Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Proton Exchange Membrane (PEM) fuel cells are extensively used for mobile and portable applications. This is due to their compactness, low weight, high power density, and clean, pollutant-free operation. Besides, their low temperature of operation (typically 60–80 degrees Celsius) allows fast starting times, a key feature for automotive applications, for instance. In a PEM Fuel Cell, a hydrogen-rich fuel is injected by the anode, and an oxidant (usually pure oxygen or air) is fed through the cathode. Both electrodes are separated by a solid electrolyte that allows ionic conduction and avoids electrons circulation. The output of a PEM Fuel Cell is electric energy, with water and heat as the only by-products. In this chapter, the basics of PEM fuel cells operation are reviewed, including electrochemical equations, losses, and efficiency issues. The state-of-the-art in PEM fuel cells technology is summarised, including membranes, electrodes, catalysts, line heaters, water, and heat management devices. Control-oriented models in the literature are discussed, and typical control objectives are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida PE, Godoy Simoes M (2005) Neural optimal control of PEM fuel cells with parametric CMAC networks. IEEE Trans Ind Appl 41(1):237–245

    Article  Google Scholar 

  2. Amphlett J, Baumert R, Mann R, Peppley B, Roberge P (1995) Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. J Electrochem Soc 142(1):9–15

    Article  Google Scholar 

  3. Arce A, del Real A, Bordons C, Ramirez D (2010) Real-time implementation of a constrained MPC for efficient airflow control in a PEM fuel cell. IEEE Trans Ind Electron 57(6):1892–1905

    Article  Google Scholar 

  4. Barbir F (2005) PEM fuel cells: theory and practice. Elsevier, Amsterdam

    Google Scholar 

  5. Bao C, Ouyang M, Yi B (2006) Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system—I. Control-oriented modeling. Int J Hydrog Energy 31(13):1879–1896

    Article  Google Scholar 

  6. Boulon L, Hissel D, Bouscayrol A, Pera MC (2010) From modeling to control of a PEM fuel cell using energetic macroscopic representation. IEEE Trans Ind Electron 57(6):1882–1891

    Article  Google Scholar 

  7. Feroldi D, Serra M, Riera J (2009) Design and analysis of fuel cell hybrid systems oriented to automotive applications. IEEE Trans Veh Technol 58(9):4720–4729

    Article  Google Scholar 

  8. Gao F, Blunier B, Simões M, Miraoui A (2010) PEM fuel cell stack modeling for real-time emulation in hardware-in-the-loop applications. IEEE Trans Energy Convers 26(1):184–194

    Google Scholar 

  9. Grasser F, Rufer A (2007) A fully analytical PEM fuel cell system model for control applications. IEEE Trans Ind Appl 43(6):1499–1506

    Article  Google Scholar 

  10. Golbert J, Lewind R (2004) Model-based control of fuel cell. J Power Sources 135:135–151

    Article  Google Scholar 

  11. Gottesfeld S, Zawodzinski T (1997) Polymer electrolyte fuel cells. Wiley, New York

    Google Scholar 

  12. Husar A, Serra M, Kunusch C (2007) Description of gasket failure in a 7 cell PEMFC stack. J Power Sources 169(1):85–91

    Article  Google Scholar 

  13. Husar A (2008) Dynamic water management of an open-cathode self-humidified PEMFC system. PhD proposal at Universitat Politèctica de Catalunya

    Google Scholar 

  14. Khan MJ, Iqbal MT (2005) Modelling and analysis of electro-chemical, thermal, and reactant flow dynamics for a PEM fuel cell system. Fuel Cells 5(4):463–475

    Article  Google Scholar 

  15. Kim B, Chang L, Gadd G (2007) Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76:485–494

    Article  Google Scholar 

  16. Kunusch C, Puleston P, Mayosky M, Riera J (2009) Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Trans Control Syst Technol 17(1):167–174

    Article  Google Scholar 

  17. Larminie J, Dicks A (2000) Fuel cell systems explained. Wiley, West Sussex

    Google Scholar 

  18. Lee J, Lalk T, Appleby A (1998) Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks. J Power Sources 70:258–268

    Article  Google Scholar 

  19. Lee H, Jeong K, Oh B (2003) An experimental study of controlling strategies and drive forces for hydrogen fuel cell hybrid vehicles. Int J Hydrog Energy 28:215–222

    Article  Google Scholar 

  20. Mann R, Amphlett J, Hooper M, Jensen H, Peppley B, Roberge P (2000) Development and application of a generalized steady-state electrochemical model for a PEM fuel cell. J Power Sources 86:173–180

    Article  Google Scholar 

  21. Mathias M, Roth J, Fleming J, Lehnert W (2003) Handbook of fuel cells. Fundamentals, technology and applications. Wiley, New York

    Google Scholar 

  22. Matraji I, Laghrouche S, Wack M (2010) Second order sliding mode control for PEM fuel cells. In: 49th IEEE conference on decision and control CDC 2010, pp 2765–2770

    Chapter  Google Scholar 

  23. Methekar R, Pradas V, Gudi R (2007) Dynamic analysis and linear control strategies for proton exchange membrane fuel cell using a distributed parameter model. J Power Sources 165:152–170

    Article  Google Scholar 

  24. Na W, Gou B (2008) Feedback-linearization-based nonlinear control for PEM fuel cells. IEEE Trans Energy Convers 23:179–190

    Article  Google Scholar 

  25. Na W, Gou B, Diong B (2007) Nonlinear, control of PEM fuel cells by exact linearization. IEEE Trans Ind Appl 43:1426–1433

    Article  Google Scholar 

  26. Nguyen T, White R (1993) A water and heat management model for proton-exchange-membrane fuel cells. J Electrochem Soc 140(8):2178–2186

    Article  Google Scholar 

  27. Pukrushpan J, Stefanopoulou A, Peng H (2004) Control of fuel cell breathing. IEEE Control Syst Mag 24(2):30–46

    Article  MathSciNet  Google Scholar 

  28. Rodatz P (2003) Dynamics of the polymer electrolyte fuel cell: experiments and model-based analysis. PhD thesis, Swiss Federal Institute of Technology Zurich

    Google Scholar 

  29. Sammes N (2006) Fuel cell technologies. Engineering materials and processes. Springer, Berlin

    Book  Google Scholar 

  30. Springer C, Zawodzinski T, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138(8):2334–2342

    Article  Google Scholar 

  31. Squadrito G, Barbera O, Giacoppo G, Urbani F, Passalacqua E (2008) Polymer electrolyte fuel cell stack research and development. Int J Hydrog Energy 33:1941–1946

    Article  Google Scholar 

  32. Talj R, Hissel D, Ortega R, Becherif M, Hilairet M (2010) Experimental validation of a PEM fuel-cell reduced order model and a moto-compressor higher order sliding-mode control. IEEE Trans Ind Electron 57(6):1906–1913

    Article  Google Scholar 

  33. Thounthong P, Raúl S, Davat B (2006) Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle. J Power Sources 158:806–814

    Article  Google Scholar 

  34. Vahidi A, Stefanpoulou A, Peng H (2004) Model predictive control for starvation prevention in hybrid fuel cell systems. In: Proceedings of the American control conference, pp 834–839

    Google Scholar 

  35. Vega-Leal A, Palomo F, Barragán F, García C, Brey J (2007) Design of control systems for portable PEM fuel cells. J Power Sources 169:194–197

    Article  Google Scholar 

  36. Wai R, Duan R, Lee J, Liu L (2005) High-efficiency fuel-cell power inverter with soft-switching resonant technique. IEEE Trans Energy Convers 20:482–492

    Article  Google Scholar 

  37. Wang F, Chen H, Yang Y (2008) Multivariate robust control of a proton exchange membrane fuel cell system. J Power Sources 177:393–403

    Article  Google Scholar 

  38. Woo C, Benziger J (2007) PEM fuel cell current regulation by fuel feed control. Chem Eng Sci 62:957–968

    Article  Google Scholar 

  39. Yuan R, Cao G, Zhu X (2005) Predictive control of proton exchange membrane fuel cell (PEMFC) based on support vector regression machine. In: International conference on machine learning and cybernetics, pp 4028–4031

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kunusch, C., Puleston, P., Mayosky, M. (2012). PEM Fuel Cell Systems. In: Sliding-Mode Control of PEM Fuel Cells. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2431-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2431-3_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2430-6

  • Online ISBN: 978-1-4471-2431-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics