Advertisement

Notes

  • R. B. Bapat
Part of the Universitext book series (UTX)

Abstract

References which consist of books for further reading, and original papers in the case of results which are normally not covered in other texts, are given. Brief comments about some of the results are included.

Keywords

Markov Chain Matrix Theory Related Result Reverse Order Subsequent Work 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson, T. W., & Styan, G. P. H. (1982). Cochran’s theorem, rank additivity and tripotent matrices. In G. Kallianpur, P. R. Krishnaiah & J. K. Ghosh (Eds.), Statistics and probability: essays in honor of C. R. Rao (pp. 1–23). Amsterdam: North-Holland. Google Scholar
  2. Arnold, B. C. (1987). Majorization and the Lorentz order: a brief introduction. Berlin: Springer. CrossRefGoogle Scholar
  3. Baksalary, O. M., & Trenkler, G. (2006). Rank of a nonnegative definite matrix, Problem 37-3. IMAGE: The Bulletin of the International Linear Algebra Society, 37, 32. Google Scholar
  4. Bapat, R. B. (2003). Outer inverses: Jacobi type identities and nullities of submatrices. Linear Algebra and Its Applications, 361, 107–120. MathSciNetzbMATHCrossRefGoogle Scholar
  5. Bapat, R. B. (2007). On generalized inverses of banded matrices. The Electronic Journal of Linear Algebra, 16, 284–290. MathSciNetzbMATHGoogle Scholar
  6. Bapat, R. B., & Ben-Israel, A. (1995). Singular values and maximum rank minors of generalized inverses. Linear and Multilinear Algebra, 40, 153–161. MathSciNetzbMATHCrossRefGoogle Scholar
  7. Bapat, R. B., & Bing, Z. (2003). Generalized inverses of bordered matrices. The Electronic Journal of Linear Algebra, 10, 16–30. zbMATHGoogle Scholar
  8. Bapat, R. B., & Raghavan, T. E. S. (1997). Nonnegative matrices and applications. Encyclopedia of mathematical sciences (Vol. 64). Cambridge: Cambridge University Press. zbMATHCrossRefGoogle Scholar
  9. Bapat, R. B., Bhaskara Rao, K. P. S., & Prasad, K. M. (1990). Generalized inverses over integral domains. Linear Algebra Its Applications, 140, 181–196. MathSciNetzbMATHCrossRefGoogle Scholar
  10. Ben-Israel, A. (1992). A volume associated with m×n matrices. Linear Algebra and Its Applications, 167, 87–111. MathSciNetzbMATHCrossRefGoogle Scholar
  11. Ben-Israel, A., & Greville, T. N. E. (1974). Generalized inverses: theory and applications. New York: Wiley-Interscience. zbMATHGoogle Scholar
  12. Berman, A., & Plemmons, R. J. (1994). Nonnegative matrices in the mathematical sciences. Philadelphia: SIAM. zbMATHCrossRefGoogle Scholar
  13. Bhaskara Rao, K. P. S. (1983). On generalized inverses of matrices over integral domains. Linear Algebra and Its Applications, 40, 179–189. CrossRefGoogle Scholar
  14. Bhimasankaram, P. (1988). Rank factorization of a matrix and its applications. The Mathematical Scientist, 13, 4–14. MathSciNetzbMATHGoogle Scholar
  15. Campbell, S. L., & Meyer, C. D. Jr. (1979). Generalized inverses of linear transformations. London: Pitman. zbMATHGoogle Scholar
  16. Carlson, D. (1986). What are Schur complements anyway? Linear Algebra and Its Applications, 74, 257–275. MathSciNetzbMATHCrossRefGoogle Scholar
  17. Carlson, D. (1987). Generalized inverse invariance, partial orders, and rank minimization problems for matrices. In F. Uhlig & R. Groine (Eds.), Current trends in matrix theory (pp. 81–87). New York: Elsevier. Google Scholar
  18. Christensen, R. (1987). Plane answers to complex questions: the theory of linear models. Berlin: Springer. zbMATHGoogle Scholar
  19. Constantine, G. M. (1987). Combinatorial theory and statistical design. New York: Wiley. zbMATHGoogle Scholar
  20. Dey, A. (1986). Theory of block designs. New Delhi: Wiley Eastern. zbMATHGoogle Scholar
  21. Drazin, M. P. (1978). Natural structures on semigroups with involutions. Bulletin of the American Mathematical Society, 84, 139–141. MathSciNetzbMATHCrossRefGoogle Scholar
  22. Fiedler, M., & Markham, T. L. (1986). Completing a matrix when certain entries of its inverse are specified. Linear Algebra and Its Applications, 74, 225–237. MathSciNetzbMATHCrossRefGoogle Scholar
  23. Hartwig, R. E. (1980). How to order regular elements? Mathematica Japonica, 25, 1–13. MathSciNetzbMATHGoogle Scholar
  24. Haynsworth, E. V. (1968). Determination of the inertia of a partitioned Hermitian matrix. Linear Algebra and Its Applications, 1, 73–82. MathSciNetzbMATHCrossRefGoogle Scholar
  25. Hedayat, A., & Wallis, W. D. (1978). Hadamard matrices and their applications. Annals of Statistics, 6, 1184–1238. MathSciNetzbMATHCrossRefGoogle Scholar
  26. Herman, E. A. (2010). Square-nilpotent matrix, Problem 44-4. IMAGE: The Bulletin of the International Linear Algebra Society, 44, 44. Google Scholar
  27. Horn, R. A., & Johnson, C. R. (1985). Matrix analysis. Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  28. Ikebe, Y., Inagaki, T., & Miyamoto, S. (1987). The monotonicity theorem, Cauchy interlace theorem and the Courant–Fischer theorem. The American Mathematical Monthly, 94(4), 352–354. MathSciNetzbMATHCrossRefGoogle Scholar
  29. John, P. W. M. (1971). Statistical design and analysis of experiments. New York: Macmillan. zbMATHGoogle Scholar
  30. Joshi, D. D. (1987). Linear estimation and design of experiments. New Delhi: Wiley Eastern. zbMATHGoogle Scholar
  31. Marsaglia, G., & Styan, G. P. H. (1974). Equalities and inequalities for ranks of matrices. Linear and Multilinear Algebra, 2, 269–292. MathSciNetCrossRefGoogle Scholar
  32. Marshall, A. W., & Olkin, I. (1979). Inequalities: theory of majorization and its applications. New York: Academic Press. zbMATHGoogle Scholar
  33. McCulloch, C. E., Searle, S. R., & Neuhaus, J. M. (2008). Generalized, linear, and mixed models (2nd ed.). New York: Wiley. zbMATHGoogle Scholar
  34. Mehta, M. L. (1989). Matrix theory: selected topics and useful results (enlarged re-ed.). Delhi: Hindustan Publishing Corporation. Google Scholar
  35. Mirsky, L. (1955). An introduction to linear algebra. London: Oxford University Press. zbMATHGoogle Scholar
  36. Mitra, S. K. (1982). Simultaneous diagonalization of rectangular matrices. Linear Algebra and Its Applications, 47, 139–150. MathSciNetzbMATHCrossRefGoogle Scholar
  37. Mitra, S. K. (1986). The minus partial order and the shorted matrix. Linear Algebra and Its Applications, 83, 1–27. MathSciNetzbMATHCrossRefGoogle Scholar
  38. Mitra, S. K. (1991). Matrix partial orders through generalized inverses: unified theory. Linear Algebra and Its Applications, 148, 237–263. MathSciNetzbMATHCrossRefGoogle Scholar
  39. Mitra, S. K., & Puri, M. L. (1983). The fundamental bordered matrix of linear estimation and the Duffin–Morley general linear electromechanical system. Applicable Analysis, 14, 241–258. MathSciNetzbMATHCrossRefGoogle Scholar
  40. Muirhead, R. J. (1982). Aspects of multivariate statistical theory. New York: Wiley. zbMATHCrossRefGoogle Scholar
  41. Murota, K. (2000). Matrices and matroids for systems analysis. Algorithms and combinatorics (Vol. 20). Berlin: Springer. zbMATHGoogle Scholar
  42. Nambooripad, K. S. S. (1980). The natural partial order on a regular semigroup. Proceedings of the Edinburgh Mathematical Society, 23, 249–260. MathSciNetzbMATHCrossRefGoogle Scholar
  43. Nordström, K. (1989). Some further aspects of the Löwner-ordering antitonicity of the Moore–Penrose inverse. Communications in Statistics—Theory and Methods, 18(12), 4471–4489. MathSciNetzbMATHCrossRefGoogle Scholar
  44. Prasad, K. M., Bhaskara Rao, K. P. S., & Bapat, R. B. (1991). Generalized inverses over integral domains II. Group inverses and Drazin inverses. Linear Algebra and Its Applications, 146, 31–47. MathSciNetzbMATHCrossRefGoogle Scholar
  45. Rao, C. R. (1973). Linear statistical inference and its applications (2nd ed.). New York: Wiley. zbMATHCrossRefGoogle Scholar
  46. Rao, C. R., & Mitra, S. K. (1971). Generalized inverse of matrices and its applications. New York: Wiley. zbMATHGoogle Scholar
  47. Rao, C. R., & Rao, M. B. (1998). Matrix algebra and its applications to statistics and econometrics. Singapore: World Scientific. zbMATHCrossRefGoogle Scholar
  48. Ravishankar, N., & Dey, D. K. (2002). A first course in linear model theory. London/Boca Raton: Chapman & Hall/CRC. Google Scholar
  49. Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics (2nd ed.). New York: Wiley. zbMATHGoogle Scholar
  50. Scheffe, H. (1959). The analysis of variance. New York: Wiley. zbMATHGoogle Scholar
  51. Searle, S. R. (1971). Linear models. New York: Wiley. zbMATHGoogle Scholar
  52. Seber, G. A. F. (1977). Linear regression analysis. New York: Wiley. zbMATHGoogle Scholar
  53. Sen, A., & Srivastava, M. (1990). Regression analysis: theory, methods and applications. New York: Springer. zbMATHGoogle Scholar
  54. Strang, G. (1980). Linear algebra and its applications (2nd ed.). New York: Academic Press. Google Scholar
  55. Tian, Y. (2000). Two rank equalities associated with blocks of an orthogonal projector, Problem 25-4. IMAGE: The Bulletin of the International Linear Algebra Society, 25, 16. Google Scholar
  56. Tian, Y. (2001). Rank equalities related to outer inverses of matrices and applications. Linear and Multilinear Algebra, 49(4), 269–288. MathSciNetzbMATHCrossRefGoogle Scholar
  57. Tian, Y., & Styan, G. P. H. (2001). Rank equalities for idempotent and involutory matrices. Linear Algebra and Its Applications, 335, 01-117. MathSciNetCrossRefGoogle Scholar
  58. Vandebril, R., Van Barel, M., & Mastronardi, N. (2008). Matrix computations and semiseparable matrices (Vol. 1). Baltimore: Johns Hopkins University Press. Google Scholar
  59. Werner, H. J. (1994). When is B A a generalized inverse of AB? Linear Algebra and Its Applications, 210, 255–263. MathSciNetzbMATHCrossRefGoogle Scholar
  60. Zhang, F. (1996). Linear algebra, challenging problems for students. Baltimore and London: Johns Hopkins University Press. zbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • R. B. Bapat
    • 1
  1. 1.Indian Statistical InstituteNew DelhiIndia

Personalised recommendations