Ambia-Sobhan H, Stahl T, Field MP, Sherrell RM, Shapses SA. Premenopausal overweight women do not lose bone during moderate weight loss with adequate or higher calcium intake. Am J Clin Nutr. 2007;85:972–80.PubMedGoogle Scholar
  141. 141.
    Redman LM, Rood J, Anton SD, Champagne C, Smith SR, Ravussin E. Calorie restriction and bone health in young, overweight individuals. Arch Intern Med. 2008;168:1859–66.PubMedCrossRefGoogle Scholar
  142. 142.
    Uusi-Rasi K, Rauhio A, Kannus P, Pasanen M, Kukkonen-Harjula K, Fogelholm M, Sievanen H. Three-month weight reduction does not compromise bone strength in obese premenopausal women. Bone. 2010;46:1286–93.PubMedCrossRefGoogle Scholar
  143. 143.
    Hamrick MW, Ding KH, Ponnala S, Ferrari SL, Isales CM. Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J Bone Miner Res. 2008;23:870–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Talbott SM, Cifuentes M, Dunn MG, Shapses SA. Energy restriction reduces bone density and biomechanical properties in aged female rats. J Nutr. 2001;131:2382–7.PubMedGoogle Scholar
  145. 145.
    Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, Baron R, Rosen CJ, Bouxsein ML. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res. 2010;25:2078–88.PubMedCrossRefGoogle Scholar
  146. 146.
    Cifuentes M, Advis JP, Shapses SA. Estrogen prevents the reduction in fractional calcium absorption due to energy restriction in mature rats. J Nutr. 2004;134:1929–34.PubMedGoogle Scholar
  147. 147.
    Gozansky WS, Van Pelt RE, Jankowski CM, Schwartz RS, Kohrt WM. Protection of bone mass by estrogens and raloxifene during exercise-induced weight loss. J Clin Endocrinol Metab. 2005;90:52–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Turner RT, Iwaniec UT. Low dose parathyroid hormone maintains normal bone formation in adult male rats during rapid weight loss. Bone. 2011;48:726–32.PubMedCrossRefGoogle Scholar
  149. 149.
    Berrigan D, Lavigne JA, Perkins SN, Nagy TR, Barrett JC, Hursting SD. Phenotypic effects of calorie restriction and insulin-like growth factor-1 treatment on body composition and bone mineral density of C57BL/6 mice: implications for cancer prevention. In Vivo. 2005;19:667–74.PubMedGoogle Scholar
  150. 150.
    Pollock NK, Laing EM, Hamrick MW, Baile CA, Hall DB, Lewis RD. Bone and fat relationships in postadolescent black females: a pQCT study. Osteoporos Int. 2011;22:655–65.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Nutritional SciencesRutgers UniversityNew BrunswickUSA

Personalised recommendations