Feasibility of Oral Feeding in Patients with Disorders of Consciousness

  • Audrey Maudoux
  • Ingrid Breuskin
  • Olivia Gosseries
  • Caroline Schnakers
  • Audrey Vanhaudenhuyse


Eating and drinking are basic pleasures of life, considered as obvious to most of us. However, the ease with which we perform these actions masks the complexity of the underlying neuronal control. According to several studies, the frequency of dysphagia among subjects with severe brain injury is frequent. Faced with the difficult management of patients with an altered state of consciousness, the use of gustatory stimuli, as well as the rehabilitation of swallowing could constitute a supplementary therapy which is currently rarely considered. This review aims to summarize our current knowledge regarding the neural control of swallowing, to assess the role of awareness and willingness on the control of swallowing and, finally, to establish the feasibility of oral feeding in patients with disorders of consciousness.


Anterior Cingulate Cortex Oral Feeding Central Pattern Generator Altered State Minimally Conscious State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mackay LE, Morgan AS, Bernstein BA. Factors affecting oral feeding with severe traumatic brain injury. J Head Trauma Rehabil. 1999;14:435–47.PubMedCrossRefGoogle Scholar
  2. 2.
    Winstein CJ. Neurogenic dysphagia. Frequency, progression, and outcome in adults following head injury. Phys Ther. 1983;63:1992–7.PubMedGoogle Scholar
  3. 3.
    Mackay LE, Morgan AS, Bernstein BA. Swallowing disorders in severe brain injury: risk factors affecting return to oral intake. Arch Phys Med Rehabil. 1999;80:365–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Brady SL, Darragh M, Escobar NG, et al. Persons with disorders of consciousness: are oral feedings safe/effective? Brain Inj. 2006;20:1329–34.PubMedCrossRefGoogle Scholar
  5. 5.
    Bleeckx, D. Dysphagie: évaluation et rééducation des troubles de la déglutition. De Boeck 2002, 1st edn.Google Scholar
  6. 6.
    Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81:929–69.PubMedGoogle Scholar
  7. 7.
    Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol. 2003;114:2226–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Sinclair WJ. Initiation of reflex swallowing from the naso- and oropharynx. Am J Physiol. 1970;218:956–60.PubMedGoogle Scholar
  9. 9.
    Doty R. Neural organisation of deglutition. In: Code CF, editor. Handbook of physiology. Washington, DC: American Physiological Society; 1968. p. 1861–902.Google Scholar
  10. 10.
    McFarland. L’anatomie en orthophonie : Parole, voix et déglutition. Elsevier Masson 2006.Google Scholar
  11. 11.
    Mistry S, Hamdy S. Neural control of feeding and swallowing. Phys Med Rehabil Clin N Am. 2008;19:709–28, vii-viii.PubMedCrossRefGoogle Scholar
  12. 12.
    Miller FR, Sherrington CS. Some observations on the buccopharyngeal stage of reflex deglutition in the cat. Q J Exp Physiol. 1916;9:147–86.Google Scholar
  13. 13.
    Hughes T. Neurology of swallowing and oral feeding disorders: assessment and management. J Neurol Neurosurg Psychiatry. 2003;74 Suppl 3:iii48–52.PubMedGoogle Scholar
  14. 14.
    Ciampini G, Jean A. Role of glossopharyngeal and trigeminal afferents in the initiation and propagation of swallowing. I–Glossopharyngeal afferents. J Physiol Paris. 1980;76:49–60.PubMedGoogle Scholar
  15. 15.
    Delaney AL, Arvedson JC. Development of swallowing and feeding: prenatal through first year of life. Dev Disabil Res Rev. 2008;14:105–17.PubMedCrossRefGoogle Scholar
  16. 16.
    Peleg D, Goldman JA. Fetal deglutition: a study of the anencephalic fetus. Eur J Obstet Gynecol Reprod Biol. 1978;8:133–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Martin RE, Sessle BJ. The role of the cerebral cortex in swallowing. Dysphagia. 1993;8:195–202.PubMedCrossRefGoogle Scholar
  18. 18.
    Miller AJ. The neuroscientific principles of swallowing and dysphagia. San Diego/London: Singular Publication Group; 1999.Google Scholar
  19. 19.
    Michou E, Hamdy S. Cortical input in control of swallowing. Curr Opin Otolaryngol Head Neck Surg. 2009;17:166–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol. 2001;85:938–50.PubMedGoogle Scholar
  21. 21.
    Kern MK, Jaradeh S, Arndorfer RC, Shaker R. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol. 2001;280:G354–60.PubMedGoogle Scholar
  22. 22.
    Young EC, Durant-Jones L. Developing a dysphagia program in an acute care hospital: a needs assessment. Dysphagia. 1990;5:159–65.PubMedCrossRefGoogle Scholar
  23. 23.
    Gordon C, Hewer RL, Wade DT. Dysphagia in acute stroke. Br Med J (Clin Res Ed). 1987;295:411–4.CrossRefGoogle Scholar
  24. 24.
    Hamdy S, Aziz Q, Rothwell JC, et al. The cortical topography of human swallowing musculature in health and disease. Nat Med. 1996;2:1217–24.PubMedCrossRefGoogle Scholar
  25. 25.
    Hamdy S, Aziz Q, Rothwell JC, et al. Explaining oropharyngeal dysphagia after unilateral hemispheric stroke. Lancet. 1997;350:686–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Hamdy S, Rothwell JC, Aziz Q, et al. Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat Neurosci. 1998;1:64–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Hamdy S, Aziz Q, Rothwell JC, et al. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology. 1998;115:1104–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Hamdy S, Mikulis DJ, Crawley A, et al. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol. 1999;277:G219–25.PubMedGoogle Scholar
  29. 29.
    Hamdy S, Rothwell JC, Brooks DJ, et al. Identification of the cerebral loci processing human swallowing with H2(15)O PET activation. J Neurophysiol. 1999;81:1917–26.PubMedGoogle Scholar
  30. 30.
    Mosier K, Patel R, Liu WC, et al. Cortical representation of swallowing in normal adults: functional implications. Laryngoscope. 1999;109:1417–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Zald DH, Pardo JV. The functional neuroanatomy of voluntary swallowing. Ann Neurol. 1999;46:281–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Mosier KM, Liu WC, Maldjian JA, Shah R, Modi B. Lateralization of cortical function in swallowing: a functional MR imaging study. AJNR Am J Neuroradiol. 1999;20:1520–6.PubMedGoogle Scholar
  33. 33.
    Paus T. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci. 2001;2:417–24.PubMedCrossRefGoogle Scholar
  34. 34.
    Daniels SK, Foundas AL. The role of the insular cortex in dysphagia. Dysphagia. 1997;12:146–56.PubMedCrossRefGoogle Scholar
  35. 35.
    Penfield W, Rasmussen T. The cerebral cortex of man. New York: Macmillan; 1950.Google Scholar
  36. 36.
    Burton H, Benjamin RM. Central projections of the gustatory system. In: Beidler LM, editor. Handbook of sensory physiology, Chemical Senses Sect 2, Taste, vol. 4. Berlin: Springer; 1971. p. 148–63.Google Scholar
  37. 37.
    Small DM, Jones-Gotman M, Zatorre RJ, et al. A role for the right anterior temporal lobe in taste quality recognition. J Neurosci. 1997;17:5136–42.PubMedGoogle Scholar
  38. 38.
    Miall RC. The cerebellum, predictive control and motor coordination. Novartis Found Symp. 1998;218:272–84; discussion 84–90.PubMedGoogle Scholar
  39. 39.
    Ivry R. Cerebellar timing systems. Int Rev Neurobiol. 1997;41:555–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Doya K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol. 2000;10:732–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Hikosaka O, Nakahara H, Rand MK, et al. Parallel neural networks for learning sequential procedures. Trends Neurosci. 1999;22:464–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Robbins J, Levin RL. Swallowing after unilateral stroke of the cerebral cortex: preliminary experience. Dysphagia. 1988;3:11–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Lichter I, Muir RC. The pattern of swallowing during sleep. Electroencephalogr Clin Neurophysiol. 1975;38:427–32.PubMedCrossRefGoogle Scholar
  44. 44.
    Sato K, Nakashima T. Human adult deglutition during sleep. Ann Otol Rhinol Laryngol. 2006;115:334–9.PubMedGoogle Scholar
  45. 45.
    de Larminat V, Dureuil B. Changes in the deglutition reflex during the perioperative period. Ann Fr Anesth Reanim. 1994;13:49–56.PubMedCrossRefGoogle Scholar
  46. 46.
    Giacino JT, Ashwal S, Childs N, et al. The minimally conscious state: definition and diagnostic criteria. Neurology. 2002;58:349–53.PubMedCrossRefGoogle Scholar
  47. 47.
    Laureys S, Owen AM, Schiff ND. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 2004;3:537–46.PubMedCrossRefGoogle Scholar
  48. 48.
    MacKay LaM AS. Early swallowing disorders with severe head injuries: relationships between the RLA and the progression of oral intake. Dysphagia. 1993;8:161.Google Scholar
  49. 49.
    Hagen C. The Rancho Levels of Cognitive Functioning. The revised levels - 3rd edition. 1998. Rancho Los Amigos Medical Center.Google Scholar
  50. 50.
    Ward EC, Green K, Morton AL. Patterns and predictors of swallowing resolution following adult traumatic brain injury. J Head Trauma Rehabil. 2007;22:184–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Cherney LR, Halper AS. Swallowing problems in adults with traumatic brain injury. Semin Neurol. 1996;16:349–53.PubMedCrossRefGoogle Scholar
  52. 52.
    Morgan A, Ward E, Murdoch B, et al. Incidence, characteristics, and predictive factors for Dysphagia after pediatric traumatic brain injury. J Head Trauma Rehabil. 2003;18:239–51.PubMedCrossRefGoogle Scholar
  53. 53.
    O’Neil-Pirozzi TM, Momose KJ, Mello J, et al. Feasibility of swallowing interventions for tracheostomized individuals with severely disordered consciousness following traumatic brain injury. Brain Inj. 2003;17:389–99.PubMedCrossRefGoogle Scholar
  54. 54.
    Splaingard ML, Hutchins B, Sulton LD, Chaudhuri G. Aspiration in rehabilitation patients: videofluoroscopy vs bedside clinical assessment. Arch Phys Med Rehabil. 1988;69:637–40.PubMedGoogle Scholar
  55. 55.
    Linden P, Kuhlemeier KV, Patterson C. The probability of correctly predicting subglottic penetration from clinical observations. Dysphagia. 1993;8:170–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Formisano R, Voogt RD, Buzzi MG, et al. Time interval of oral feeding recovery as a prognostic factor in severe traumatic brain injury. Brain Inj. 2004;18:103–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Audrey Maudoux
    • 1
    • 2
  • Ingrid Breuskin
    • 1
  • Olivia Gosseries
    • 2
  • Caroline Schnakers
    • 2
  • Audrey Vanhaudenhuyse
    • 2
  1. 1.Oto-Rhino-Laryngology Head and Neck Surgery DepartmentUniversity Hospital of LiègeLiègeBelgium
  2. 2.Coma Science Group, Cyclotron Research CenterUniversity of LiègeLiègeBelgium

Personalised recommendations