PEM Fuel Cell Systems

  • Cristian Kunusch
  • Paul Puleston
  • Miguel Mayosky
Part of the Advances in Industrial Control book series (AIC)


Proton Exchange Membrane (PEM) fuel cells are extensively used for mobile and portable applications. This is due to their compactness, low weight, high power density, and clean, pollutant-free operation. Besides, their low temperature of operation (typically 60–80 degrees Celsius) allows fast starting times, a key feature for automotive applications, for instance. In a PEM Fuel Cell, a hydrogen-rich fuel is injected by the anode, and an oxidant (usually pure oxygen or air) is fed through the cathode. Both electrodes are separated by a solid electrolyte that allows ionic conduction and avoids electrons circulation. The output of a PEM Fuel Cell is electric energy, with water and heat as the only by-products. In this chapter, the basics of PEM fuel cells operation are reviewed, including electrochemical equations, losses, and efficiency issues. The state-of-the-art in PEM fuel cells technology is summarised, including membranes, electrodes, catalysts, line heaters, water, and heat management devices. Control-oriented models in the literature are discussed, and typical control objectives are analysed.


Fuel Cell Polymeric Membrane Proton Exchange Membrane Fuel Cell Bipolar Plate Fuel Cell System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Almeida PE, Godoy Simoes M (2005) Neural optimal control of PEM fuel cells with parametric CMAC networks. IEEE Trans Ind Appl 41(1):237–245 CrossRefGoogle Scholar
  2. 2.
    Amphlett J, Baumert R, Mann R, Peppley B, Roberge P (1995) Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. J Electrochem Soc 142(1):9–15 CrossRefGoogle Scholar
  3. 3.
    Arce A, del Real A, Bordons C, Ramirez D (2010) Real-time implementation of a constrained MPC for efficient airflow control in a PEM fuel cell. IEEE Trans Ind Electron 57(6):1892–1905 CrossRefGoogle Scholar
  4. 4.
    Barbir F (2005) PEM fuel cells: theory and practice. Elsevier, Amsterdam Google Scholar
  5. 5.
    Bao C, Ouyang M, Yi B (2006) Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system—I. Control-oriented modeling. Int J Hydrog Energy 31(13):1879–1896 CrossRefGoogle Scholar
  6. 6.
    Boulon L, Hissel D, Bouscayrol A, Pera MC (2010) From modeling to control of a PEM fuel cell using energetic macroscopic representation. IEEE Trans Ind Electron 57(6):1882–1891 CrossRefGoogle Scholar
  7. 7.
    Feroldi D, Serra M, Riera J (2009) Design and analysis of fuel cell hybrid systems oriented to automotive applications. IEEE Trans Veh Technol 58(9):4720–4729 CrossRefGoogle Scholar
  8. 8.
    Gao F, Blunier B, Simões M, Miraoui A (2010) PEM fuel cell stack modeling for real-time emulation in hardware-in-the-loop applications. IEEE Trans Energy Convers 26(1):184–194 Google Scholar
  9. 9.
    Grasser F, Rufer A (2007) A fully analytical PEM fuel cell system model for control applications. IEEE Trans Ind Appl 43(6):1499–1506 CrossRefGoogle Scholar
  10. 10.
    Golbert J, Lewind R (2004) Model-based control of fuel cell. J Power Sources 135:135–151 CrossRefGoogle Scholar
  11. 11.
    Gottesfeld S, Zawodzinski T (1997) Polymer electrolyte fuel cells. Wiley, New York Google Scholar
  12. 12.
    Husar A, Serra M, Kunusch C (2007) Description of gasket failure in a 7 cell PEMFC stack. J Power Sources 169(1):85–91 CrossRefGoogle Scholar
  13. 13.
    Husar A (2008) Dynamic water management of an open-cathode self-humidified PEMFC system. PhD proposal at Universitat Politèctica de Catalunya Google Scholar
  14. 14.
    Khan MJ, Iqbal MT (2005) Modelling and analysis of electro-chemical, thermal, and reactant flow dynamics for a PEM fuel cell system. Fuel Cells 5(4):463–475 CrossRefGoogle Scholar
  15. 15.
    Kim B, Chang L, Gadd G (2007) Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76:485–494 CrossRefGoogle Scholar
  16. 16.
    Kunusch C, Puleston P, Mayosky M, Riera J (2009) Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Trans Control Syst Technol 17(1):167–174 CrossRefGoogle Scholar
  17. 17.
    Larminie J, Dicks A (2000) Fuel cell systems explained. Wiley, West Sussex Google Scholar
  18. 18.
    Lee J, Lalk T, Appleby A (1998) Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks. J Power Sources 70:258–268 CrossRefGoogle Scholar
  19. 19.
    Lee H, Jeong K, Oh B (2003) An experimental study of controlling strategies and drive forces for hydrogen fuel cell hybrid vehicles. Int J Hydrog Energy 28:215–222 CrossRefGoogle Scholar
  20. 20.
    Mann R, Amphlett J, Hooper M, Jensen H, Peppley B, Roberge P (2000) Development and application of a generalized steady-state electrochemical model for a PEM fuel cell. J Power Sources 86:173–180 CrossRefGoogle Scholar
  21. 21.
    Mathias M, Roth J, Fleming J, Lehnert W (2003) Handbook of fuel cells. Fundamentals, technology and applications. Wiley, New York Google Scholar
  22. 22.
    Matraji I, Laghrouche S, Wack M (2010) Second order sliding mode control for PEM fuel cells. In: 49th IEEE conference on decision and control CDC 2010, pp 2765–2770 CrossRefGoogle Scholar
  23. 23.
    Methekar R, Pradas V, Gudi R (2007) Dynamic analysis and linear control strategies for proton exchange membrane fuel cell using a distributed parameter model. J Power Sources 165:152–170 CrossRefGoogle Scholar
  24. 24.
    Na W, Gou B (2008) Feedback-linearization-based nonlinear control for PEM fuel cells. IEEE Trans Energy Convers 23:179–190 CrossRefGoogle Scholar
  25. 25.
    Na W, Gou B, Diong B (2007) Nonlinear, control of PEM fuel cells by exact linearization. IEEE Trans Ind Appl 43:1426–1433 CrossRefGoogle Scholar
  26. 26.
    Nguyen T, White R (1993) A water and heat management model for proton-exchange-membrane fuel cells. J Electrochem Soc 140(8):2178–2186 CrossRefGoogle Scholar
  27. 27.
    Pukrushpan J, Stefanopoulou A, Peng H (2004) Control of fuel cell breathing. IEEE Control Syst Mag 24(2):30–46 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rodatz P (2003) Dynamics of the polymer electrolyte fuel cell: experiments and model-based analysis. PhD thesis, Swiss Federal Institute of Technology Zurich Google Scholar
  29. 29.
    Sammes N (2006) Fuel cell technologies. Engineering materials and processes. Springer, Berlin CrossRefGoogle Scholar
  30. 30.
    Springer C, Zawodzinski T, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138(8):2334–2342 CrossRefGoogle Scholar
  31. 31.
    Squadrito G, Barbera O, Giacoppo G, Urbani F, Passalacqua E (2008) Polymer electrolyte fuel cell stack research and development. Int J Hydrog Energy 33:1941–1946 CrossRefGoogle Scholar
  32. 32.
    Talj R, Hissel D, Ortega R, Becherif M, Hilairet M (2010) Experimental validation of a PEM fuel-cell reduced order model and a moto-compressor higher order sliding-mode control. IEEE Trans Ind Electron 57(6):1906–1913 CrossRefGoogle Scholar
  33. 33.
    Thounthong P, Raúl S, Davat B (2006) Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle. J Power Sources 158:806–814 CrossRefGoogle Scholar
  34. 34.
    Vahidi A, Stefanpoulou A, Peng H (2004) Model predictive control for starvation prevention in hybrid fuel cell systems. In: Proceedings of the American control conference, pp 834–839 Google Scholar
  35. 35.
    Vega-Leal A, Palomo F, Barragán F, García C, Brey J (2007) Design of control systems for portable PEM fuel cells. J Power Sources 169:194–197 CrossRefGoogle Scholar
  36. 36.
    Wai R, Duan R, Lee J, Liu L (2005) High-efficiency fuel-cell power inverter with soft-switching resonant technique. IEEE Trans Energy Convers 20:482–492 CrossRefGoogle Scholar
  37. 37.
    Wang F, Chen H, Yang Y (2008) Multivariate robust control of a proton exchange membrane fuel cell system. J Power Sources 177:393–403 CrossRefGoogle Scholar
  38. 38.
    Woo C, Benziger J (2007) PEM fuel cell current regulation by fuel feed control. Chem Eng Sci 62:957–968 CrossRefGoogle Scholar
  39. 39.
    Yuan R, Cao G, Zhu X (2005) Predictive control of proton exchange membrane fuel cell (PEMFC) based on support vector regression machine. In: International conference on machine learning and cybernetics, pp 4028–4031 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Cristian Kunusch
    • 1
  • Paul Puleston
    • 2
  • Miguel Mayosky
    • 3
  1. 1.Institut de Robòtica i Informàtica IndustrialCSIC-Universitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Depto. Electrotecnia, Laboratorio de Electrónica Industrial, Control e Instrumentación (LEICI)Universidad Nacional de La Plata—CONICETLa PlataArgentina
  3. 3.Depto. Electrotecnia, Laboratorio de Electrónica Industrial, Control e Instrumentación (LEICI)Universidad Nacional de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICpBA)La PlataArgentina

Personalised recommendations