Rechargeable Batteries for Transport and Grid Applications: Current Status and Challenges

  • Clare P. Grey


Lithium-ion batteries are poised to make a significant impact on the electrification of transport and may also play a role for some power regulation/storage applications on the electric grid. In this article, we describe some of the applications where these batteries are either already being or are about to be used. The components that make up a lithium-ion battery are outlined along with the causes of capacity fade and safety issues. Current battery chemistries are then surveyed along with the factors that control possible scenarios to increase energy densities on both a volumetric and mass basis.


Negative Electrode Positive Electrode Internal Combustion Engine Battery Pack Grid Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Support for the author’s research in this field has come from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the U.S. Department of Energy (DOE) via subcontract No. 6517749 with the Lawrence Berkeley National Laboratory and from the DOE office of Basic Energy Sciences, via support of the North Eastern Center for Chemical Energy Sciences, an Energy Frontier research Center. Discussions with Gerbrand Ceder, M. Stanley Whittingham, Jordi Cabana and Roger Thornton are gratefully acknowledged.


  1. 1.
    Tarascon JM, Armand M (2001) Nature 414:359CrossRefGoogle Scholar
  2. 2.
    Department of Energy (2007) Basic energy sciences (BES) report “Basic research needs for electrical energy storage”. April,
  3. 3.
    Armand M, Tarascon JM (2008) Nature 451:652–657CrossRefGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
    Argonne National Laboratory (2005) Well-to-wheels analysis of advanced fuel/vehicle systems—A North American study of energy use, greenhouse gas emissions, and criteria pollutant emissions.
  7. 7.
    Argonne National Laboratory (2009) Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.
  8. 8.
  9. 9.
  10. 10.
    Nagaura T (1990) 4th international rechargeable battery seminar, Deerfield BeachGoogle Scholar
  11. 11.
    Palacin MR (2009) Chem Soc Rev 38:2565CrossRefGoogle Scholar
  12. 12.
    Reimers JN, Dahn, JR (1994) J Electrochem Soc 139:2091Google Scholar
  13. 13.
    Dahn JR (1991) Phys Rev B 44:9170CrossRefGoogle Scholar
  14. 14.
    Goodenough JB, Kim Y (2010) Chem Mater 22:587–603CrossRefGoogle Scholar
  15. 15.
    Amatucci GG, Tarascon JM, Klein LC (1996) J Electrochem Soc 143:1114CrossRefGoogle Scholar
  16. 16.
    Doh C-H, Kim D-H, Kim H-S, Shin Jeon Y-D, Moon S-I, Jin B-S, Eom SW, Kim K-S, Kim K-W, Oh D-H, Veluchamya A (2008) J Power Sources 75:881Google Scholar
  17. 17.
    Guerard D, Herold A (1975) Carbon 13:337–345CrossRefGoogle Scholar
  18. 18.
    Whittingham MS (1978) Prog Solid State Chem 12:41–99CrossRefGoogle Scholar
  19. 19.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783–789CrossRefGoogle Scholar
  20. 20.
    Whittingham MS (2004) Chem Rev 104:4271–4301CrossRefGoogle Scholar
  21. 21.
    Menetrier M, Saadoune I, Levasseur S, Delmas C (1999) J Mater Chem 9:1135CrossRefGoogle Scholar
  22. 22.
    Biensan Ph, Simon B, Peres JP, de Guibert A, Broussely M, Bodet JM, Perton F (1999) J Power Sources 81:906CrossRefGoogle Scholar
  23. 23.
    Delmas C, Saadoune I, Rougier A (1993) J Power Sources 44:595–602CrossRefGoogle Scholar
  24. 24.
    Lu ZH, MacNeil DD, Dahn JR (2001) Electrochem Solid State Lett 4:A200–A203CrossRefGoogle Scholar
  25. 25.
    Ohzuku T, Makimura Y (2001) Chem Lett (7):642–643Google Scholar
  26. 26.
    Park CW, Kang SH, Belharouak I, Sun YK, Amine K (2008) J Power Sources 177:177CrossRefGoogle Scholar
  27. 27.
    Sun YK, Myung ST, Park BC, Prakash J, Belharouk I, Amine K (2009) Nat Mater 8:330CrossRefGoogle Scholar
  28. 28.
    Lu Z, MacNeil DD, Dahn JR (2001) Electrochem Solid State Lett 4:A191–A194CrossRefGoogle Scholar
  29. 29.
    Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) J Mater Chem 15:2257–2267CrossRefGoogle Scholar
  30. 30.
    Yoon W-S, Iannopollo S, Grey CP, Carlier D, Gorman J, Reed J, Ceder G (2004) Electrochem. Solid St. Lett. 7:A167CrossRefGoogle Scholar
  31. 31.
    Jiang M, Key B, Meng YS, Grey CP (2009) Chem Mater 21:2733–2745CrossRefGoogle Scholar
  32. 32.
    Thackeray MM (1997) Prog Solid St Chem 25:1CrossRefGoogle Scholar
  33. 33.
    Liu W, Kowal K, Farrington GC (1998) J Electrochem Soc 145:459CrossRefGoogle Scholar
  34. 34.
    Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington M, Armand M (1999) Abstract #127, 196th ECS meeting, Honolulu, 17–22 OctGoogle Scholar
  35. 35.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194CrossRefGoogle Scholar
  36. 36.
    Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1:123–128CrossRefGoogle Scholar
  37. 37.
    Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691–714CrossRefGoogle Scholar
  38. 38.
    Barnett B, Rempel J, McCoy C, Dalton-Castor S, Sriramulu S (2011) Department of Energy Merit Review
  39. 39.
  40. 40.
    Timmons A, Dahn JR (2006) J Electrochem Soc 153:A1206–A1210CrossRefGoogle Scholar
  41. 41.
    Larcher D, Beattie S, Morcrette M, Edstroem K, Jumas JC, Tarascon JM (2007) J Mater Chem 17:3759–3772CrossRefGoogle Scholar
  42. 42.
    Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Science 276:1395–1397CrossRefGoogle Scholar
  43. 43.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496–499CrossRefGoogle Scholar
  44. 44.
    Badway F, Cosandey F, Pereira N, Amatucci GG (2003) J Electrochem Soc 150:A1318–A1327CrossRefGoogle Scholar
  45. 45.
    Ferg E, Gummow RJ, Kock AD, Thackeray MM (1994) J Electrochem Soc 141:L147CrossRefGoogle Scholar
  46. 46.
    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Phys Chem Lett 1:2193CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Departments of ChemistryCambridge UniversityCambridgeUK
  2. 2.Departments of ChemistryStony Brook UniversityStony BrookUSA

Personalised recommendations