Comparison of Natural Products for Effects on Bone Balance

Chapter

Abstract

Dietary compounds from natural products are the subject of investigation for their beneficial effects on bone. Natural products may be safer and better tolerated by consumers than current therapies for treatment of osteoporosis. Soy isoflavones have been the most studied but results are mixed. Whole soy food consumption in Asian women is associated with reduced fracture incidence in observational studies. However, purified isolated soy isoflavones in randomized controlled trials in postmenopausal Western women are not protective of bone loss. Polyphenolic compounds in plum and berries have both anabolic effects and the ability to suppress bone resorption. These effects occur through antioxidation and anti-inflammatory cell signaling pathways. Rapid screening approaches using urinary excretion of calcium tracers from labeled bone can be used to compare doses and types of natural products for their effect on bone calcium balance.

Keywords

Natural products Soy isoflavones Plum Berry Bone turnover 

References

  1. 1.
    National Osteoporosis Foundation. Fast facts. http://www.nof.org/node/40. Accessed 10 Feb 2011.
  2. 2.
    Cauley JA, Robbins J, Chen Z, Cummings SR, Jackson RD, LaCroiz AZ, LeBoff M, Lewis CE, McGowan J, Neuner J, Pettinger M, Stefanick ML, Wactawski-Wende J, Watts NB, Women’s Health Initiative Investigators. Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA. 2003;290:1729–38.PubMedCrossRefGoogle Scholar
  3. 3.
    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J, Writing Group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288:321–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen Y, Ho SC, Woo JLF. Greater fruit and vegetable consumption is associated with increased bone mass among postmenopausal Chinese women. Br J Nutr. 2006;96:745–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PWF, Kiel DP. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999;69:727–36.PubMedGoogle Scholar
  6. 6.
    Lee W-H, Wastney ME, Jackson GS, Martin BR, Weaver CM. Interpretation of 41Ca data using compartmental modeling in post-menopausal women. Anal Bioanal Chem. 2011;399:1613–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Muhlbauer RC, Lozano A, Reinli A, Wetli H. Various selected vegetables, fruits, mushrooms, and red wine residue inhibit bone resorption in rats. J Nutr. 2003;133:3592–7.PubMedGoogle Scholar
  8. 8.
    Cheong JMK, Gunarata N, McCabe GP, Jackson GS, Weaver CM. Bone seeking labels as markers for bone turnover: effect of dosing schedule on labeling various bone sites in rats. Calcif Tissue Int. 2009;85:444–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhao Y, Cheong JMK, Lee WH, Wastney M, Martin BR, Weaver CM. Tetracycline and calcium kinetics are comparable for estimating bone resorption in rats. J Nutr. 2010;140:1704–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Cheong JMK, Martin BR, Jackson GS, Elmore D, McCabe GP, Nolan JR, Barnes S, Peacock M, Weaver CM. Soy isoflavones do not affect bone resorption in postmenopausal women: a dose–response study using a novel approach with 41Ca. J Clin Endocrinol Metab. 2007;92:577–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Jackson G, Lee WH, Martin B, Weaver C. Correlations of urinary 41Ca with biomarkers and minerals in post-menopausal women. J Bone Miner Res. 2011;26:S473.Google Scholar
  12. 12.
    The North American Menopause Society. The role of soy isoflavones in menopausal health: report of the North American Menopause Society/Wulf H. Utian Translational Science Symposium in Chicago, IL (October 2010). Menopause. 2011;18:732–53.CrossRefGoogle Scholar
  13. 13.
    Zhang X, Shu X-O, Li H, Yang G, Li Q, Gao Y-T, Zheng W. Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch Intern Med. 2005;165:1890–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Koh W-P, Wu AH, Wang R, Ang L-W, Heng D, Yuan J-M, Yu MC. Gender-specific associations between soy and risk of hip fracture in the Singapore Chinese Health Study. Am J Epidemiol. 2009;170:901–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Greendale GA, FitzGerald G, Huang M-H, Sternfeld B, Gold E, Seeman T, Sherman S, Sowers M. Dietary soy isoflavones and bone mineral density: results from the study of women’s health across the nation. Am J Epidemiol. 2002;155:746–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Alekel DL, Van Loan MD, Koehler KJ, Hanson LN, Stewart JW, Hanson KB, Kurzer MS, Peterson CT. The Soy Isoflavones for Reducing Bone Loss (SIRBL) Study: a 3-y randomized controlled trial in postmenopausal women. Am J Clin Nutr. 2010;91:218–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Tai TY, Tsai KS, Tu ST, Wu JS, Chang CI, Chen CL, Shaw NS, Peng HY, Wang SY, Wu CH. The effect of soy isoflavone on bone mineral density in postmenopausal Taiwanese women with bone loss: a 2-year randomized double-blind placebo-controlled study. Osteoporos Int. 2012;23:1571–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Levis S, Strickman-Stein N, Ganjei-Azar P, Xu P, Doerge DR, Krischer J. Soy isoflavones in the prevention of menopausal bone loss and menopausal symptoms. Arch Intern Med. 2011;171:1363–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Wong WW, Lewis RD, Steinberg FM, Murray MJ, Cramer MA, Amato P, Young RL, Barnes S, Ellis KJ, Shypailo RJ, Fraley JK, Konzelmann KL, Fischer JG, Smith EO. Soy isoflavone supplementation and bone mineral density in menopausal women: a 2-y multicenter clinical trial. Am J Clin Nutr. 2009;90:1433–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, Hochberg MC, Vogt MT, Orwoll ES, Study of Osteoporotic Fractures Research Group. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90:2787–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Delmas P, Seeman E. Changes in bone mineral density explain little of the reduction in vertebral or nonvertebral fracture risk with anti-resorptive therapy. Bone. 2004;34:599–604.PubMedCrossRefGoogle Scholar
  22. 22.
    Garnero P, Delmas PD. Contribution of bone mineral density and bone turnover markers to the estimation of risk of osteoporotic fracture in postmenopausal women. J Musculoskelet Neuronal Interact. 2004;4:50–63.PubMedGoogle Scholar
  23. 23.
    Weaver CM, Martin BR, Jackson GS, McCabe GP, Nolan JR, McCabe LD, Barnes S, Reinwald S, Boris ME, Peacock M. Antiresorptive effects of phytoestrogens supplements compared with estradiol or risedronate in postmenopausal women using 41Ca methodology. J Clin Endocrinol Metab. 2009;94:3798–805.PubMedCrossRefGoogle Scholar
  24. 24.
    Devareddy L, Khalil DA, Smith BJ, Lucas EA, Soung DY, Marlow DD, Arjmandi BH. Soy moderately improves microstructural properties without affecting bone mass in an ovariectomized rat model of osteoporosis. Bone. 2006;38:686–93.PubMedCrossRefGoogle Scholar
  25. 25.
    Shedd-Wise KM, Alekel DL, Hofmann H, Hanson KB, Schiferl DJ, Hanson LN, Van Loan MD. The Soy Isoflavones for Reducing Bone Loss (SIRBL) Study: three year effects on pQCT bone mineral density and strength measures in postmenopausal women. J Clin Densitom. 2011;14:47–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Dai R, Ma Y, Sheng Z, Jin Y, Zhang Y, Fang L, Fan H, Liao E. Effects of genistein on vertebral trabecular bone microstructure, bone mineral density, microcracks, osteocyte density, and bone strength in ovariectomized rats. J Bone Miner Metab. 2008;26:342–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Diez-Perez A, Guerri R, Nogues X, Caceres E, Pena MJ, Mellibovsky L, Randall C, Bridges D, Weaver JC, Proctor A, Brimer D, Koester KJ, Ritchie RO, Hansma PK. Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res. 2010;25:1877–85.PubMedCrossRefGoogle Scholar
  28. 28.
    Muthyala RS, Ju YH, Sheng S, Williams LD, Doerge DR, Katzenellenbogen BS, Helferich WG, Katzenellenbogen JA. Equol, a natural estrogenic metabolite from soy isoflavones: convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg Med Chem. 2004;12:1559–67.PubMedCrossRefGoogle Scholar
  29. 29.
    Setchell KDR, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol – a clue to the effectiveness of soy and its isoflavones. J Nutr. 2002;132:3577–84.PubMedGoogle Scholar
  30. 30.
    Wu J, Oka J, Ezaki J, Ohtomo T, Ueno T, Uchimaya S, Toda T, Uehara M, Ishimi Y. Possible role of equol status in the effect of isoflavone on bone and fat mass in postmenopausal Japanese women: a double-blind, randomized, controlled trial. Menopause. 2007;14:866–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Wiersma J, Martin B, McCabe G, McCabe L, Jackson G, Peacock M, Barnes S, Simon J, Weaver C. Equol-producing status does not predict the antiresorptive effects of soy isoflavone supplements. J Bone Miner Res. 2009; 24:Abst SU0412.Google Scholar
  32. 32.
    Legette LL, Martin BR, Shahnazari M, Lee WH, Helferich WG, Qian J, Waters DJ, Arabshahi A, Barnes S, Welch J, Bostwick DG, Weaver CM. Supplemental dietary racemic equol has modest benefits to bone but has mild uterotropic activity in ovariectomized rats. J Nutr. 2009;139:1908–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Tousen Y, Ezaki J, Fujii Y, Ueno T, Nishimuta M, Ishimi Y. Natural S-equol decreases bone resorption in postmenopausal, non-equol-producing Japanese women: a pilot, randomized, placebo-controlled trial. Menopause. 2011;18:563–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Deyhim F, Stoecher BJ, Brusewitz GH, Devareddy L, Arjmandi B. Dried plum reverses bone loss in an osteopenic rat model of osteoporosis. Menopause. 2005;12:755–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Arjmandi BH, Lucas EA, Juma S, Soliman A, Stoecker BJ, Khalil DA, Smith BJ, Wang C. Prune prevents ovariectomy-induced bone loss in rats. JANA. 2001;4:50–6.Google Scholar
  36. 36.
    Franklin M, Bu SY, Lerner MK, Lancaster EA, Bellmer D, Marlow D, Lightfoot SA, Arjmandi BH, Brackett DJ, Lucas EA, Smith BJ. Dried plum prevents bone loss in a male osteoporosis model via IGF-1 and RANK pathway. Bone. 2006;39:1331–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Bu SY, Lucas EA, Franklin M, Marlow D, Brachett DJ, Boldrin EA, Devareddy L, Arjmandi BH, Smith BJ. Comparison of dried plum supplementation and intermittent PTH in restoring bone in osteopenic orchidectomized rats. Osteoporos Int. 2007;189:931–42.CrossRefGoogle Scholar
  38. 38.
    Holloran BP, Wronski TJ, VonHerzen DC, Chu V, Xia X, Pingel JE, Williams AA, Smith BJ. Dietary dried plum increases bone mass in adult and aged male mice. J Nutr. 2010;143:1781–7.CrossRefGoogle Scholar
  39. 39.
    Arjmandi BH, Khalil DA, Lucas EA, Georgies A, Stoeker BJ, Hardin C, Payton ME, Wild RA. Dried plums improve indices of bone formation in postmenopausal women. J Womens Health Gend Based Med. 2002;11:61–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Hooshmand S, Arjmandi BH. Viewpoint: dried plum, an emerging functional food that may effectively improve bone health. Ageing Res Rev. 2009;8:122–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Stacewicz-Saputzakis M, Bowen PE, Hussain EA, Damayanti-Wood BI, Farnsworth NR. Chemical composition and potential health effects of prunes: a functional food? Crit Rev Food Sci Nutr. 2001;41:25–286.Google Scholar
  42. 42.
    McBride J. Can foods forestall aging? Agri Res. 1999;47:14.Google Scholar
  43. 43.
    Mühlbauer RC, Lozano A, Reinli A. Onion and a mixture of vegetables, salads, and herbs affect bone resorption in the rat by a mechanisms independent of their base excess. J Bone Miner Res. 2002;17:1230–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Weltli HA, Brenneisen R, Tschudi I, Langos M, Bigler P, Sprang T, Schurch S, Mühlbauer RC. A Γ-glutamyl peptide isolated from onion (Allium cepa L.) by bioassay-guided fractionation inhibits resorption activity of osteoclasts. J Agric Food Chem. 2005;53:3408–14.CrossRefGoogle Scholar
  45. 45.
    Horcajada-Moltini MN, Crespy V, Coxam V, Davicco M-J, Remesy C, Barlet J-P. Rutin inhibits ovariectomy-induced osteopenia in rats. J Bone Miner Res. 2000;15:2251–8.CrossRefGoogle Scholar
  46. 46.
    Caltagirone S, Ranelletti FO, Rinelli A, Muggiano N, Colasante A, Musiani P, Aiello FB, Piantelli M. Interactions with type II estrogen-binding sites and antiproliferative activity of tamoxifen and quercetin in human non-small cell lung cancer. Am J Respir Cell Mol Biol. 1997;17:51–9.PubMedGoogle Scholar
  47. 47.
    Woo J-T, Nakogawa H, Notoya M, Yoneqawa T, Udagawa N, Lee I-S, Ohnishi M, Hagiwara H, Nagui K. Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol Pharm Bull. 2004;27:504–9.PubMedCrossRefGoogle Scholar
  48. 48.
    MacDonald HM, New SA, Fraser WD, Campbell MK, Reid DM. Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr. 2005;81:923–33.PubMedGoogle Scholar
  49. 49.
    Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris Jr RC. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med. 1994;330:1776–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Nielsen FH, Hunt CD, Mullen L, Hunt JR. Effect of dietary boron on minerals, estrogen, and testosterone metabolism in postmenopausal women. FASEB J. 1987;1:394–7.PubMedGoogle Scholar
  51. 51.
    Rafferty K, Davies MK, Heaney RP. Potassium intake and the calcium economy. J Am Coll Nutr. 2005;24:99–106.PubMedGoogle Scholar
  52. 52.
    Booth SL, Dallal G, Shea MK, Gunderberg C, Peterson JW, Dawson-Hughes B. Effect of vitamin K supplementation on bone loss in elderly men and women. J Clin Endocrinol Metab. 2008;93:1217–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Cheung AM, Tile L, Lee Y, Tomlinson G, Hawker G, Scher J, Hu H, Vieth R, Thompson L, Jamal S, Josse R. Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial. PLoS Med. 2008;14(10):e196.CrossRefGoogle Scholar
  54. 54.
    Arjamandi BH, Khalil DA, Lucas EA, Georgis A, Stoecker BJ, Hardin C, Payton ME, Wild RA. Dried plums improve indices of bone formation in postmenopausal women. J Womens Health Gend Based Med. 2006;11:61–8.CrossRefGoogle Scholar
  55. 55.
    Hooshmand S, Chai SC, Saadat RL, Payton ME, Brummel-Smith K, Arjmandi BH. Comparative effects of dried plum and dried apply on bone in postmenopausal women. Br J Nutr. 2011;106:923–30.PubMedCrossRefGoogle Scholar
  56. 56.
    Devareddy L, Hooshmand S, Collins JK, Lucas EA, Chai SC, Arjmandi BH. Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. J Nutr Biochem. 2008;19(10):694–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Chen JR, Lazarenko OP, Wu X, Kang J, Blackburn ML, Shankar K, Badyer TM, Ronis MJJ. Diet induced serum phenolic acids promote bone growth via p38 MAPK/β-catenin canonical Wnt signaling. J Bone Miner Res. 2010;25:2399–411.PubMedCrossRefGoogle Scholar
  58. 58.
    Prior RL, Martin A, Sofic E, McEwen J, O’Brien C, Lischner N, et al. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric Food Chem. 2002;46:2686–93.CrossRefGoogle Scholar
  59. 59.
    Lichtenthäler R, Marx F. Total oxidant scavenging capacities of common European fruit and vegetable juices. J Agric Food Chem. 2005;53:103–10.PubMedCrossRefGoogle Scholar
  60. 60.
    Sellappan S, Akoh CC, Krewer G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem. 2002;50:2432–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Manolagas S. From estrogen – centric to aging and oxidation stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31:266–300.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Nutrition SciencePurdue UniversityWest LafayetteUSA
  2. 2.Department of Nutrition SciencePurdue UniversityWest LafayetteUSA

Personalised recommendations