Bone Loss in Space Flight and Countermeasures

  • Adrian D. LeBlanc
  • Elisabeth R. Spector
  • Victor S. Schneider
Chapter
Part of the Topics in Bone Biology book series (TBB, volume 7)

Abstract

Before manned space flight, it was known that immobilization of patients for extended periods, such as for fracture repair to treat the paralysis of polio myelitis or paraplegia, often resulted in weakened and atrophic bones. Although the problems related to reduced gravitational forces on the musculoskeletal system were recognized, the full extent of the changes was not known. Therefore, studies were planned and conducted by the emerging American and Soviet space programs to determine the extent of, and potential harm associated with, bone loss that might occur during space flight.

Keywords

Space flight Bone loss Calcium balance Gravitational effects on skeleton Bone density 

References

  1. 1.
    Armbrecht G, Belavý DL, Gast U, Bongrazio M, Touby F, Beller G, Roth HJ, Perschel FH, Rittweger J, Felsenberg D. Resistive vibration exercise attenuates bone and muscle atrophy in 56 days of bed rest: biochemical markers of bone metabolism. Osteoporos Int. 2010;21(4):597–607.PubMedCrossRefGoogle Scholar
  2. 2.
    Arya M, Paloski WH, Young LR. Centrifugation protocol for the NASA artificial gravity bed rest pilot study. J Gravit Physiol. 2007;14(1):P5–8.PubMedGoogle Scholar
  3. 3.
    Biriukov EN, Kraasnykh IG. Changes in the optical density of bone tissue and in the calcium metabolism of the astronauts. In: Nikivaev AG, Sevastianov VI, editors. Kosmicheskaia Biologiia I. Moscow: Meditsina; 1970. p. 42–45.Google Scholar
  4. 4.
    Brodzinski RL, Rancitelli LA, Haller WA, Dewey LS. Calcium, potassium, and iron loss by Apollo VII, VIII, IX, X and XI astronauts. Aerosp Med. 1971;42(6):621–6.PubMedGoogle Scholar
  5. 5.
    Carpenter RD, Leblanc AD, Evans H, Sibonga JD, Lang TF. Long-term changes in the density and structure of the human hip and spine after long-duration spaceflight. Acta Astronaut. 2010;67:71–81.CrossRefGoogle Scholar
  6. 6.
    Frechette A, Evetts SN, Sundblad P. Human-in-the-loop on flight like hardware in representative environments as a prerequisite for development of new countermeasure equipment for human spaceflight. Aviat Space Environ Med. 2010;81(3):267.Google Scholar
  7. 7.
    Gazenko OG, Genin AM, Egorov AD. Summary of medical investigations in the U.S.S.R. Manned space missions. Acta Astronaut. 1981;8(9–10):907–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Han SL, Wan SL. Effect of teriparatide on bone mineral density and fracture in postmenopausal osteoporosis: meta-analysis of randomized controlled trials. Int J Clin Pract. 2012 Feb;66(2):199–209.PubMedCrossRefGoogle Scholar
  9. 9.
    Holguin N, Muir J, Rubin C, Judex S. Short applications of very low-magnitude vibrations attenuate expansion of the intervertebral disc during extended bed rest. Spine. 2009;9:470–7.CrossRefGoogle Scholar
  10. 10.
    Humphries B, Fenning A, Dugan E, Guinane J, MacRae K. Whole-body vibration effects on bone mineral density in women with or without resistance training. Aviat Space Environ Med. 2009;80(12):1025–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Johnston SL, Campbell MR, Scheuring R, Feiveson AH. Risk of herniated nucleus pulposus among US astronauts. Aviat Space Environ Med. 2010;81(6):566–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Keyak JH, Koyama AK, Leblanc A, Lu Y, Lang TF. Reduction in proximal femoral strength due to long-duration spaceflight. Bone. 2009;44(3):449–53.PubMedCrossRefGoogle Scholar
  13. 13.
    Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19(6):1006–12.PubMedCrossRefGoogle Scholar
  14. 14.
    LeBlanc A, Schneider V, Spector E, Evans H, Rowe R, Lane H, Demers L, Lipton A. Calcium absorption, endogenous excretion, and endocrine changes during and after long-term bed rest. Bone. 1995;16(4 Suppl):301S–4.PubMedGoogle Scholar
  15. 15.
    LeBlanc AD, Driscol TB, Shackelford LC, Evans HJ, Rianon NJ, Smith SM, Feeback DL, Lai D. Alendronate as an effective countermeasure to disuse induced bone loss. J Musculoskelet Neuronal Interact. 2002;2(4):335–43.PubMedGoogle Scholar
  16. 16.
    LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Voronin L. Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact. 2000;1(2):157–60.PubMedGoogle Scholar
  17. 17.
    LeBlanc AD, Schneider VS, Evans HG, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990;5(8):843–50.PubMedCrossRefGoogle Scholar
  18. 18.
    LeBlanc AD, Spector ER, Evans HJ, Sibonga JD. Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact. 2007;7(1):33–47.PubMedGoogle Scholar
  19. 19.
    LeBlanc AD, Evans HJ, Schneider VS, Wendt III RE, Hedrick TD. Changes in intervertebral disc cross-sectional area with bed rest and space flight. Spine. 1994;19(7):812–7.PubMedCrossRefGoogle Scholar
  20. 20.
    LeBlanc A, Lin C, Shackelford L, Sinitsyn V, Evans H, Belichenko O, Schenkman B, Kozlovskaya I, Oganov V, Bakulin A, Hedrick T, Feeback D. Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol. 2000;89:2158–64.PubMedGoogle Scholar
  21. 21.
    Lewiecki EM. Safety and tolerability of denosumab for the treatment of postmenopausal osteoporosis. Drug Health Patient Saf. 2011;3:79–91.CrossRefGoogle Scholar
  22. 22.
    Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009;24(4):578–88.PubMedCrossRefGoogle Scholar
  23. 23.
    Lutwak L, Whedon GD, Lachance PA, Reid JM, Lipscomb HS. Mineral, electrolyte and nitrogen balance studies of the Gemini-VII fourteen-day orbital space flight. J Clin Endocrinol Metab. 1969;29(9):1140–56.PubMedCrossRefGoogle Scholar
  24. 24.
    Miao D, He B, Jiang Y, Kobayashi T, Soroceanu MA, Zhao J, Su H, Tong X, Amizuka N, Gupta A, Genant HK, Kronenberg HM, Goltzman D, Karaplis AC. Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1–34. J Clin Invest. 2005;115:2402–11.PubMedCrossRefGoogle Scholar
  25. 25.
    Nicogossian AE, Sawin CF, Grigoriev AI. Countermeasures to space deconditioning chapter 26. In: Nocogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. Philadelphia: Lea & Febiger; 1994. p. 447–67.Google Scholar
  26. 26.
    Oganov VS, Cann C, Rakhmanov AS, Ternovoi SK. Study of the musculoskeletal system of the spine in humans after long-term space flights by the method of computerized tomography. Kosmicheskaia Biologiia I Aviakosmicheskaia Meditsina. 1990;24(4):20–1.PubMedGoogle Scholar
  27. 27.
    Oganov VS, Grigoriev AI, Voronin LI, Rakhmanov AS, Bakulin AV, Schneider VS, LeBlanc AD. Bone mineral density in cosmonauts after flights lasting 4.5–6 months on the Mir orbital station. Aviakosm Ekolog Med. 1992;26(5–6):20–4.PubMedGoogle Scholar
  28. 28.
    Pietrzyk RA, Jones JA, Sams CF, Whitson PA. Renal stone formation among astronauts. Aviat Space Environ Med. 2007;78(4):A9–13.PubMedGoogle Scholar
  29. 29.
    Rambaut PC, Leach CS, Johnson PC. Calcium and phosphorus change of the Apollo 17 crew members. Nutr Metab. 1975;18(2):62–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Rambaut PC, Leach CS, Whedon GD. A study of metabolic balance in crew members of Skylab IV. Acta Astronaut. 1979;6(10):1313–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Rambaut PC, Johnston RS. Prolonged weightlessness and calcium loss in man. Acta Astronaut. 1979;6(9):1113–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Rittweger J, Beller G, Armbrecht G, Mulder E, Buehring B, Gast U, Dimeo F, Schubert H, de Haan A, Stegeman DF, Schiessl H, Felsenberg D. Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone. 2010;46(1):137–47.PubMedCrossRefGoogle Scholar
  33. 33.
    Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004;19(3):343–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Scheuring RA, Mathers CH, Jones JA, Wear ML. Musculoskeletal injuries and minor trauma in space: incidence and injury mechanisms in U.S. Astronauts. Aviat Space Environ Med. 2009;80(2):117–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Schneider VS, LeBlanc AD, Taggart LC. Bone and mineral metabolism chapter 17. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. Philadelphia: Lea & Febiger; 1994. p. 327–33.Google Scholar
  36. 36.
    Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris Jr RC. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med. 1994;330(25):1776–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Shackelford LC, LeBlanc AD, Driscoll TB, Evans HG, Rianon NG, Smith SM, Spector E, Feeback DL, Lai D. Resistance exercise as a countermeasure to disuse induced bone loss. J Appl Physiol. 2004;97(1):119–29.PubMedCrossRefGoogle Scholar
  38. 38.
    Shapiro J, Smith B, Beck T, Ballard P, Dapthary M, BrintzenhofeSzoc K, Caminis J. Treatment with zoledronic acid ameliorates negative geometric changes in the proximal femur following acute spinal cord injury. Calcif Tissue Int. 2007;80:316–22.PubMedCrossRefGoogle Scholar
  39. 39.
    Sibonga JD, Evans HJ, Sung HG, Spector ER, Lang TF, Oganov VS, Bakulin AV, Shackelford LC, LeBlanc AD. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone. 2007;41:973–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Smith SM, Nillen JL, LeBlanc A, Lipton A, Demers LM, Lane HW, Leach CS. Collagen cross-link excretion during space flight and bed rest. J Clin Endocrinol Metab. 1998;83(10):3584–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Smith SM, Wastney ME, O’Brien KO, Morukov BV, Larina IM, Abrams SA, Davis-Street JE, Oganov V, Shackelford LC. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the Mir space station. J Bone Miner Res. 2005;20(2):208–18.PubMedCrossRefGoogle Scholar
  42. 42.
    Smith SM, Zwart SR, Heer MA, Baecker N, Evans HJ, Feiveson A, Shackelford LC, LeBlanc AD. Effects of artificial gravity during bed rest on bone metabolism in humans. J Appl Physiol. 2009;107:47–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE. The nutritional status of astronauts is altered after long-term space flight aboard the international space station. J Nutr. 2005;135:437–43.PubMedGoogle Scholar
  44. 44.
    Stupakov GP, Kazeikin VS, Kozlovskii AP, Korolev VV. Evaluation of the changes in the bone structures of the human axial skeleton in prolonged space flight. Kosm Biol Aviakosm Med. 1984;18(2):33–7.PubMedGoogle Scholar
  45. 45.
    Vogel JM, Anderson JT. Rectilinear transmission scanning of irregular bones for quantification of mineral content. J Nucl Med. 1972;13(1):13–8.PubMedGoogle Scholar
  46. 46.
    Warren LE, Reinertson RC, Camacho ME, Paloski WH. Implementation of the NASA artificial gravity bed rest pilot study. J Gravit Physiol. 2007;14(1):P1–4.PubMedGoogle Scholar
  47. 47.
    Watanabe Y, Ohshima H, Mizuno K, Sekiguchi C, Fukunaga M, Kohri K, Rittweger J, Felsenberg D, Matsumoto T, Nakamura T. Intravenous pamidronate prevents femoral bone loss and renal stone formation during 90-day bed rest. J Bone Miner Res. 2004;19(11):1771–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Whedon GD, Lutwak L, Rambaut PC, Whittle MW, Smith MC, Reid J, Leach CS, Stadler CR, Sanford DD. Mineral and nitrogen metabolic studies, experiment M071. In: Johnson RS, Dietlein LE, editors. Biomedical results from Skylab NASA SP-377. Washington, DC: NASA; 1977. p. 164–74.Google Scholar
  49. 49.
    Wynn E, Krieg MA, Lanham-New SA, Burckhardt P. Postgraduate symposium: positive influence of nutritional alkalinity on bone health. Proc Nutr Soc. 2010;69(1):166–73.PubMedCrossRefGoogle Scholar
  50. 50.
    Zerwekh JE, Ruml LA, Gottschalk F, Pak CY. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res. 1998;13(10):1594–601.PubMedCrossRefGoogle Scholar
  51. 51.
    Zwart SR, Pierson D, Mehta S, Gonda S, Smith SM. Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-KB activation: from cells to bed rest to astronauts. J Bone Miner Res. 2010;25(5):1049–57.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Adrian D. LeBlanc
    • 1
  • Elisabeth R. Spector
    • 2
  • Victor S. Schneider
    • 3
  1. 1.Division of Space Life SciencesUniversities space Research AssociationHoustonUSA
  2. 2.Bone and Mineral LabWyle LaboratoriesHoustonUSA
  3. 3.Office of the Chief Health and Medical OfficerNASAWashingtonUSA

Personalised recommendations