Advertisement

Pharmacological Treatments

  • Olivia Gosseries
  • Marie Thonnard
  • Steven Laureys
Chapter

Abstract

We review the current state of knowledge for potentially useful drugs acting on the recovery of consciousness in severely brain damaged patients. Exploratory and retrospective studies as well as case reports concerning sporadic cases of spectacular recovery are discussed regarding drugs such as amantadine, levodopa, bromocriptine, apomorphine, methyphenidate, zolpidem, baclofen, sertaline, amitriptyline, desipramine, and lamotrigine. Indications on the underlying mechanisms possibly explaining the effects of these drugs on the awakening and recovery of consciousness are also reported in this challenging population.

Keywords

Vegetative State Globus Pallidus Severe Traumatic Brain Injury Conscious State Minimally Conscious State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brown EN, Lydic R, Schiff ND. General anesthesia, sleep and coma. N Engl J Med. 2010;363(27):2638–50.PubMedCrossRefGoogle Scholar
  2. 2.
    The Multi-Society Task Force on PVS. Medical aspects of the persistent vegetative state (1). N Engl J Med. 1994;330(21):1499–508.CrossRefGoogle Scholar
  3. 3.
    Giacino JT, Ashwal S, Childs N, et al. The minimally conscious state: definition and diagnostic criteria. Neurology. 2002;58(3):349–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Bruno MA, Vanhaudenhuyse A, Thibaut A, Moonen G, Laureys S. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness. J Neurol. 2011;258(7):1373–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Lombardi F, Taricco M, De Tanti A, Telaro E, Liberati A. Sensory stimulation of brain-injured individuals in coma or vegetative state: results of a Cochrane systematic review, Clin Rehabil. 2002;16(5):464–72.Google Scholar
  6. 6.
    Zafonte R, Lexell J, Cullen N. Possible applications for dopaminergic agents following traumatic brain injury: part 2. J Head Trauma Rehabil. 2001;16(1):112–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Born JD. The Glasgow-Liège Scale. Prognostic value and evaluation of motor response and brain stem reflexes after severe head injury. Acta Neurochir. 1988;95:49–52.CrossRefGoogle Scholar
  8. 8.
    Saniova B, Drobny M, Kneslova L, et al. The outcome of patients with severe head injuries treated with amantadine sulphate. J Neural Transm. 2004;111(4):511–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Folstein M, Robins L, Helzer J. The mini-mental state examination. Arch Gen Psychiatry. 1983;40(7):812.PubMedCrossRefGoogle Scholar
  10. 10.
    Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet. 1975;1(7905):480–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Rappaport M, Hall KM, Hopkins K, et al. Disability rating scale for severe head trauma: coma to community. Arch Phys Med Rehabil. 1982;63(3):118–23.PubMedGoogle Scholar
  12. 12.
    Meythaler JM, Brunner RC, Johnson A, et al. Amantadine to improve neurorecovery in ­traumatic brain injury-associated diffuse axonal injury: a pilot double-blind randomized trial. J Head Trauma Rehabil. 2002;17(4):300–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Rappaport M. The coma/near coma scale. 2000. Retrieved 21 Aug 21, 2006, from http://www.tbims.org/combi/cnc
  14. 14.
    Zafonte R, Watanabe T, Mann N. Amantadine: a potential treatment for the minimally conscious state. Brain Inj. 1998;12(7):617–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. 2004;85(12):2020–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Schnakers C, Hustinx R, Vandewalle G, et al. Measuring the effect of amantadine in chronic anoxic minimally conscious state. J Neurol Neurosurg Psychiatry. 2008;79(2):225–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Gualtieri T, Chandler M, Coons T, et al. Amantadine: a new clinical profile for traumatic brain injury. Clin Neuropharmacol. 1989;12(4):258–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Ansell BJ, Keenan JE. The Western Neuro Sensory Stimulation Profile: a tool for assessing slow-to-recover head-injured patients. Arch Phys Med Rehabil. 1989;70(2):104–8.PubMedGoogle Scholar
  19. 19.
    Patrick P, Blackman J, Mabry J, et al. Dopamine agonist therapy in low-response children following traumatic brain injury. J Child Neurol. 2006;21(10):879–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Hughes S, Colantonio A, Santaguida P, et al. Amantadine to enhance readiness for rehabilitation following severe traumatic brain injury. Brain Inj. 2005;19(14):1197–206.PubMedCrossRefGoogle Scholar
  21. 21.
    Laureys S, Piret S, Ledoux D. Quantifying consciousness. Lancet Neurol. 2005;4(12):789–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Haig A, Ruess J. Recovery from vegetative state of six months’ duration associated with Sinemet (levodopa/carbidopa). Arch Phys Med Rehabil. 1990;71(13):1081–3.PubMedGoogle Scholar
  23. 23.
    Matsuda W, Matsumura A, Komatsu Y, et al. Awakenings from persistent vegetative state: report of three cases with parkinsonism and brain stem lesions on MRI. J Neurol Neurosurg Psychiatry. 2003;74(11):1571–3.PubMedCrossRefGoogle Scholar
  24. 24.
    Matsuda W, Komatsu Y, Yanaka K, et al. Levodopa treatment for patients in persistent vegetative or minimally conscious states. Neuropsychol Rehabil. 2005;15(3–4):414–27.PubMedCrossRefGoogle Scholar
  25. 25.
    Krimchansky B, Keren O, Sazbon L, et al. Differential time and related appearance of signs, indicating improvement in the state of consciousness in vegetative state traumatic brain injury (VS-TBI) patients after initiation of dopamine treatment. Brain Inj. 2004;18(11):1099–105.PubMedCrossRefGoogle Scholar
  26. 26.
    Passler MA, Riggs RV. Positive outcomes in traumatic brain injury-vegetative state: patients treated with bromocriptine. Arch Phys Med Rehabil. 2001;82(3):311–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Fridman E, Calvar J, Bonetto M, et al. Fast awakening from minimally conscious state with apomorphine. Brain Inj. 2009;23(2):172–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Fridman E, Krimchansky B, Bonetto M, et al. Continuous subcutaneous apomorphine for severe disorders of consciousness after traumatic brain injury. Brain Inj. 2010;24(4):636–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Chew E, Zafonte R. Pharmacological management of neurobehavioral disorders following traumatic brain injury–a state-of-the-art review. J Rehabil Res Dev. 2009;46(6):851–79.PubMedCrossRefGoogle Scholar
  30. 30.
    Moein H, Khalili H, Keramatian K. Effect of methylphenidate on ICU and hospital length of stay in patients with severe and moderate traumatic brain injury. Clin Neurol Neurosurg. 2006;108(6):539–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Martin R, Whyte J. The effects of methylphenidate on command following and yes/no communication in persons with severe disorders of consciousness: a meta-analysis of n-of-1 studies. Am J Phys Med Rehabil. 2007;86(8):613–20.PubMedCrossRefGoogle Scholar
  32. 32.
    Gualtieri C, Evans R. Stimulant treatment for the neurobehavioural sequelae of traumatic brain injury. Brain Inj. 1988;2(4):273–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Whyte J, Hart T, Vaccaro M, et al. Effects of methylphenidate on attention deficits after traumatic brain injury: a multidimensional, randomized, controlled trial. Am J Phys Med Rehabil. 2004;83(6):401–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Patrick P, Buck M, Conaway M, et al. The use of dopamine enhancing medications with children in low response states following brain injury. Brain Inj. 2003;17(6):497–506.PubMedCrossRefGoogle Scholar
  35. 35.
    Clauss RP, Guldenpfennig WM, Nel HW, et al. Extraordinary arousal from semi-comatose state on zolpidem. A case report. S Afr Med J. 2000;90(1):68–72.PubMedGoogle Scholar
  36. 36.
    Clauss R, Nel W. Drug induced arousal from the permanent vegetative state. NeuroRehabilitation. 2006;21(1):23–8.PubMedGoogle Scholar
  37. 37.
    Hagen C, Malkmus D, Durham P. Levels of cognitive functioning. Downey: Rancho Los Amigos Hospital Inc.; 1987.Google Scholar
  38. 38.
    Brefel-Courbon C, Payoux P, Ory F, et al. Clinical and imaging evidence of zolpidem effect in hypoxic encephalopathy. Ann Neurol. 2007;62(1):102–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Cohen SI, Duong TT. Increased arousal in a patient with anoxic brain injury after administration of zolpidem. Am J Phys Med Rehabil. 2008;87(3):229–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Shames JL, Ring H. Transient reversal of anoxic brain injury-related minimally conscious state after zolpidem administration: a case report. Arch Phys Med Rehabil. 2008;89(2):386–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Whyte J, Myers R. Incidence of clinically significant responses to zolpidem among patients with disorders of consciousness: a preliminary placebo controlled trial. Am J Phys Med Rehabil. 2009;88(5):410–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Lo Y, Tan E, Ratnagopal P, et al. Zolpidem and its effects on hypoxic encephalopathy. Ann Neurol. 2008;64(4):477–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Singh R, McDonald C, Dawson K, et al. Zolpidem in a minimally conscious state. Brain Inj. 2008;22(1):103–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Cohen L, Chaaban B, Habert MO. Transient improvement of aphasia with zolpidem. N Engl J Med. 2004;350(9):949–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Clauss RP, Nel WH. Effect of zolpidem on brain injury and diaschisis as detected by 99mTc HMPAO brain SPECT in humans. Arzneimittelforschung. 2004;54(10):641–6.PubMedGoogle Scholar
  46. 46.
    Hall S, Yamawaki N, Fisher A, et al. GABA(A) alpha-1 subunit mediated desynchronization of elevated low frequency oscillations alleviates specific dysfunction in stroke–a case report. Clin Neurophysiol. 2010;121(4):549–55.PubMedCrossRefGoogle Scholar
  47. 47.
    Schiff N. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci. 2010;33(1):1–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Kawecki Z, Kwiatkowski S, Grzegorzewski P, et al. Sudden improvement of all neurological functions after general anesthesia and two-day intrathecal infusion of baclofen in a child with primary brain-stem injury. Przegl Lek. 2007;64(2):13–4.PubMedGoogle Scholar
  49. 49.
    Sarà M, Sacco S, Cipolla F, et al. An unexpected recovery from permanent vegetative state. Brain Inj. 2007;21(1):101–3.PubMedCrossRefGoogle Scholar
  50. 50.
    Taira T, Hori T. Intrathecal baclofen in the treatment of post-stroke central pain, dystonia, and persistent vegetative state. Acta Neurochir Suppl. 2007;97(Pt 1):227–9.PubMedGoogle Scholar
  51. 51.
    Sarà M, Pistoia F, Mura E, et al. Intrathecal baclofen in patients with persistent vegetative state: 2 hypotheses. Arch Phys Med Rehabil. 2009;90(7):1245–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Taira T. Intrathecal administration of GABA agonists in the vegetative state. Prog Brain Res. 2009;177:317–28.PubMedCrossRefGoogle Scholar
  53. 53.
    Meythaler J, Depalma L, Devivo M, et al. Sertraline to improve arousal and alertness in severe traumatic brain injury secondary to motor vehicle crashes. Brain Inj. 2001;15(4):321–31.PubMedCrossRefGoogle Scholar
  54. 54.
    Reinhard D, Whyte J, Sandel M. Improved arousal and initiation following tricyclic antidepressant use in severe brain injury. Arch Phys Med Rehabil. 1996;77(1):80–3.PubMedCrossRefGoogle Scholar
  55. 55.
    Showalter P, Kimmel D. Stimulating consciousness and cognition following severe brain injury: a new potential clinical use for lamotrigine. Brain Inj. 2000;14:997–1001.PubMedCrossRefGoogle Scholar
  56. 56.
    Clauss R. Neurotransmitters in coma, vegetative and minimally conscious states, pharmacological interventions. Med Hypotheses. 2010;75(3):287–90.PubMedCrossRefGoogle Scholar
  57. 57.
    Schiff N. Recovery of consciousness after severe brain injury: the role of arousal regulation mechanisms and some speculation on the heart-brain interface. Cleve Clin J Med. 2010;77 Suppl 3:S27–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Laureys S, Schiff N. Coma and consciousness: paradigms (re)framed by neuroimaging. Neuroimage. 2011 Dec 27. [Epub ahead of print]Google Scholar
  59. 59.
    Pistoia F, Mura E, Govoni S, et al. Awakenings and awareness recovery in disorders of consciousness: is there a role for drugs? CNS Drugs. 2010;24(8):625–38.PubMedCrossRefGoogle Scholar
  60. 60.
    American Congress of Rehabilitation Medicine, Brain Injury-Interdisciplinary Special Interest Group, Disorders of Consciousness Task Force, Seel R, Sherer M, Whyte J, Katz D, Giacino J, Rosenbaum A, Hammond F, Kalmar K, Pape T, Zafonte R, Biester R, Kaelin D, Kean J, Zasler N. Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Arch Phys Med Rehabil. 2010;91(12):1795–813.PubMedCrossRefGoogle Scholar
  61. 61.
    Schiff ND, Giacino JT, Kalmar K, et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 2007;448(7153):600–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Olivia Gosseries
    • 1
    • 2
    • 3
  • Marie Thonnard
    • 1
    • 2
  • Steven Laureys
    • 1
    • 2
  1. 1.Coma Science Group, Cyclotron Research CentreUniversity of LiègeLiègeBelgium
  2. 2.Department of NeurologyUniversity Hospital of LiègeLiègeBelgium
  3. 3.National Fund for Scientific ResearchLiègeBelgium

Personalised recommendations