Advertisement

Data-Driven Visuo-Haptic Rendering of Deformable Bodies

  • Matthias Harders
  • Raphael Hoever
  • Serge Pfeifer
  • Thibaut Weise
Part of the Springer Series on Touch and Haptic Systems book series (SSTHS)

Abstract

Our current research focuses on the investigation of new algorithmic paradigms for the data-driven generation of sensory feedback. The key notion is the collection of all relevant data characterizing an object as well as the interaction during a recording stage via multimodal sensing suites. The recorded data are then processed in order to convert the raw signals into abstract descriptors. This abstraction then also enables us to provide feedback for interaction which has not been observed before. We have developed a first integrated prototype implementation of the envisioned data-driven visuo-haptic acquisition and rendering system. It allows users to acquire the geometry and appearance of an object. In this chapter we outline the individual components and provide details on necessary extensions to also accommodate interaction scenarios involving deformable objects.

Keywords

Radial Basis Function Contact Point Optical Flow Iterative Close Point Haptic Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partly supported by the ImmerSence project within the 6th Framework Programme of the European Union, FET—Presence Initiative, contract number IST-2006-027141, see also www.immersence.info.

References

  1. 1.
    Hoever, R., Harders, M., Szekely, G.: Data-driven haptic rendering of visco-elastic effects. In: IEEE Haptic Symposium, pp. 201–208 (2008) Google Scholar
  2. 2.
    Hoever, R., Kosa, G., Szekely, G., Harders, M.: Data-driven haptic rendering-from viscous fluids to visco-elastic solids. IEEE Trans. Haptics 2, 15–27 (2009) CrossRefGoogle Scholar
  3. 3.
    Hoever, R., Di Luca, M., Szekely, G., Harders, M.: Computationally efficient techniques for data-driven haptic rendering. In: World Haptics, pp. 39–44 (2009) Google Scholar
  4. 4.
    Weise, T., Leibe, B., Van Gool, L.: Fast 3D scanning with automatic motion compensation. In: CVPR07, pp. 1–8 (2007) Google Scholar
  5. 5.
    Weise, T., Wismer, T., Leibe, B., Van Gool, L.: In-hand scanning with online loop closure. In: IEEE International Workshop on 3-D Digital Imaging and Modeling (2009) Google Scholar
  6. 6.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002) MATHCrossRefGoogle Scholar
  7. 7.
    Scharstein, D., Szeliski, R.: http://vision.middlebury.edu/stereo/
  8. 8.
    Klaus, A., Sormann, M., Karner, K.F.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: ICPR, pp. 15–18 (2006) Google Scholar
  9. 9.
    Blais, F.: Review of 20 years of range sensor development. In: Videometric VII, Proceedings of SPIE Electronic Imaging, vol. 5013, pp. 62–76 (2003) Google Scholar
  10. 10.
    Lange, R., Seitz, P., Biber, A., Schwarte, R.: Time-of-flight range imaging with a custom solid state image sensor. Laser Metrol. Inspect. 3823(1), 180–191 (1999) Google Scholar
  11. 11.
    Batlle, J., Mouaddib, E., Salvi, J.: Recent progress in coded structured light as a technique to solve the correspondence problem: A survey. Pattern Recognit. 31(7), 963–982 (1998) CrossRefGoogle Scholar
  12. 12.
    Salvi, J., Pagès, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recognit. 37(4), 827–849 (2004) MATHCrossRefGoogle Scholar
  13. 13.
    Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. Comput. Vis. Pattern Recognit. 01, 195–202 (2003) Google Scholar
  14. 14.
    Wust, C., Capson, D.W.: Surface profile measurement using color fringe projection. Mach. Vis. Appl. V4(3), 193–203 (1991) CrossRefGoogle Scholar
  15. 15.
    Zhang, L., Curless, B., Seitz, S.M.: Spacetime stereo: Shape recovery for dynamic scenes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 367–374 (2003) Google Scholar
  16. 16.
    Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: A unifying framework for depth from triangulation. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 296–302 (2005) CrossRefGoogle Scholar
  17. 17.
    Koninckx, T.P., Griesser, A., Van Gool, L.J.: Real-time range scanning of deformable surfaces by adaptively coded structured light. In: 3DIM, pp. 293–301 (2003) Google Scholar
  18. 18.
    Zhang, L., Curless, B., Seitz, S.M.: Rapid shape acquisition using color structured light and multi-pass dynamic programming. In: The 1st IEEE International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 24–36 (2002) CrossRefGoogle Scholar
  19. 19.
    MacLean, K.: The ‘haptic camera’: A technique for characterizing and playing back haptic properties of real environments. In: Proc. of ASME Dynamic Systems and Control Devision, vol. 58, pp. 459–467 (1996) Google Scholar
  20. 20.
    Greenish, S., Hayward, V., Steffen, T., Chial, V., Okamura, A.: Measurement, analysis, and display of haptic signals during surgical cutting. Presence 11, 626–651 (2002) CrossRefGoogle Scholar
  21. 21.
    Okamura, A., Webster, R., Nolin, J., Johnson, K., Jafry, H.: The haptic scissors: Cutting in virtual environments. In: Proc. of the ICRA, vol. 1, pp. 828–833 (2003) Google Scholar
  22. 22.
    Edmunds, T., Pai, D.K.: Perceptual rendering for learning haptic skills. In: IEEE Haptic Symposium, pp. 225–230 (2008) Google Scholar
  23. 23.
    Colton, M., Hollerbach, J.: Reality-based haptic force models of buttons and switches. In: Proc. of the ICRA, pp. 497–502 (2007) Google Scholar
  24. 24.
    Colton, M., Hollerbach, J.: Haptic models of an automotive turn-signal switch: Identification and playback results. In: Proc. of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 243–248 (2007) CrossRefGoogle Scholar
  25. 25.
    Kry, P., Pai, D.: Interaction capture and synthesis. ACM Trans. Graph. 25, 872–880 (2006) CrossRefGoogle Scholar
  26. 26.
    Andrews, S., Lang, J.: Interactive scanning of haptic textures and surface compliance. In: Proc. of the International Conference on 3-D Digital Imaging and Modeling, pp. 99–106 (2007) CrossRefGoogle Scholar
  27. 27.
    Pai, D.K., Rizun, P.: The WHaT: a wireless haptic texture sensor. In: IEEE Haptic Symposium, pp. 3–9 (2003) Google Scholar
  28. 28.
    Richard, C., Cutkosky, M., MacLean, K.: Friction identification for haptic display. In: Proc. of the ASME Dynamic Systems and Control Division, vol. 67, pp. 327–334 (1999) Google Scholar
  29. 29.
    Kuchenbecker, K., Fiene, J., Niemeyer, G.: Event-based haptics and acceleration matching: Portraying and assessing the realism of contact. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 381–387 (2005) CrossRefGoogle Scholar
  30. 30.
    Kuchenbecker, K., Fiene, J., Niemeyer, G.: Improving contact realism through event-based haptic feedback. In: IEEE Transactions on Visualization and Computer Graphics, vol. 12, pp. 219–230 (2006) Google Scholar
  31. 31.
    Pai, D., Lang, J., Lloyd, J., Woodham, R.: ACME, a telerobotic active measurement facility. In: Experimental Robotics VI, vol. 250, pp. 391–400 (2000) CrossRefGoogle Scholar
  32. 32.
    Pai, D., van den Doel, K., James, D., Lang, J., Lloyd, J., Richmond, J., Yau, S.: Scanning physical interaction behavior of 3D objects. In: ACM SIGGRAPH 2001 Conference Proc., pp. 87–96 (2001) Google Scholar
  33. 33.
    Sedef, M., Samur, E., Basdogan, C.: Visual and haptic simulation of linear viscoelastic tissue behavior based on experimental data. In: Haptic Symposium, pp. 201–208 (2006) Google Scholar
  34. 34.
    Samur, E., Sedef, M., Basdogan, C., Avtan, L., Duzgun, O.: A robotic indenter for minimally invasive characterization of soft tissues. In: Proc. of the Computer Assisted Radiology and Surgery, vol. 1281, pp. 713–718 (2005) Google Scholar
  35. 35.
    Mahvash, M., Hayward, V.: Haptic simulation of a tool in contact with a nonlinear deformable body. In: Surgical Simulation and Soft Tissue Deformation, vol. 2673, pp. 311–320 (2003) CrossRefGoogle Scholar
  36. 36.
    Mahvash, M., Hayward, V.: High fidelity haptic synthesis of contact with deformable bodies. IEEE Comput. Graph. Appl. 24, 48–55 (2004) CrossRefGoogle Scholar
  37. 37.
    Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. In: ACM SIGGRAPH 2003 Papers. SIGGRAPH ’03, pp. 587–594 (2003) CrossRefGoogle Scholar
  38. 38.
    Amberg, B.: Optimal step nonrigid ICP algorithms for surface registration. In: CVPR ’07 (2007) Google Scholar
  39. 39.
    Li, H., Sumner, R.W., Pauly, M.: Global correspondence optimization for non-rigid registration of depth scans. Comput. Graph. Forum 27(5) (2008) Google Scholar
  40. 40.
    Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: High-resolution capture for modeling and animation. In: ACM Annual Conference on Computer Graphics, pp. 548–558 (2004) Google Scholar
  41. 41.
    Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14, 213–230 (2008) CrossRefGoogle Scholar
  42. 42.
    Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 20, 475–487 (2004) CrossRefGoogle Scholar
  43. 43.
    Mitra, N.J., Gelfand, N., Pottmann, H., Guibas, L.: Registration of point cloud data from a geometric optimization perspective. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 22–31 (2004) CrossRefGoogle Scholar
  44. 44.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981) CrossRefGoogle Scholar
  45. 45.
    Decarlo, D., Metaxas, D.: Optical flow constraints on deformable models with applications to face tracking. Int. J. Comput. Vis. 38, 99–127 (2000) MATHCrossRefGoogle Scholar
  46. 46.
    Weise, T., Leibe, B., Van Gool, L.: Accurate and robust registration for in-hand modeling. In: Computer Vision and Pattern Recognition, pp. 1–8 (2008) Google Scholar
  47. 47.
    Chang, W., Zwicker, M.: Automatic registration for articulated shapes. In: Proceedings of the Symposium on Geometry Processing, pp. 1459–1468 (2008) Google Scholar
  48. 48.
    Iske, A., Arnold, V.I.: Multiresolution Methods in Scattered Data Modelling. Springer, Berlin (2004) MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Matthias Harders
    • 1
  • Raphael Hoever
    • 1
  • Serge Pfeifer
    • 1
  • Thibaut Weise
    • 1
  1. 1.Computer Vision LabETH ZurichZurichSwitzerland

Personalised recommendations