Skip to main content

Just Supposing: Proof and Consequence

  • Chapter
  • First Online:
Sets, Logic and Maths for Computing

Part of the book series: Undergraduate Topics in Computer Science ((UTICS))

  • 10k Accesses

Abstract

In the last two chapters, we learned quite a lot about propositional and quantificational logic and in particular their relations of logical implication. In this chapter, we look at how simple implications may be put together to make a deductively valid argument or proof. At first glance, this may seem trivial: just string them together! But although it starts like that, it goes well beyond, and is indeed quite subtle.

We begin by looking at the easy process of chaining, which creates elementary derivations, and show how its validity is linked with the Tarski conditions defining consequence relations/operations. We then review several higher-level proof strategies used in everyday mathematics and uncover the logic behind them. These include the strategies traditionally known as conditional proof, disjunctive proof and proof by cases, proof by contradiction and argument to and from an arbitrary instance. Their analysis leads us to distinguish second-level from split-level rules, articulate their recursive structures and explain the informal procedure of flattening a split-level proof into its familiar ‘suppositional’ form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected Reading

  • The references given for Chaps. 8 and 9 do not contain anything on the material of this chapter. The concept of a consequence operation/relation is explained in the following:

  • Wikipedia entry on consequence operators. http://en.wikipedia.org/wiki/Consequence_operators

  • Makinson D (2007) Bridges from classical to nonmonotonic logic. College Publications, London, chapter 1

    Google Scholar 

  • Wójcicki R (1988) Theory of logical calculi: basic theory of consequence operations. Synthese library, vol 199. Reidel, Dordrecht, chapter 1

  • The Wikipedia article highlights algebraic and topological connections of the concept, with lots of useful links. The Makinson text also goes on to discuss uncertain inference relations, mainly qualitative but also probabilistic.

    Google Scholar 

  • The following are two very clear textbook discussions of traditional informal proof strategies in mathematics. Section 2.6 of the Bloch text also contains useful advice on writing proofs in coherent and elegant English:

    Google Scholar 

  • Bloch ED (2011) Proofs and fundamentals: a first course in abstract mathematics, 2nd edn. Springer, New York, chapter 2

    Google Scholar 

  • Velleman DJ (2006) How to prove it: a structured approach, 2nd edn. Cambridge University Press, Cambridge/New York, chapter 3

    Google Scholar 

  • For a formal study of higher-level rules and proof theory, a good entry point would be:

    Google Scholar 

  • von Plato J The development of proof theory. In: Stanford encyclopedia of philosophy. http://plato.stanford.edu/entries/proof-theory-development

  • For an aerial view of the jungle of textbook systems of ‘natural deduction’, with also a brief introduction to proof theory, see:

    Google Scholar 

  • Pelletier J, Hazen A (2012) Natural deduction. In: Gabbay D, Woods J (eds) Handbook of the history of logic. Central concepts, vol 11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Makinson .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Makinson, D. (2012). Just Supposing: Proof and Consequence. In: Sets, Logic and Maths for Computing. Undergraduate Topics in Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-2500-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2500-6_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2499-3

  • Online ISBN: 978-1-4471-2500-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics