Vitamin D Supplementation and Changes in Vitamin D and Bone Metabolites in Children

  • Richard D. LewisEmail author
  • Emma M. Laing


Because a significant number of children and adolescents worldwide are considered vitamin D insufficient or deficient, skeletal health may be compromised leading to long-term fracture risks. For this reason, a heightened research priority has been placed on the role of vitamin D in bone metabolism during growth. Vitamin D supplementation increases 25-­hydroxyvitamin D (25[OH]D) in children and the response appears to be dose-dependent, though dose–response trials are needed to confirm this. Increases in serum 1,25 dihydroxyvitamin D (1,25[OH]2D) and decreases in intact parathyroid hormone (iPTH) occur with vitamin D supplementation, and these responses are more pronounced with higher doses of vitamin D and in populations considered vitamin D insufficient and deficient (<50 nmol/L). In vitamin D-sufficient groups (>50 nmol/L), iPTH suppression is minimal. The effect of vitamin D supplementation on biochemical markers of bone turnover likely depends on basal 25(OH)D concentrations and doses of vitamin D administered, with lower baseline 25(OH)D and higher vitamin D doses promoting more favorable responses, respectively. Because there is a dearth of knowledge with respect to race differences in vitamin D and bone metabolism, dose–response trials among multiple race and ethnic groups are needed.


Vitamin D Supplementation 25(OH)D 1,25(OH)2iPTH Bone turnover Children 



25-hydroxyvitamin D


1,25dihydroxyvitamin D


Intact parathyroid ­hormone


  1. 1.
    Looker AC, Johnson CL, Lacher DA, Pfeiffer CM, Schleicher RL, Sempos CT. Vitamin D status: United States, 2001–2006. NCHS Data Brief. 2011;59:1–8.PubMedGoogle Scholar
  2. 2.
    Whiting SJ, Langlois KA, Vatanparast H, Greene-Finestone LS. The vitamin D status of Canadians relative to the 2011 Dietary Reference Intakes: an examination in children and adults with and without supplement use. Am J Clin Nutr. 2011;94(1):128–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Gonzalez-Gross M, Valtuena J, Breidenassel C, et al. Vitamin D status among adolescents in Europe: the Healthy Lifestyle in Europe by Nutrition in Adolescence study. Br J Nutr. 2012;107(5):755–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Williams DM, Fraser A, Sayers A, et al. Associations of 25-hydroxyvitamin D2 and D3 with cardiovascular risk factors in childhood: cross-sectional findings from the Avon Longitudinal Study of Parents and Children. J Clin Endocrinol Metab. 2012;97(5):1563–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Pollock NK, Bernard PJ, Gutin B, Davis CL, Zhu H, Dong Y. Adolescent obesity, bone mass, and cardiometabolic risk factors. J Pediatr. 2011;158(5):727–34.PubMedCrossRefGoogle Scholar
  6. 6.
    El-Hajj Fuleihan G, Nabulsi M, Tamim H, et al. Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial. J Clin Endocrinol Metab. 2006;91(2):405–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Viljakainen HT, Natri AM, Karkkainen M, et al. A positive dose–response effect of vitamin D supplementation on site-specific bone mineral augmentation in adolescent girls: a double-blinded randomized placebo-controlled 1-year intervention. J Bone Miner Res. 2006;21(6):836–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng S, Lyytikainen A, Kroger H, et al. Effects of calcium, dairy product, and vitamin D supplementation on bone mass accrual and body composition in 10-12-y-old girls: a 2-y randomized trial. Am J Clin Nutr. 2005;82(5):1115–26; quiz 1147–1118.PubMedGoogle Scholar
  9. 9.
    Andersen R, Molgaard C, Skovgaard LT, et al. Effect of vitamin D supplementation on bone and vitamin D status among Pakistani immigrants in Denmark: a randomised double-blinded placebo-controlled intervention study. Br J Nutr. 2008;100(1):197–207.PubMedCrossRefGoogle Scholar
  10. 10.
    Dahifar H, Faraji A, Ghorbani A, Yassobi S. Impact of dietary and lifestyle on vitamin D in healthy student girls aged 11–15 years. J Med Invest. 2006;53(3–4):204–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Docio S, Riancho JA, Perez A, Olmos JM, Amado JA, Gonzalez-Macias J. Seasonal deficiency of vitamin D in children: a potential target for osteoporosis-preventing strategies? J Bone Miner Res. 1998;13(4):544–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Dong Y, Stallmann-Jorgensen IS, Pollock NK, et al. A 16-week randomized clinical trial of 2000 international units daily vitamin D3 supplementation in black youth: 25-hydroxyvitamin D, adiposity, and arterial stiffness. J Clin Endocrinol Metab. 2010;95(10):4584–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Ghazi AA, Hosseinpanah F, MA E, Ghazi S, Hedayati M, Azizi F. Effects of different doses of oral cholecalciferol on serum 25(OH)D, PTH, calcium and bone markers during fall and winter in schoolchildren. Eur J Clin Nutr. 2010;64(12):1415–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Guillemant J, Le HT, Maria A, Allemandou A, Peres G, Guillemant S. Wintertime vitamin D deficiency in male adolescents: effect on parathyroid function and response to vitamin D3 supplements. Osteoporos Int. 2001;12(10):875–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Hill KM, Laing EM, Hausman DB, et al. Bone. 2012;51(4):795–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Lehtonen-Veromaa M, Mottonen T, Irjala K, et al. Vitamin D intake is low and hypovitaminosis D common in healthy 9- to 15-year-old Finnish girls. Eur J Clin Nutr. 1999;53(9):746–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Maalouf J, Nabulsi M, Vieth R, et al. Short-term and long-term safety of weekly high-dose vitamin D3 supplementation in school children. J Clin Endocrinol Metab. 2008;93:2693–701.PubMedCrossRefGoogle Scholar
  18. 18.
    Park CY, Hill KM, Elble AE, et al. Daily supplementation with 25 mug cholecalciferol does not increase calcium absorption or skeletal retention in adolescent girls with low serum 25-hydroxyvitamin D. J Nutr. 2010;140(12):2139–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Rajakumar K, Fernstrom JD, Janosky JE, Greenspan SL. Vitamin D insufficiency in preadolescent African-American children. Clin Pediatr (Phila). 2005;44(8):683–92.CrossRefGoogle Scholar
  20. 20.
    Rajakumar K, Fernstrom JD, Holick MF, Janosky JE, Greenspan SL. Vitamin D status and response to Vitamin D(3) in obese vs. non-obese African American children. Obesity (Silver Spring). 2008;16(1):90–5.CrossRefGoogle Scholar
  21. 21.
    Schou AJ, Heuck C, Wolthers OD. Vitamin D supplementation to healthy children does not affect serum osteocalcin or markers of type I collagen turnover. Acta Paediatr. 2003;92(7):797–801.PubMedCrossRefGoogle Scholar
  22. 22.
    Shakiba M, Ghadir M, Nafei Z, Akhavan Karbasi S, Lotfi MH, Shajari A. Study to evaluate two dosage regimens of vitamin D through an academic year in middle school girls: a randomized trial. Acta Med Iran. 2011;49(12):780–3.PubMedGoogle Scholar
  23. 23.
    Tau C, Ciriani V, Scaiola E, Acuna M. Twice single doses of 100,000 IU of vitamin D in winter is adequate and safe for prevention of vitamin D deficiency in healthy children from Ushuaia, Tierra Del Fuego, Argentina. J Steroid Biochem Mol Biol. 2007;103(3–5):651–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Ward KA, Das G, Roberts SA, et al. A randomized, controlled trial of vitamin D supplementation upon musculoskeletal health in postmenarchal females. J Clin Endocrinol Metab. 2010;95(10):4643–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2011.Google Scholar
  26. 26.
    Weaver CM, Laing EM, Lewis RD. Adolescence and acquisition of peak bone mass. In: Feldman D, Pike JW, Adams JS (Eds.) Vitamin D, Third Edition, San Diego, CA: Elsevier, Inc. 2011; pp 657–77.Google Scholar
  27. 27.
    Harris SS. Vitamin D and African Americans. J Nutr. 2006;136(4):1126–9.PubMedGoogle Scholar
  28. 28.
    Dawson-Hughes B, Heaney RP, Holick MF, Lips P, Meunier PJ, Vieth R. Estimates of optimal vitamin D status. Osteoporos Int. 2005;16(7):713–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Chapuy MC, Arlot ME, Duboeuf F, et al. Vitamin D3 and calcium to prevent hip fractures in elderly women. N Engl J Med. 1992;327:1637–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Thomas MK, Lloyd-Jones DM, Thadhani RI, et al. Hypovitaminosis D in medical inpatients. N Engl J Med. 1998;338(12):777–83.PubMedCrossRefGoogle Scholar
  31. 31.
    Cheng S, Tylavsky F, Kroger H, et al. Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr. 2003;78(3):485–92.PubMedGoogle Scholar
  32. 32.
    Tylavsky FA, Ryder KM, Li R, et al. Preliminary findings: 25(OH)D levels and PTH are indicators of rapid bone accrual in pubertal children. J Am Coll Nutr. 2007;26(5):462–70.PubMedGoogle Scholar
  33. 33.
    Abrams SA, Griffin IJ, Hawthorne KM, Gunn SK, Gundberg CM, Carpenter TO. Relationships among vitamin D levels, parathyroid hormone, and calcium absorption in young adolescents. J Clin Endocrinol Metab. 2005;90(10):5576–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Gordon CM, DePeter KC, Feldman HA, Grace E, Emans SJ. Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med. 2004;158(6):531–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Viljakainen HT, Palssa A, Karkkainen M, et al. A seasonal variation of calcitropic hormones, bone turnover and bone mineral density in early and mid-puberty girls – a cross-sectional study. Br J Nutr. 2006;96(1):124–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Outila TA, Karkkainen MU, Lamberg-Allardt CJ. Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: associations with forearm bone mineral density. Am J Clin Nutr. 2001;74(2):206–10.PubMedGoogle Scholar
  37. 37.
    Weng FL, Shults J, Leonard MB, Stallings VA, Zemel BS. Risk factors for low serum 25-hydroxyvitamin D concentrations in otherwise healthy children and ­adolescents. Am J Clin Nutr. 2007;86(1):150–8.PubMedGoogle Scholar
  38. 38.
    Harkness L, Cromer B. Low levels of 25-hydroxy vitamin D are associated with elevated parathyroid hormone in healthy adolescent females. Osteoporos Int. 2005;16(1):109–13.PubMedCrossRefGoogle Scholar
  39. 39.
    Guillemant J, Taupin P, Le HT, et al. Vitamin D status during puberty in French healthy male adolescents. Osteoporos Int. 1999;10(3):222–5.PubMedCrossRefGoogle Scholar
  40. 40.
    US Department of Health and Human Services. Effectiveness and safety of vitamin D in relation to bone health. 2007. Last accessed 7 Aug 2012.
  41. 41.
    Jones G, Dwyer T, Hynes KL, Parameswaran V, Greenaway TM. Vitamin D insufficiency in adolescent males in Southern Tasmania: prevalence, determinants, and relationship to bone turnover markers. Osteoporos Int. 2005;16(6):636–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Fares JE, Choucair M, Nabulsi M, Salamoun M, Shahine CH, Fuleihan Gel H. Effect of gender, puberty, and vitamin D status on biochemical markers of bone remodeling. Bone. 2003;33(2):242–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Foo LH, Zhang Q, Zhu K, et al. Low vitamin D status has an adverse influence on bone mass, bone turnover, and muscle strength in Chinese adolescent girls. J Nutr. 2009;139(5):1002–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Lehtonen-Veromaa MK, Mottonen TT, Nuotio IO, Irjala KM, Leino AE, Viikari JS. Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin Nutr. 2002;76(6):1446–53.PubMedGoogle Scholar
  45. 45.
    Ferron M, Wei J, Yoshizawa T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142(2):296–308.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Foods and NutritionThe University of GeorgiaAthensUSA

Personalised recommendations