Skip to main content

Segmentation in Feature Space

  • Chapter
Book cover Guide to Medical Image Analysis

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 4363 Accesses

Abstract

Selection of an image acquisition technique is intentional in medical imaging. It can be assumed that pixel or voxel values in a medical image cover more semantics with respect to object class membership than intensity in a photograph. Hence, image segmentation can be done as classification in feature space where image intensities are the features.

The dimensionality of feature space is usually low and the number of samples characterizing object classes is high. Typical classifiers discussed in this chapter take this into account and estimate likelihood functions from samples. Classification is then done by computing a posteriori probabilities for each object class.

Clustering in feature space will be discussed as well. Without requiring training, clustering may directly lead to a segmentation. Even if this is not the case, clustering may be used to reduce the workload for producing the training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The a priori probability is also called marginal probability, since P is marginalized over all possible feature values of v.

References

  • Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc B (Methodol) 48(3):259–302

    MathSciNet  MATH  Google Scholar 

  • Bouman CA, Shapiro M (1994) A multiscale random field model for Bayesian image segmentation. IEEE Trans Image Process 3(2):162–177

    Article  Google Scholar 

  • Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  • Bradley PS, Fayyad UM (1998) Refining initial points for k-means clustering. In: Proc 15th intl conf machine learning, pp 91–99

    Google Scholar 

  • Celeux G, Forbes F, Peyrard N (2003) Procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recognit 36(1):131–144

    Article  MATH  Google Scholar 

  • Cheng H, Bouman CA (2001) Multiscale Bayesian segmentation using a trainable context model. IEEE Trans Image Process 10(4):511–525

    Article  MATH  Google Scholar 

  • Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2000) Pattern classification: pattern classification. Pt 1, 2nd edn. Wiley, New York

    Google Scholar 

  • Fukunagu K, Hostetler LD (1975) The estimation of the gradient of a density function with applications in pattern recognition. IEEE Trans Inf Theory 21:32–40

    Article  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741

    Article  MATH  Google Scholar 

  • Held K, Kops ER, Krause BJ, Wells WW III, Kikinis R, Muller-Gartner HW (1997) Markov random field segmentation of brain MR images. IEEE Trans Med Imaging 16(6):878–886

    Article  Google Scholar 

  • Jiang Y, Chen KJ, Zhou ZH (2003) SOM based image segmentation. In: Lecture notes in computer science. LNCS, vol 2639, pp 640–643

    Google Scholar 

  • Kaufman L, Rousseeuw PJ (2005) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Google Scholar 

  • Kohonen T (1995) Self-organizing maps. Springer, Berlin

    Book  Google Scholar 

  • McLachlan GJ, Krishnan T (1996) The EM algorithm and extensions. Wiley-Interscience, New York

    Google Scholar 

  • Marroquin JL, Santana EA, Botello S (2003) Hidden Markov measure field models for image segmentation. IEEE Trans Pattern Anal Mach Intell 25(11):1380–1387

    Article  Google Scholar 

  • Ng HP, Ong SH, Foong KWC, Goh PS, Nowinski WL (2006) Medical image segmentation using k-means clustering and improved watershed algorithm. In: IEEE Southwest Symposium on Image Analysis and Interpretation, pp 61–65

    Chapter  Google Scholar 

  • Peña JM, Lozano JA, Larrañaga P (1999) An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recognit Lett 20(10):1027–1040

    Article  Google Scholar 

  • Reddick WE, Glass JO, Cook EN, Elkin TD, Deaton RJ (1997) Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans Med Imaging 16(6):911–918

    Article  Google Scholar 

  • Shapira L, Avidan S, Shamir A (2009) Mode-detection via median-shift. In: Intl conf computer vision (ICCV), pp 1909–1916

    Google Scholar 

  • Tuzel O, Porikli F, Meer P (2008) Pedestrian detection via classification on Riemannian manifolds. IEEE Trans Pattern Anal Mach Intell 30(10):1713–1727

    Article  Google Scholar 

  • Tuzel O, Porikli F, Meer P (2009) Kernel methods for weakly supervised mean shift clustering. In: Intl conf computer vision (ICCV 2009), pp 59–68

    Google Scholar 

  • Zhang J (1992) The mean field theory in EM procedures for Markov random fields. IEEE Trans Signal Process 40(10):2570–2583

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Toennies, K.D. (2012). Segmentation in Feature Space. In: Guide to Medical Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-2751-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2751-2_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2750-5

  • Online ISBN: 978-1-4471-2751-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics