Citrus Flavanones and Bone Health

  • Marie-Noëlle HorcajadaEmail author
  • Elizabeth Offord


Flavanones are a class of flavonoids found mainly in citrus fruits, the most common ones being hesperidin and naringin. These compounds exist as glycoside conjugates in the fruits at relatively abundant concentrations. Despite the extensive metabolism, the flavanones circulate in blood in the low μM range, which we therefore consider as the “physiological” concentration as opposed to more pharmacological concentrations (50–100 μM) often used in cell culture studies.

Among the various biological effects attributed to the flavanones, the more consistent ones are anti-inflammatory and lipid-lowering properties. In particular, the anti-inflammatory effects of the flavanones have been shown to be mediated through the inhibition of the NF-κB pathway.

Concerning the effects of flavanones on bone metabolism, the in vivo evidence in preclinical studies mimicking postmenopausal or senile bone loss shows an effect of hesperidin on preservation of bone mineral density (BMD) associated with reduced collagen breakdown. In the first placebo-controlled, randomized, double-blind clinical trial to be performed on the ability of hesperidin (500 mg daily for 2 years) to attenuate bone loss in postmenopausal women, we found that hesperidin did not significantly alter the 1–2 % BMD loss/year generally observed in this population. However, the subjects consuming hesperidin presented a better balance in bone metabolism as reflected by the bone turnover index.

Any nutritional approach to bone health should include the main bone micronutrients (calcium, vitamin D) already shown to improve BMD in osteopenic situations. However, further bioactive nutrients in the diet, such as the flavanones, may play a further role in modulating bone turnover and help protect against bone loss in at-risk populations. The question remains as to how best to measure such effects and show their relevance to bone quality, whether it is via bone biomarkers, bone architecture, or bone ­mineral density in combination or not with calcium and vitamin D.


Flavanones Hesperidin Naringin Bioavailability Inflammation Osteoblasts Bone mineral density Bone turnover 


  1. 1.
    Neveu V, Perez-Jiménez J, Vos F, Crespy V, du Chaffaut L, Mennen L, et al. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database. 2010;2010:bap024. doi: 10.1093/database/bap024.PubMedCrossRefGoogle Scholar
  2. 2.
    Peterson JJ, Beecher GR, Bhagwat SA, Dwyer JT, Gebhardt SE, Haytowitz DB, et al. Flavanones in grapefruit, lemons, and limes: a compilation and review of the data from the analytical literature. J Food Composition Anal. 2006;19(Suppl):S74–80.CrossRefGoogle Scholar
  3. 3.
    Peterson JJ, Dwyer JT, Beecher GR, Bhagwat SA, Gebhardt SE, Haytowitz DB, et al. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the ­analytical literature. J Food Composition Anal. 2006;19(Suppl):S66–73.CrossRefGoogle Scholar
  4. 4.
    Nogata Y, Sakamoto K, Shiratsuchi H, Ishii T, Yano M, Ohta H. Flavonoid composition of fruit tissues of citrus species. Biosci Biotechnol Biochem. 2006;70(1):178–92.PubMedCrossRefGoogle Scholar
  5. 5.
    Setchell KDR, Lydeking-Olsen E. Dietary phytoestrogens and their effect on bone: evidence from in vitro and in vivo, human observational, and dietary intervention studies. Am J Clin Nutr. 2003;78(3):593S–609.PubMedGoogle Scholar
  6. 6.
    Habauzit V, Horcajada MN. Phenolic phytochemicals and bone. Phytochem Rev. 2008;7(2):313–44 [review].CrossRefGoogle Scholar
  7. 7.
    Zamora-Ros R, Andres-Lacueva C, Lamuela-Raventós RM, Berenguer T, Jakszyn P, Barricarte A, et al. Estimation of dietary sources and flavonoid intake in a Spanish adult population (EPIC-Spain). J Am Diet Assoc. 2010;110(3):390–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Urpi-Sarda M, Rothwell JA, Morand C, Manach C. Bioavailability of flavanones. Flavonoids and related compounds. In: Spencer J, Crozier A, editors. Bioavailability and function. Boca Raton: CRC Press; 2012. p. 1–65.Google Scholar
  9. 9.
    Brett GM, Hollands W, Needs PW, Teucher B, Dainty JR, Davis BD, et al. Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion. Br J Nutr. 2009;101(5):664–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Vallejo F, Larrosa M, Escudero E, Zafrilla MP, Cerdá B, Boza J, et al. Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. J Agric Food Chem. 2010;58(10):6516–24.PubMedCrossRefGoogle Scholar
  11. 11.
    Bredsdorff L, Nielsen ILF, Rasmussen SE, Cornett C, Barron D, Bouisset F, et al. Absorption, conjugation and excretion of the flavanones, naringenin and hesperetin from-rhamnosidase-treated orange juice in human subjects. Br J Nutr. 2010;103(11):1602–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Erlund I, Silaste ML, Alfthan G, Rantala M, Kesäniemi YA, Aro A. Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. Eur J Clin Nutr. 2002;56(9):891–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Gardana C, Guarnieri S, Riso P, Simonetti P, Porrini M. Flavanone plasma pharmacokinetics from blood orange juice in human subjects. Br J Nutr. 2007;98(1):165–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Manach C, Morand C, Gil-Izquierdo A, Bouteloup-Demange C, Rémésy C. Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two dose of orange juice. Eur J Clin Nutr. 2003;57(2):235–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Mullen W, Archeveque MA, Edwards CA, Matsumoto H, Crozier A. Bioavailability and metabolism of orange juice flavanones in humans: impact of a full-fat yogurt. J Agric Food Chem. 2008;56(23):11157–64.PubMedCrossRefGoogle Scholar
  16. 16.
    Nielsen ILF, Chee WSS, Poulsen L, Offord-Cavin E, Rasmussen SE, Frederiksen H, et al. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: a randomized, double-blind, crossover trial. J Nutr. 2006;136(2):404–8.PubMedGoogle Scholar
  17. 17.
    Chanet A, Milenkovic D, Manach C, Mazur A, Morand C. Citrus flavanones: what is their role in cardiovascular protection? J Agric Food Chem. 2012;60(36):8809–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1 Suppl):230S–42.PubMedGoogle Scholar
  19. 19.
    Jung UJ, Lee MK, Park YB, Kang MA, Choi MS. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol. 2006;38(7):1134–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee MK, Bok SH, Jeong TS, Moon SS, Lee SE, Park YB, et al. Supplementation of naringenin and its synthetic derivative alters antioxidant enzyme activities of erythrocyte and liver in high cholesterol-fed rats. Bioorg Med Chem. 2002;10(7):2239–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Sharma AK, Bharti S, Ojha S, Bhatia J, Kumar N, Ray R, et al. Up-regulation of PPARγ, heat shock protein-27 and-72 by naringin attenuates insulin resistance, β-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. Br J Nutr. 2011;106(11):1713–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Chanet A, Milenkovic D, Deval C, Potier M, Constans J, Mazur A, et al. Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. J Nutr Biochem. 2012;23(5):469–77.PubMedCrossRefGoogle Scholar
  23. 23.
    Choe SC, Kim HS, Jeong TS, Bok SH, Park YB. Naringin has an antiatherogenic effect with the inhibition of intercellular adhesion molecule-1 in hypercholesterolemic rabbits. J Cardiovasc Pharmacol. 2001;38(6):947–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee CH, Jeong TS, Choi YK, Hyun BH, Oh GT, Kim EH, et al. Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun. 2001;284(3):681–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Pu P, Gao DM, Mohamed S, Chen J, Zhang J, Zhou XY, et al. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet. Arch Biochem Biophys. 2012;518(1):61–70.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim JY, Jung KJ, Choi JS, Chung HY. Modulation of the age-related nuclear factor-kappaB (NF-kappaB) pathway by hesperetin. Aging Cell. 2006;5(5):401–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Habauzit V, Sacco SM, Gil-Izquierdo A, Trzeciakiewicz A, Morand C, Barron D, et al. Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone. 2011;49(5):1108–16.PubMedCrossRefGoogle Scholar
  28. 28.
    Comalada M, Ballester I, Bailón E, Sierra S, Xaus J, Gálvez J, et al. Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure-activity relationship. Biochem Pharmacol. 2006;72(8):1010–21.PubMedCrossRefGoogle Scholar
  29. 29.
    Xagorari A, Papapetropoulos A, Mauromatis A, Economou M, Fotsis T, Roussos C. Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. J Pharmacol Exp Ther. 2001;296(1):181–7.PubMedGoogle Scholar
  30. 30.
    Raso GM, Meli R, Di Carlo G, Pacilio M, Di Carlo R. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1. Life Sci. 2001;68(8):921–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007;2007:45673.PubMedCrossRefGoogle Scholar
  32. 32.
    Tsai SH, Lin-Shiau SY, Lin JK. Suppression of nitric oxide synthase and the down-regulation of the activation of NFκB in macrophages by resveratrol. Br J Pharmacol. 1999;126(3):673–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Choi JS, Choi YJ, Park SH, Kang JS, Kang YH. Flavones mitigate tumor necrosis factor-α-induced adhesion molecule upregulation in cultured human endothelial cells: role of nuclear factor-κB. J Nutr. 2004;134(5):1013–9.PubMedGoogle Scholar
  34. 34.
    Nizamutdinova IT, Jeong JJ, Xu GH, Lee SH, Kang SS, Kim YS, et al. Hesperidin, hesperidin methyl chalone and phellopterin from Poncirus trifoliata (Rutaceae) differentially regulate the expression of adhesion molecules in tumor necrosis factor-α-stimulated human umbilical vein endothelial cells. Int Immunopharmacol. 2008;8(5):670–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Lotito SB, Frei B. Dietary flavonoids attenuate tumor necrosis factor α-induced adhesion molecule expression in human aortic endothelial cells: ­structure-function relationships and activity after first pass metabolism. J Biol Chem. 2006;281(48):37102–10.PubMedCrossRefGoogle Scholar
  36. 36.
    Choi IY, Kim SJ, Jeong HJ, Park SH, Song YS, Lee JH, et al. Hesperidin inhibits expression of hypoxia inducible factor-1 alpha and inflammatory cytokine production from mast cells. Mol Cell Biochem. 2007;305(1–2):153–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Choi EM, Lee YS. Effects of hesperetin on the production of inflammatory mediators in IL-1β treated human synovial cells. Cell Immunol. 2010;264(1):1–3.PubMedCrossRefGoogle Scholar
  38. 38.
    Morand C, Dubray C, Milenkovic D, Lioger D, Martin JF, Scalbert A, et al. Hesperidin contributes to the vascular protective effects of orange juice: a randomized crossover study in healthy volunteers. Am J Clin Nutr. 2011;93(1):73–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Jung UJ, Kim HJ, Lee JS, Lee MK, Kim HO, Park EJ, et al. Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin Nutr. 2003;22(6):561–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Rizza S, Muniyappa R, Iantorno M, Kim JA, Chen H, Pullikotil P, et al. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrinol Metab. 2011;96(5):E782–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Milenkovic D, Deval C, Dubray C, Mazur A, Morand C. Hesperidin displays relevant role in the nutrigenomic effect of orange juice on blood leukocytes in human volunteers: a randomized controlled cross-over study. PLoS One. 2011;6(11):e26669.PubMedCrossRefGoogle Scholar
  42. 42.
    Dalgård C, Nielsen F, Morrow JD, Enghusen-Poulsen H, Jonung T, Hørder M, et al. Supplementation with orange and blackcurrant juice, but not vitamin E, improves inflammatory markers in patients with peripheral arterial disease. Br J Nutr. 2009;101(2):263–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Landberg R, Sun Q, Rimm EB, Cassidy A, Scalbert A, Mantzoros CS, et al. Selected dietary flavonoids are associated with markers of inflammation and endothelial dysfunction in U.S. women. J Nutr. 2011;141(4):618–25.PubMedCrossRefGoogle Scholar
  44. 44.
    Scalbert A, Manach C, Morand C, Remesy C, Jimenez L. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr. 2005;45(4):287–306.PubMedCrossRefGoogle Scholar
  45. 45.
    Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007;40(2):251–64.PubMedCrossRefGoogle Scholar
  46. 46.
    Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992;6(12):3051–64.PubMedGoogle Scholar
  47. 47.
    Wimalawansa SJ. Nitric oxide and bone. Ann N Y Acad Sci. 2010;1192:391–403.PubMedCrossRefGoogle Scholar
  48. 48.
    Nanes MS. Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology. Gene. 2003;321:1–15.PubMedCrossRefGoogle Scholar
  49. 49.
    Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med. 2000;51:245–70.PubMedCrossRefGoogle Scholar
  50. 50.
    New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, et al. Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr. 2000;71(1):142–51.PubMedGoogle Scholar
  51. 51.
    New SA, Millward DJ. Calcium, protein, and fruit and vegetables as dietary determinants of bone health. Am J Clin Nutr. 2003;77(5):1340–1.PubMedGoogle Scholar
  52. 52.
    Muhlbauer RC, Lozano A, Reinli A, Wetli H. Various selected vegetables, fruits, mushrooms and red wine residue inhibit bone resorption in rats. J Nutr. 2003;133(11):3592–7.PubMedGoogle Scholar
  53. 53.
    Chiba H, Uehara M, Wu J, Wang XX, Masuyama R, Suzuki K, et al. Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J Nutr. 2003;133(6):1892–7.PubMedGoogle Scholar
  54. 54.
    Horcajada M, Coxam V. Hesperidin, a citrus flavanone, improves bone acquisition and prevents skeletal impairment in rats. In: Burckardt P, Dawson-Hughes B, Heaney RP, editors. Nutritional aspects of osteoporosis. London: Elsevier; 2004. p. 103–20.Google Scholar
  55. 55.
    Horcajada MN, Habauzit V, Trzeciakiewicz A, Morand C, Gil-Izquierdo A, Mardon J, et al. Hesperidin inhibits ovariectomized-induced osteopenia and shows differential effects on bone mass and strength in young and adult intact rats. J Appl Physiol. 2008;104(3):648–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Habauzit V, Nielsen IL, Gil-Izquierdo A, Trzeciakiewicz A, Morand C, Chee W, et al. Increased bioavailability of hesperetin-7-glucoside compared with hesperidin results in more efficient prevention of bone loss in adult ovariectomised rats. Br J Nutr. 2009;27:1–9.Google Scholar
  57. 57.
    Deyhim F, Garica K, Lopez E, Gonzalez J, Ino S, Garcia M, et al. Citrus juice modulates bone strength in male senescent rat model of osteoporosis. Nutrition. 2006;22(5):559–63.PubMedCrossRefGoogle Scholar
  58. 58.
    Deyhim F, Villarreal A, Garcia K, Rios R, Garcia C, Gonzales C, et al. Orange pulp improves antioxidant status and suppresses lipid peroxidation in orchidectomized male rats. Nutrition. 2007;23(7–8):617–21.PubMedCrossRefGoogle Scholar
  59. 59.
    Morrow R, Deyhim F, Patil BS, Stoecker BJ. Feeding orange pulp improved bone quality in a rat model of male osteoporosis. J Med Food. 2009;12(2):298–303.PubMedCrossRefGoogle Scholar
  60. 60.
    Uehara M. Prevention of osteoporosis by foods and dietary supplements. Hesperidin and bone metabolism. Clin Calcium. 2006;16(10):1669–76.PubMedGoogle Scholar
  61. 61.
    Bok SH, Lee SH, Park YB, Bae KH, Son KH, Jeong TS, et al. Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids. J Nutr. 1999;129(6):1182–5.PubMedGoogle Scholar
  62. 62.
    Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286(5446):1946–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Sugiyama M, Kodama T, Konishi K, Abe K, Asami S, Oikawa S. Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells. Biochem Biophys Res Commun. 2000;271(3):688–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Trzeciakiewicz A, Habauzit V, Mercier S, Lebecque P, Davicco MJ, Coxam V, et al. Hesperetin stimulates differentiation of primary rat osteoblasts involving the BMP signalling pathway. J Nutr Biochem. 2010;21(5):424–31.PubMedCrossRefGoogle Scholar
  65. 65.
    Trzeciakiewicz A, Habauzit V, Mercier S, Barron D, Urpi-Sarda M, Manach C, et al. Molecular mechanism of hesperetin-7-O-glucuronide, the main circulating metabolite of hesperidin, involved in osteoblast differentiation. J Agric Food Chem. 2010;58(1):668–75.PubMedCrossRefGoogle Scholar
  66. 66.
    Wong RWK, Rabie ABM. Effect of naringin collagen graft on bone formation. Biomaterials. 2006;27(9):1824–31.PubMedCrossRefGoogle Scholar
  67. 67.
    Wong RWK, Rabie ABM. Effect of naringin on bone cells. J Orthop Res. 2006;24(11):2045–50.PubMedCrossRefGoogle Scholar
  68. 68.
    Reid IR. Relationships between fat and bone. Osteoporos Int. 2008;19:595–606.PubMedCrossRefGoogle Scholar
  69. 69.
    Wolf G. Energy regulation by the skeleton. Nutr Rev. 2008;66(4):229–33.PubMedCrossRefGoogle Scholar
  70. 70.
    Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev. 2009;8(1):18–30.PubMedCrossRefGoogle Scholar
  71. 71.
    Habauzit V, Offord E, Chee W, Jafrelo L, Ameye L, Williamson G, et al. Effect of two years dietary hesperidin supplementation on bone metabolism in postmenopausal women. Annual meeting of the American Society for Bone and Mineral Research. San Diego; 2011.Google Scholar
  72. 72.
    Weaver CM, Martin BR, Jackson GS, McCabe GP, Nolan JR, McCabe LD, et al. Antiresorptive effects of phytoestrogen supplements compared with estradiol or risedronate in postmenopausal women using 41Ca methodology. J Clin Endocrinol Metab. 2009;94(10):3798–805.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Nutrition and HealthNestle Research CenterLausanneSwitzerland

Personalised recommendations