Introduction to Mechanics of Materials

  • Tomi Laurila
  • Vesa Vuorinen
  • Toni T. Mattila
  • Markus Turunen
  • Mervi Paulasto-Kröckel
  • Jorma K. Kivilahti
Chapter
Part of the Microsystems book series (MICT)

Abstract

An overview of the mechanical properties of different classes of materials typically encountered in microsystems is presented. The response of materials to mechanical loading is discussed from the perspective of the deformation mechanisms of the materials. After that the formation of stresses and strains under commonly encountered loading conditions is discussed. Emphasis is placed on thermomechanical, mechanical shock and vibrational loadings. Finally, formation of typical failures in electronic devices is briefly discussed.

Keywords

Fatigue Anisotropy Attenuation Brittle Recrystallization 

References

  1. 1.
    M.F. Ashby, D.R.H. Jones, Engineering MaterialsAn Introduction to Their Properties and Applications (Pergamon Press, Oxford, 1980), p. 278Google Scholar
  2. 2.
    H. Ma, J. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44, 1141–1158 (2009)CrossRefGoogle Scholar
  3. 3.
    M.E. Fine, in Physical basis for mechanical properties of solders, ed. by K.J. Puttlitz, K.A. Stalter. Handbook of Lead-Free Solder Technology for Microelectronics Assemblies (Marcel Dekker, Inc., New York, 2004), pp. 211–237Google Scholar
  4. 4.
    G. Dieter, Mechanical Metallurgy (McGraw-Hill, Inc., New York, 1986), p. 751Google Scholar
  5. 5.
    W.D. Callister, Materials Science and EngineeringAn Introduction (Wiley, New York, 2007), p. 975 Google Scholar
  6. 6.
    W.G. Johnston, J.J. Gilman, Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. J. Appl. Phys. 30(2), 29–144 (1959)CrossRefGoogle Scholar
  7. 7.
    J.J. Gilman, W.G. Johnston, in The origin and growth of glide bands in lithium fluoride crystals, ed. by J.C. Fuisher, W.G. Jognston, R. Thomson, T. Vreeland Jr. Dislocations and Mechanical Properties of Crystals (John Wiley & Sons, New York, 1956), pp. 117–163Google Scholar
  8. 8.
    J.P. Hirth, J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968), p. 780Google Scholar
  9. 9.
    G.E. Dieter, Mechanical Metallurgy, 3rd edn. (McGraw-Hill Book Company, New York, 1986), p. 751Google Scholar
  10. 10.
    T. Lyman, H. E. Boyem, P. N. Unterweiser, J. E. Foster, J. P. Hontas, H. Lawton, Properties and Selection of Metals, Metals Handbook, vol. 1, 8th edn. (American Society for Metals, New York, 1961), p. 1300Google Scholar
  11. 11.
    W. Sylwestrowicz, E.O. Hall, The deformation and ageing of mild steel. Proc. Phys. Soc., 64(6), 495–502 (1951)Google Scholar
  12. 12.
    E.O. Hall, The deformation and ageing of mild steel: II characteristics of the Lüders deformation. Proc. Phys. Soc., 64(9), 742–747 (1951)Google Scholar
  13. 13.
    E.O. Hall, The deformation and ageing of mild steel: III discussion and results. Proc. Phys. Soc., 64(9), 747–753 (1951)Google Scholar
  14. 14.
    N.J. Petch, The cleavage strength of polycrystals. J. Iron Steel Inst. 5, 25–28 (1953)Google Scholar
  15. 15.
    K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743–5774 (2003)CrossRefGoogle Scholar
  16. 16.
    C.P. Pande, K.P. Cooper, Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Prog. Mater. Sci. 54, 689–706 (2009)CrossRefGoogle Scholar
  17. 17.
    S.P. Baker, Plastic deformation and strength of materials in small dimensions. Mater. Sci. Eng. A 16, 319–321 (2001)Google Scholar
  18. 18.
    W.D. Nix, Mechanical properties of thin films. Metall. Trans. A 20(11), 2217–2245 (1989)CrossRefGoogle Scholar
  19. 19.
    M. Avrami, Kinetics of phase change. II Transformation–time relations for random distribution of nuclei. J. Chem. Phys. 8, 212–224 (1940)CrossRefGoogle Scholar
  20. 20.
    C.F. Coombs Jr. Printed Circuits Handbook, 5th edn. (McGraw-Hill, New York, 2001), p. 1200Google Scholar
  21. 21.
    Y.S. Touloukian, C.Y. Ho, Thermal Expansion: Metallic Elements and Alloys (IFI/Plenum, New York, 1975), p. 316Google Scholar
  22. 22.
    P.M. Hall, Forces, moments, and displacements during thermal chamber cycling of leadless ceramic chip carriers soldered to printed boards. IEEE Trans. Compon. Hybrids Manuf. Technol. 7(4), 314–327 (1984)CrossRefGoogle Scholar
  23. 23.
    IEC 60068-2-14 Ed. 5.0 b: 1984, Environmental testing—part 2: tests. Test N: change of temperature, International Electrotechnical Commission, (1984), p. 34Google Scholar
  24. 24.
    JESD22-B111, Board Level Drop Test Method of Components for Handheld Electronic Products. (JEDEC Solid State Technology Association, Arlington 2003), p. 16Google Scholar
  25. 25.
    IEC 91/530/NP, Surface mounting technology—environmental and endurance test methods for surface mount solder joint. Part 3: cyclic drop test, International Electrotechnical Commission, proposal (26.9.2005), p. 14Google Scholar
  26. 26.
    P. Marjamäki, Vibration Test as a New Testing Method for Studying The Mechanical Reliability of Solder Interconnections under Shock Loading Conditions, Dissertation, Espoo, 2007, TKK-EPT-17, Otamedia, p. 128Google Scholar
  27. 27.
    T.O. Reinikainen, P. Marjamäki, J.K. Kivilahti, Deformation characteristics and microstructural evolution of SnAgCu solder joints, The Proceedings of the 6th EuroSimE Conference, Berlin, Germany, 18–20 April 2005, IEEE, (2005), pp. 91–98Google Scholar
  28. 28.
    R. Nikander, Characterization of the Mechanical Properties of the Dilute Tin Based Solder Alloys, Espoo, Master’s thesis, Helsinki University of Technology, 1999, p. 79Google Scholar
  29. 29.
    T. Reinikainen, J.K. Kivilahti, Deformation behavior of dilute SnBi(0.5 to 6 at. pct) solid solutions. Metall. Mater. Trans. A 30, 123–132 (1999)CrossRefGoogle Scholar
  30. 30.
    P. Adeva, G. Caruana, O.A. Rauno, M. Torralba, Microstructure and high temperature mechanical properties of tin. Mater. Sci. Eng. A 194(1), 17–23 (1995)CrossRefGoogle Scholar
  31. 31.
    T.T. Mattila, M. Paulasto-Kröckel, Toward comprehensive reliability assessment of electronic component boards. Microelectron. Reliab. (a Special Issue) 51(6), 1077–1091 (2011)CrossRefGoogle Scholar
  32. 32.
    T.T. Mattila, Reliability of High-Density Lead-Free Solder Interconnections under Thermal Cycling and Mechanical Shock Loading, Espoo, 2005, HUT-EPT-13, Otamedia, p. 202, http://lib.tkk.fi/Diss/2005/isbn9512279843/
  33. 33.
    T.T. Mattila, T. Laurila, J.K. Kivilahti, in Metallurgical factors behind the reliability of high density lead-free interconnections, ed. by E. Suhir, C.P. Wong, Y.C. Lee. Micro-and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging, vol. 1 (Springer Publishing Company, New York, 2007), pp. 313–350Google Scholar
  34. 34.
    T.T. Mattila, J.K. Kivilahti, The role of recrystallization in the failure mechanism of SnAgCu solder interconnections under thermomechanical loading. IEEE Trans. Compon. Packag. Technol. 33(3), 629–635 (2010)CrossRefGoogle Scholar
  35. 35.
    T.T. Mattila, M. Paulasto-Kröckel, J.K. Kivilahti, in The failure mechanism of recrystallization assisted cracking of solder interconnections, ed. by K. Sztwiertnia. Recrystallization (Intech Open Access Publishing), ISBN 979-953-307-346-9, (in print)Google Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Tomi Laurila
    • 1
  • Vesa Vuorinen
    • 1
  • Toni T. Mattila
    • 1
  • Markus Turunen
    • 1
  • Mervi Paulasto-Kröckel
    • 1
  • Jorma K. Kivilahti
    • 1
  1. 1.School of Electrical EngineeringAalto UniversityEspooFinland

Personalised recommendations