Advertisement

Galacto-oligosaccharides: Prebiotic Effects on Calcium Absorption and Bone Health

  • Corrie M. WhisnerEmail author
  • Connie M. Weaver
Chapter
  • 1.5k Downloads

Abstract

Adolescence presents an opportune time to influence peak bone mass with prebiotic agents like galacto-oligosaccharides (GOS) that increase calcium absorption in the large intestine. Previous literature has helped elucidate the mechanisms by which prebiotics elicit their response which involves decreased luminal pH following bacterial fermentation. In addition to improved mineral absorption, dietary supplementation with GOS in rats has been associated with improved bone mineral content (BMC) during growth, reduced losses of BMC and bone mineral density (BMD) after ovariectomy, and increased cecal content weight. Similar bone-sparing results have been seen in postmenopausal women, while preliminary results in adolescents show that GOS increases fractional calcium absorption. This effect may be mediated by bacterial fermentation in the colon as bifidobacteria content of the feces was increased after GOS consumption. Further work is needed to fully elucidate the intestinal mechanism and understand the long-term effects of GOS consumption.

Keywords

Galacto-oligosaccharides Prebiotic Calcium absorption Bone health Microbiota Intestinal flora Bifidobacteria 

References

  1. 1.
    Henry YM, Fatayerji D, Eastell R. Attainment of peak bone mass at the lumbar spine, femoral neck and radius in men and women: relative contributions of bone size and volumetric bone mineral density. Osteoporos Int. 2004;15:263–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Teegarden D, Lyle RM, Proulx WR, Johnston CC, Weaver CM. Previous milk consumption is associated with greater bone density in young women. Am J Clin Nutr. 1999;69:1014–7.PubMedGoogle Scholar
  3. 3.
    Chevalley T, Rizzoli R, Hans D, Ferrari S, Bonjour J-P. Interaction between calcium intake and menarcheal age on bone mass gain: an eight-year follow-up study from prepuberty to postmenarche. J Clin Endocrinol Metab. 2005;90:44–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Kalkwarf HJ, Khoury JC, Lanphear BP. Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am J Clin Nutr. 2003;77:257–65.PubMedGoogle Scholar
  5. 5.
    Bronner F. Calcium and osteoporosis. Am J Clin Nutr. 1994;60:831–6.PubMedGoogle Scholar
  6. 6.
    Nieves JW. Osteoporosis: the role of micronutrients. Am J Clin Nutr. 2005;81:1232S–9.PubMedGoogle Scholar
  7. 7.
    U.S. Department of Agriculture, Agricultural Research Service. Fluid milk consumption in the United States: what we eat in America, NHANES 2005–2006. Food Surveys Research Group Dietary Data Brief. 2010. http://ars.usda.gov/Services/docs.htm?docid=19476. Accessed 7th Aug 2012.
  8. 8.
    Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A. Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods. 2010;7:1–19.CrossRefGoogle Scholar
  9. 9.
    Brommage R, Binacua C, Antille S, Carrie AL. Intestinal calcium absorption in rats is stimulated by dietary lactulose and other resistant sugars. J Nutr. 1993;123:2186–94.PubMedGoogle Scholar
  10. 10.
    Ohta A, Ohtsuki M, Takizawa T, Inaba H, Adachi T, Kimura S. Effects of fructooligosaccharides on the absorption of magnesium and calcium by cecectomized rats. Int J Vitam Nutr Res. 1994;64:316–23.PubMedGoogle Scholar
  11. 11.
    Takahara S, Morohashi T, Sano T, Ohta A, Yamada S, Sasa R. Fructooligosaccharide consumption enhances femoral bone volume and mineral concentrations in rats. J Nutr. 2000;130:1792–5.PubMedGoogle Scholar
  12. 12.
    Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, et al. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr. 2005;82:471–6.PubMedGoogle Scholar
  13. 13.
    Griffin IJ, Davila PM, Abrams SA. Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr. 2002;87:S187–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Griffin IJ, Hicks PMD, Heaney RP, Abrams SA. Enriched chicory inulin increases Ca absorption mainly in girls with lower Ca absorption. Nutr Res. 2003;23:901–9.CrossRefGoogle Scholar
  15. 15.
    Zafar T, Weaver CM, Zhao Y, Martin BR, Wastney ME. Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J Nutr. 2004;134:399–402.PubMedGoogle Scholar
  16. 16.
    Zafar T, Weaver CM, Jones K, Moore DR, Barnes S. Inulin effects on bioavailability of soy isoflavones and their calcium absorption enhancing ability. J Agric Food Chem. 2004;52:2827–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Demigné C, Jacobs H, Moundras C, Davicco MJ, Horcajada MN, Bernalier A, et al. Comparison of native or reformulated chicory fructans, or non-purified chicory, on rat cecal fermentation and mineral metabolism. Eur J Nutr. 2008;47:366–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Lobo AR, Colli C, Filisetti TMCC. Fructooli­gosaccharides improve bone mass and biomechanical properties in rats. Nutr Res. 2006;26:413–20.CrossRefGoogle Scholar
  19. 19.
    Macfarlane S, Macfarlane GT, Cummings JH. Review article: prebiotics in the pastrointestinal tract. Aliment Pharmacol Ther. 2006;24:701–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Bode L. Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr. 2006;136:2127–30.PubMedGoogle Scholar
  21. 21.
    German JB, Freeman SL, Lebrilla CB, Mills DA. Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. Nestle Nutr Workshop Ser Pediatr Program. 2008;62:205–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Fanaro S, Boehm G, Garssen J, Knol J, Mosca F, Stahl B, et al. Galacto-oligosaccharides and long-chain fructo-oligosaccharides as prebiotics in infant formulas: a review. Acta Paediatr Suppl. 2005;94:22–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Pérez-Conesa D, López G, Abellán P, Ros G. Bioavailability of calcium, magnesium and phosphorus in rats fed probiotic, prebiotic and symbiotic powder follow-up infant formulas and their effect on physiological and nutritional parameters. J Sci Food Agric. 2006;86:2327–36.CrossRefGoogle Scholar
  24. 24.
    Pérez-Conesa D, López G, Ros G. Effects of probiotics, prebiotic and synbiotic follow-up infant formulas on large intestine morphology and bone mineralization in rats. J Sci Food Agric. 2007;87:1059–68.CrossRefGoogle Scholar
  25. 25.
    Chonan O, Watanuki M. The effect of 6′-galactooligosaccharides on bone mineralization of rats adapted to different levels of dietary calcium. Int J Vitam Nutr Res. 1996;66:244–9.PubMedGoogle Scholar
  26. 26.
    Chonan O, Takahashi R, Watanuki M. Role of activity of gastrointestinal microflora in absorption of calcium and magnesium in rats fed β1-4 linked galactooligosaccharides. Biosci Biotechnol Biochem. 2001;65:1872–5.PubMedCrossRefGoogle Scholar
  27. 27.
    van den Heuvel EG, Schoterman MH, Muijs T. Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr. 2000;130:2938–42.PubMedGoogle Scholar
  28. 28.
    Ellegard L, Andersson H, Bosaeus I. Inulin and oligofructose do not influence the absorption of cholesterol, or the excretion of cholesterol, Ca, Mg, Zn, Fe, or bile acids but increases energy excretion in ileostomy subjects. Eur J Clin Nutr. 1997;51:1–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Backhed F, Hey RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Tzortzis G, Goulas AK, Gee JM, Gibson GR. A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. J Nutr. 2005;135:1726–31.PubMedGoogle Scholar
  31. 31.
    Rodriguez-Cabezas ME, Camuesco D, Arribas B, Garrido-Mesa N, Comalada M, Bailón E, et al. The combination of fructooligosaccharides and resistant starch shows prebiotic additive effects in rats. Clin Nutr. 2010;29:832–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Ben X, Li J, Feng Z, Shi S, Lu Y, Chen R, et al. Low level of galacto-oligosaccharide in infant formula stimulates growth of intestinal Bifidobacteria and Lactobacilli. World J Gastroenterol. 2008;14:6564–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Bouhnik Y, Flourié B, D’Agay-Abensour L, Pochart P, Gramet G, Durand M, et al. Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J Nutr. 1997;127:444–8.PubMedGoogle Scholar
  34. 34.
    Walton GE, van den Heuvel EG, Kosters MH, Rastall RA, Tuohy KM, Gibson GR. A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. Br J Nutr. 2012;107(10):1466–75.PubMedCrossRefGoogle Scholar
  35. 35.
    Maathuis AJH, van den Huevel EG, Schoterman MHC, Venema K. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a 13C-labeling technique. J Nutr. 2012;142(7):1205–12.PubMedCrossRefGoogle Scholar
  36. 36.
    Raschka L, Daniel H. Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone. 2005;37:728–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Durand M, Cordelet C, Hannequart G, Beaumatin P, Grivet JP. In vitro fermentation of a galacto-oligosaccharide by human bacteria in continuous culture. Proc Nutr Soc. 1992;51:6A.Google Scholar
  38. 38.
    Rémésy C, Levrat MA, Gamet L, Demigné C. Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. Am J Physiol. 1993;264:G855–62.PubMedGoogle Scholar
  39. 39.
    Levrat MA, Remesy C, Demigné C. High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr. 1991;121:1730–7.PubMedGoogle Scholar
  40. 40.
    Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A, McCabe LD, et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J Agric Food Chem. 2011;59:6501–10.PubMedCrossRefGoogle Scholar
  41. 41.
    Abrams SA, Hawthorn KM, Aliu O, Hicks PD, Chen Z, Griffin IJ. An inulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans. J Nutr. 2007;137:2208–12.PubMedGoogle Scholar
  42. 42.
    Chonan O, Matsumoto K, Watanuki M. Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem. 1995;59:236–9.PubMedCrossRefGoogle Scholar
  43. 43.
    dos Santos EF, Tsuboi KH, Araújo MR, Andreollo NA, Miyasaka CK. Dietary galactooligosaccharides increase calcium absorption in normal and gastrectomized rats. Rev Col Bras Cir. 2011;38(3):186–91.PubMedCrossRefGoogle Scholar
  44. 44.
    Demigné C, Levrat MA, Rémésy C. Effects of feeding fermentable carbohydrates on the cecal concentrations of minerals and their fluxes between the cecum and blood plasma in the rat. J Nutr. 1989;119:1625–30.PubMedGoogle Scholar
  45. 45.
    Chonan O, Watanuki M. Effect of galactooligosaccharides on calcium absorption in rats. J Nutr Sci Vitaminol. 1995;41:95–104.PubMedCrossRefGoogle Scholar
  46. 46.
    Ohta A, Baba S, Ohtsuki M, Taguchi A, Adachi T. In vivo absorption of calcium carbonate and magnesium oxide from the large intestine in rats. J Nutr Sci Vitaminol. 1997;43:35–46.PubMedCrossRefGoogle Scholar
  47. 47.
    van den Heuvel EGHM, Schaafsma G, Muys T, van Dokkum W. Nondigestible oligosaccharides do not interfere with calcium and nonheme-iron absorption in young, healthy men. Am J Clin Nutr. 1998;67:445–51.PubMedGoogle Scholar
  48. 48.
    Martin BR, Braun MM, Wigertz K, Bryant R, Zhao Y, Lee W, Kempa-Steczko A, Weaver CM. Fructo-oligosaccharides and calcium absorption and retention in adolescent girls. J Am Coll Nutr. 2010;29:382–6.PubMedGoogle Scholar
  49. 49.
    Devareddy L, Khalil DA, Korlagunta K, Hooshmand S, Bellmer DD, Arjmandi BH. The effects of fructo-oligosaccharides in combination with soy protein on bone in osteopenic ovariectomized rats. Menopause. 2006;13:692–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Abrams SA, Griffin IJ, Hawthorn KM. Young adolescents who respond to an inulin-type fructan substantially increase total absorbed calcium and daily calcium accretion to the skeleton. J Nutr. 2007;137:2524S–6.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Nutrition SciencePurdue UniversityWest LafayetteUSA

Personalised recommendations