Advertisement

Cerebrovascular Disease and Bipolar Disorder

Chapter
Part of the Neuropsychiatric Symptoms of Neurological Disease book series (NSND)

Abstract

Bipolar disorder has been strongly associated with cardiovascular disease although the relationship between the two conditions is complex with regard to directionality and mechanisms. The defining syndromes of bipolar disorder, mania and hypomania, can occur following stroke, including in individuals who are seemingly otherwise not at risk based on age, family history, and past psychiatric history. This has led many experts to conclude that bipolar disorder may occur secondary to stroke. Individuals with idiopathic forms of bipolar disorder further face a considerably increased risk for cerebrovascular mortality and stroke. This elevation in risk is large and estimated to be approximately twice that expected from general population estimates for both cerebrovascular mortality and events. There exist a variety of mechanisms that may link bipolar disorder with cerebrovascular disease, and some risk factors may predispose vulnerable individuals to both conditions. These mechanisms include–though are not limited to–inflammation, oxidative stress/mitochondrial dysfunction, abnormalities in the hypothalamic-pituitary-adrenal axis, and sleep disorders. Clinicians should be mindful of the potential for stroke to induce mania and recognize that individuals with bipolar disorder are at special risk for vascular disease, a risk that early and assertive clinical intervention may potentially mitigate.

Keywords

Bipolar disorder Cerebrovascular disorders Inflammation Major depression Obesity Oxidative stress Pituitary-adrenal function tests Stroke White matter hyperintensities Vascular diseases 

References

  1. 1.
    Starkstein SE, Fedoroff P, Berthier ML, Robinson RG. Manic-depressive and pure manic states after brain lesions. Biol Psychiatry. 1991;29(2):149–58.PubMedCrossRefGoogle Scholar
  2. 2.
    Murray DP, Weiner M, Prabhakar M, Fiedorowicz JG. Mania and mortality: why the excess cardiovascular risk in bipolar disorder? Curr Psychiatry Rep. 2009;11(6):475–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Weiner M, Warren L, Fiedorowicz JG. Cardiovascular morbidity and mortality in bipolar disorder. Ann Clin Psychiatry. 2011;23(1):40–7.PubMedGoogle Scholar
  4. 4.
    Osby U, Brandt L, Correia N, Ekbom A, Sparen P. Excess mortality in bipolar and unipolar disorder in Sweden. Arch Gen Psychiatry. 2001;58(9):844–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Lin HC, Tsai SY, Lee HC. Increased risk of developing stroke among patients with bipolar disorder after an acute mood episode: a six-year follow-up study. J Affect Disord. 2007;100(1–3):49–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Nilsson FM, Kessing LV. Increased risk of developing stroke for patients with major affective disorder—a registry study. Eur Arch Psychiatry Clin Neurosci. 2004;254(6):387–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH. Smoking and mental illness: a population-based prevalence study. JAMA. 2000;284(20):2606–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Kilbourne AM, Rofey DL, McCarthy JF, Post EP, Welsh D, Blow FC. Nutrition and exercise behavior among patients with bipolar disorder. Bipolar Disord. 2007;9(5):443–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Yumru M, Savas HA, Kurt E, et al. Atypical antipsychotics related metabolic syndrome in bipolar patients. J Affect Disord. 2007;98(3):247–52.PubMedCrossRefGoogle Scholar
  10. 10.
    Bradford DW, Kim MM, Braxton LE, Marx CE, Butterfield M, Elbogen EB. Access to medical care among persons with psychotic and major affective disorders. Psychiatr Serv. 2008;59(8):847–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Kilbourne AM, Brar JS, Drayer RA, Xu X, Post EP. Cardiovascular disease and metabolic risk factors in male patients with schizophrenia, schizoaffective disorder, and bipolar disorder. Psychosomatics. 2007;48(5):412–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Birkenaes AB, Opjordsmoen S, Brunborg C, et al. The level of cardiovascular risk factors in bipolar disorder equals that of schizophrenia: a comparative study. J Clin Psychiatry. 2007;68(6):917–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Angst F, Stassen HH, Clayton PJ, Angst J. Mortality of patients with mood disorders: follow-up over 34–38 years. J Affect Disord. 2002;68(2–3):167–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Ahrens B, Muller-Oerlinghausen B, Schou M, et al. Excess cardiovascular and suicide mortality of affective disorders may be reduced by lithium prophylaxis. J Affect Disord. 1995;33(2):67–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Brodersen A, Licht RW, Vestergaard P, Olesen AV, Mortensen PB. Sixteen-year mortality in patients with affective disorder commenced on lithium. Br J Psychiatry. 2000;176:429–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Gildengers AG, Mulsant BH, Al Jurdi RK, et al. The relationship of bipolar disorder lifetime duration and vascular burden to cognition in older adults. Bipolar Disord. 2010;12(8):851–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Robinson RG. Mood disorders secondary to stroke. Semin Clin Neuropsychiatry. 1997;2(4):244–51.PubMedGoogle Scholar
  18. 18.
    Starkstein SE, Robinson RG. Affective disorders and cerebral vascular disease. Br J Psychiatry. 1989;154:170–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Steffens DC, Krishnan KR. Structural neuroimaging and mood disorders: recent findings, implications for classification, and future directions. Biol Psychiatry. 1998;43(10):705–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Fazekas F, Niederkorn K, Schmidt R, et al. White matter signal abnormalities in normal individuals: correlation with carotid ultrasonography, cerebral blood flow measurements, and cerebrovascular risk factors. Stroke. 1988;19(10):1285–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Beyer JL, Young R, Kuchibhatla M, Krishnan KR. Hyperintense MRI lesions in bipolar disorder: a meta-analysis and review. Int Rev Psychiatry. 2009;21(4):394–409.PubMedCrossRefGoogle Scholar
  22. 22.
    Takahashi K, Oshima A, Ida I, et al. Relationship between age at onset and magnetic resonance image-defined hyperintensities in mood disorders. J Psychiatr Res. 2008;42(6):443–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Mahon K, Burdick KE, Szeszko PR. A role for white matter abnormalities in the pathophysiology of bipolar disorder. Neurosci Biobehav Rev. 2010;34(4):533–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Ahn KH, Lyoo IK, Lee HK, et al. White matter hyperintensities in subjects with bipolar disorder. Psychiatry Clin Neurosci. 2004;58(5):516–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Hajek T, Carrey N, Alda M. Neuroanatomical abnormalities as risk factors for bipolar disorder. Bipolar Disord. 2005;7(5):393–403.PubMedCrossRefGoogle Scholar
  26. 26.
    Ovbiagele B, Saver JL. Cerebral white matter hyperintensities on MRI: current concepts and therapeutic implications. Cerebrovasc Dis. 2006;22(2–3):83–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Thomas AJ, O’Brien JT, Davis S, et al. Ischemic basis for deep white matter hyperintensities in major depression: a neuropathological study. Arch Gen Psychiatry. 2002;59(9):785–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Regenold WT, Hisley KC, Phatak P, et al. Relationship of cerebrospinal fluid glucose metabolites to MRI deep white matter hyperintensities and treatment resistance in bipolar disorder patients. Bipolar Disord. 2008;10(7):753–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Yuan P, Salvadore G, Li X, et al. Valproate activates the Notch3/c-FLIP signaling cascade: a strategy to attenuate white matter hyperintensities in bipolar disorder in late life? Bipolar Disord. 2009;11(3):256–69.PubMedCrossRefGoogle Scholar
  30. 30.
    Ahearn EP, Speer MC, Chen YT, et al. Investigation of Notch3 as a candidate gene for bipolar disorder using brain hyperintensities as an endophenotype. Am J Med Genet. 2002;114(6):652–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Pillai JJ, Friedman L, Stuve TA, et al. Increased presence of white matter hyperintensities in adolescent patients with bipolar disorder. Psychiatry Res. 2002;114(1):51–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Lyoo IK, Lee HK, Jung JH, Noam GG, Renshaw PF. White matter hyperintensities on magnetic resonance imaging of the brain in children with psychiatric disorders. Compr Psychiatry. 2002;43(5):361–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Zanetti MV, Schaufelberger MS, de Castro CC, et al. White-matter hyperintensities in first-episode psychosis. Br J Psychiatry. 2008;193(1):25–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Lloyd AJ, Moore PB, Cousins DA, et al. White matter lesions in euthymic patients with bipolar disorder. Acta Psychiatr Scand. 2009;120(6):481–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Cerullo MA, Adler CM, Delbello MP, Strakowski SM. The functional neuroanatomy of bipolar disorder. Int Rev Psychiatry. 2009;21(4):314–22.PubMedCrossRefGoogle Scholar
  36. 36.
    Sheline YI. Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry. 2003;54(3):338–52.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen CH, Suckling J, Lennox BR, Ooi C, Bullmore ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord. 2011;13(1):1–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Pompili M, Innamorati M, Mann JJ, et al. Periventricular white matter hyperintensities as predictors of suicide attempts in bipolar disorders and unipolar depression. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(6):1501–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Moore PB, Shepherd DJ, Eccleston D, et al. Cerebral white matter lesions in bipolar affective disorder: relationship to outcome. Br J Psychiatry. 2001;178:172–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Fagiolini A, Kupfer DJ, Rucci P, Scott JA, Novick DM, Frank E. Suicide attempts and ideation in patients with bipolar I disorder. J Clin Psychiatry. 2004;65(4):509–14.PubMedCrossRefGoogle Scholar
  41. 41.
    Fagiolini A, Frank E, Scott JA, Turkin S, Kupfer DJ. Metabolic syndrome in bipolar disorder: findings from the Bipolar Disorder Center for Pennsylvanians. Bipolar Disord. 2005;7(5):424–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Cassidy F, Ahearn E, Carroll BJ. Elevated frequency of diabetes mellitus in hospitalized manic-depressive patients. Am J Psychiatry. 1999;156(9):1417–20.PubMedGoogle Scholar
  43. 43.
    Fagiolini A, Kupfer DJ, Houck PR, Novick DM, Frank E. Obesity as a correlate of outcome in patients with bipolar I disorder. Am J Psychiatry. 2003;160(1):112–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Xu J, Culman J, Blume A, Brecht S, Gohlke P. Chronic treatment with a low dose of lithium protects the brain against ischemic injury by reducing apoptotic death. Stroke. 2003;34(5):1287–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Ren M, Senatorov VV, Chen RW, Chuang DM. Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proc Natl Acad Sci USA. 2003;100(10):6210–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Yan XB, Wang SS, Hou HL, Ji R, Zhou JN. Lithium improves the behavioral disorder in rats subjected to transient global cerebral ischemia. Behav Brain Res. 2007;177(2):282–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Bian Q, Shi T, Chuang DM, Qian Y. Lithium reduces ischemia-induced hippocampal CA1 damage and behavioral deficits in gerbils. Brain Res. 2007;1184:270–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Xuan A, Long D, Li J, et al. Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci. 2012;90(11–12):463–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Qian YR, Lee MJ, Hwang S, Kook JH, Kim JK, Bae CS. Neuroprotection by valproic Acid in mouse models of permanent and transient focal cerebral ischemia. Korean J Physiol Pharmacol. 2010;14(6):435–40.PubMedCrossRefGoogle Scholar
  50. 50.
    Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem. 2004;89(6):1358–67.PubMedCrossRefGoogle Scholar
  51. 51.
    Vasudev A, Thomas A. ‘Bipolar disorder’ in the elderly: what’s in a name? Maturitas. 2010;66(3):231–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Tamashiro JH, Zung S, Zanetti MV, et al. Increased rates of white matter hyperintensities in late-onset bipolar disorder. Bipolar Disord. 2008;10(7):765–75.PubMedCrossRefGoogle Scholar
  53. 53.
    Subramaniam H, Dennis MS, Byrne EJ. The role of vascular risk factors in late onset bipolar disorder. Int J Geriatr Psychiatry. 2007;22(8):733–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Kilbourne AM, Cornelius JR, Han X, et al. Burden of general medical conditions among individuals with bipolar disorder. Bipolar Disord. 2004;6(5):368–73.PubMedCrossRefGoogle Scholar
  55. 55.
    Gurpegui M, Martinez-Ortega JM, Gutierrez-Rojas L, Rivero J, Rojas C, Jurado D. Overweight and obesity in patients with bipolar disorder or schizophrenia compared with a non-psychiatric sample. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37(1):169–75.PubMedCrossRefGoogle Scholar
  56. 56.
    Fiedorowicz JG, Palagummi NM, Forman-Hoffman VL, Miller DD, Haynes WG. Elevated prevalence of obesity, metabolic syndrome, and cardiovascular risk factors in bipolar disorder. Ann Clin Psychiatry. 2008;20(3):131–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Fiedorowicz JG, He J, Merikangas KR. The association between mood and anxiety disorders with vascular diseases and risk factors in a nationally representative sample. J Psychosom Res. 2011;70(2):145–54.PubMedCrossRefGoogle Scholar
  58. 58.
    Johannessen L, Strudsholm U, Foldager L, Munk-Jorgensen P. Increased risk of hypertension in patients with bipolar disorder and patients with anxiety compared to background population and patients with schizophrenia. J Affect Disord. 2006;95(1–3):13–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Garcia-Portilla MP, Saiz PA, Benabarre A, et al. The prevalence of metabolic syndrome in patients with bipolar disorder. J Affect Disord. 2008;106(1–2):197–201.PubMedCrossRefGoogle Scholar
  60. 60.
    Politi P, Brondino N, Emanuele E. Increased proapoptotic serum activity in patients with chronic mood disorders. Arch Med Res. 2008;39(2):242–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Goldstein BI, Fagiolini A, Houck P, Kupfer DJ. Cardiovascular disease and hypertension among adults with bipolar I disorder in the United States. Bipolar Disord. 2009;11(6):657–62.PubMedCrossRefGoogle Scholar
  62. 62.
    Fiedorowicz JG, Solomon DA, Endicott J, et al. Manic/hypomanic symptom burden and cardiovascular mortality in bipolar disorder. Psychosom Med. 2009;71(6):598–606.PubMedCrossRefGoogle Scholar
  63. 63.
    Ramsey CM, Leoutsakos JM, Mayer LS, Eaton WW, Lee HB. History of manic and hypomanic episodes and risk of incident cardiovascular disease: 11.5 year follow-up from the Baltimore Epidemiologic Catchment Area Study. J Affect Disord. 2010;125(1–3):35–41.PubMedCrossRefGoogle Scholar
  64. 64.
    Fiedorowicz JG, Coryell WH, Rice JP, Warren LL, Haynes W. Vasculopathy related to manic/hypomanic symptom burden and first generation antipsychotics in a sub-sample from the Collaborative Depression Study (CDS). Psychother Psychosom. 2012;81(4):235–43.Google Scholar
  65. 65.
    Shah A, Shen N, El-Mallakh RS. Weight gain occurs after onset of bipolar illness in overweight bipolar patients. Ann Clin Psychiatry. 2006;18(4):239–41.PubMedCrossRefGoogle Scholar
  66. 66.
    Fiedorowicz JG. Course of illness and the development of vascular disease in individuals with bipolar disorder. Dissertation, The University of Iowa; 2001.Google Scholar
  67. 67.
    Yatsuya H, Folsom AR, Yamagishi K, North KE, Brancati FL, Stevens J. Race- and sex-specific associations of obesity measures with ischemic stroke incidence in the Atherosclerosis Risk in Communities (ARIC) study. Stroke. 2010;41(3):417–25.PubMedCrossRefGoogle Scholar
  68. 68.
    Kendler KS, Eaves LJ, Walters EE, Neale MC, Heath AC, Kessler RC. The identification and validation of distinct depressive syndromes in a population-based sample of female twins. Arch Gen Psychiatry. 1996;53(5):391–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Sullivan PF, Prescott CA, Kendler KS. The subtypes of major depression in a twin registry. J Affect Disord. 2002;68(2–3):273–84.PubMedCrossRefGoogle Scholar
  70. 70.
    Wildes JE, Marcus MD, Fagiolini A. Obesity in patients with bipolar disorder: a biopsychosocial-behavioral model. J Clin Psychiatry. 2006;67(6):904–15.PubMedCrossRefGoogle Scholar
  71. 71.
    Black DW, Goldstein RB, Mason EE, Bell SE, Blum N. Depression and other mental disorders in the relatives of morbidly obese patients. J Affect Disord. 1992;25(2):91–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Chwastiak LA, Rosenheck RA, Kazis LE. Association of psychiatric illness and obesity, physical inactivity, and smoking among a national sample of veterans. Psychosomatics. 2011;52(3):230–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Langan C, McDonald C. Neurobiological trait abnormalities in bipolar disorder. Mol Psychiatry. 2009;14(9):833–46.PubMedCrossRefGoogle Scholar
  74. 74.
    Muir KW, Tyrrell P, Sattar N, Warburton E. Inflammation and ischaemic stroke. Curr Opin Neurol. 2007;20(3):334–42.PubMedCrossRefGoogle Scholar
  75. 75.
    Cunha AB, Andreazza AC, Gomes FA, et al. Investigation of serum high-sensitive C-reactive protein levels across all mood states in bipolar disorder. Eur Arch Psychiatry Clin Neurosci. 2008;258(5):300–4.PubMedCrossRefGoogle Scholar
  76. 76.
    O’Brien SM, Scully P, Scott LV, Dinan TG. Cytokine profiles in bipolar affective disorder: focus on acutely ill patients. J Affect Disord. 2006;90(2–3):263–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Kim YK, Jung HG, Myint AM, Kim H, Park SH. Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J Affect Disord. 2007;104(1–3):91–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Breunis MN, Kupka RW, Nolen WA, et al. High numbers of circulating activated T cells and raised levels of serum IL-2 receptor in bipolar disorder. Biol Psychiatry. 2003;53(2):157–65.PubMedCrossRefGoogle Scholar
  79. 79.
    Brietzke E, Kauer-Sant’Anna M, Teixeira AL, Kapczinski F. Abnormalities in serum chemokine levels in euthymic patients with bipolar disorder. Brain Behav Immun. 2009;23(8):1079–82.PubMedCrossRefGoogle Scholar
  80. 80.
    Hope S, Dieset I, Agartz I, et al. Affective symptoms are associated with markers of inflammation and immune activation in bipolar disorders but not in schizophrenia. J Psychiatr Res. 2011;45(12):1608–16.PubMedCrossRefGoogle Scholar
  81. 81.
    Kauer-Sant’Anna M, Kapczinski F, Andreazza AC, et al. Brain-derived neurotrophic factor and inflammatory markers in patients with early- vs. late-stage bipolar disorder. Int J Neuropsychopharmacol. 2009;12(4):447–58.PubMedCrossRefGoogle Scholar
  82. 82.
    Kaptoge S, Di Angelantonio E, Lowe G, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375(9709):132–40.PubMedCrossRefGoogle Scholar
  83. 83.
    Thomas AJ, Davis S, Ferrier IN, Kalaria RN, O’Brien JT. Elevation of cell adhesion molecule immunoreactivity in the anterior cingulate cortex in bipolar disorder. Biol Psychiatry. 2004;55(6):652–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Rao JS, Harry GJ, Rapoport SI, Kim HW. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry. 2010;15(4):384–92.PubMedCrossRefGoogle Scholar
  85. 85.
    Boufidou F, Nikolaou C, Alevizos B, Liappas IA, Christodoulou GN. Cytokine production in bipolar affective disorder patients under lithium treatment. J Affect Disord. 2004;82(2):309–13.PubMedCrossRefGoogle Scholar
  86. 86.
    Ichiyama T, Okada K, Lipton JM, Matsubara T, Hayashi T, Furukawa S. Sodium valproate inhibits production of TNF-alpha and IL-6 and activation of NF-kappaB. Brain Res. 2000;857(1–2):246–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Marik PE, Varon J. Omega-3 dietary supplements and the risk of cardiovascular events: a systematic review. Clin Cardiol. 2009;32(7):365–72.PubMedCrossRefGoogle Scholar
  88. 88.
    Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58(20):2047–67.PubMedCrossRefGoogle Scholar
  89. 89.
    McNamara RK, Jandacek R, Rider T, Tso P, Dwivedi Y, Pandey GN. Selective deficits in erythrocyte docosahexaenoic acid composition in adult patients with bipolar disorder and major depressive disorder. J Affect Disord. 2010;126(1–2):303–11.PubMedCrossRefGoogle Scholar
  90. 90.
    Sobczak S, Honig A, Christophe A, et al. Lower high-density lipoprotein cholesterol and increased omega-6 polyunsaturated fatty acids in first-degree relatives of bipolar patients. Psychol Med. 2004;34(1):103–12.PubMedCrossRefGoogle Scholar
  91. 91.
    Noaghiul S, Hibbeln JR. Cross-national comparisons of seafood consumption and rates of bipolar disorders. Am J Psychiatry. 2003;160(12):2222–7.PubMedCrossRefGoogle Scholar
  92. 92.
    McNamara RK, Jandacek R, Rider T, et al. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder. Psychiatry Res. 2008;160(3):285–99.PubMedCrossRefGoogle Scholar
  93. 93.
    Sarris J, Mischoulon D, Schweitzer I. Adjunctive nutraceuticals with standard pharmacotherapies in bipolar disorder: a systematic review of clinical trials. Bipolar Disord. 2011;13(5–6):454–65.PubMedCrossRefGoogle Scholar
  94. 94.
    Basselin M, Kim HW, Chen M, et al. Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation. J Lipid Res. 2010;51(5):1049–56.PubMedCrossRefGoogle Scholar
  95. 95.
    Faraci FM. Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol. 2011;300(5):H1566–82.PubMedCrossRefGoogle Scholar
  96. 96.
    Kato T, Kato N. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord. 2000;2(3 Pt 1):180–90.PubMedCrossRefGoogle Scholar
  97. 97.
    Kato T. Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder. Cell Calcium. 2008;44(1):92–102.PubMedCrossRefGoogle Scholar
  98. 98.
    Wang JF, Shao L, Sun X, Young LT. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord. 2009;11(5):523–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Benes FM, Matzilevich D, Burke RE, Walsh J. The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry. 2006;11(3):241–51.PubMedCrossRefGoogle Scholar
  100. 100.
    Sun X, Wang JF, Tseng M, Young LT. Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci. 2006;31(3):189–96.PubMedGoogle Scholar
  101. 101.
    Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry. 2010;67(4):360–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2011;14(1):123–30.PubMedCrossRefGoogle Scholar
  103. 103.
    Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry. 2004;61(3):300–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Hamakawa H, Murashita J, Yamada N, Inubushi T, Kato N, Kato T. Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder. Psychiatry Clin Neurosci. 2004;58(1):82–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Dager SR, Friedman SD, Parow A, et al. Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry. 2004;61(5):450–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Molina V, Sanchez J, Sanz J, et al. Dorsolateral prefrontal N-acetyl-aspartate concentration in male patients with chronic schizophrenia and with chronic bipolar disorder. Eur Psychiatry. 2007;22(8):505–12.PubMedCrossRefGoogle Scholar
  107. 107.
    Caetano SC, Olvera RL, Hatch JP, et al. Lower N-acetyl-aspartate levels in prefrontal cortices in pediatric bipolar disorder: a (1)H magnetic resonance spectroscopy study. J Am Acad Child Adolesc Psychiatry. 2011;50(1):85–94.PubMedCrossRefGoogle Scholar
  108. 108.
    Sassi RB, Stanley JA, Axelson D, et al. Reduced NAA levels in the dorsolateral prefrontal cortex of young bipolar patients. Am J Psychiatry. 2005;162(11):2109–15.PubMedCrossRefGoogle Scholar
  109. 109.
    Winsberg ME, Sachs N, Tate DL, Adalsteinsson E, Spielman D, Ketter TA. Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biol Psychiatry. 2000;47(6):475–81.PubMedCrossRefGoogle Scholar
  110. 110.
    Atmaca M, Yildirim H, Ozdemir H, Poyraz AK, Tezcan E, Ogur E. Hippocampal 1H MRS in first-episode bipolar I patients. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(7):1235–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Bertolino A, Frye M, Callicott JH, et al. Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry. 2003;53(10):906–13.PubMedCrossRefGoogle Scholar
  112. 112.
    Deicken RF, Pegues MP, Anzalone S, Feiwell R, Soher B. Lower concentration of hippocampal N-acetylaspartate in familial bipolar I disorder. Am J Psychiatry. 2003;160(5):873–82.PubMedCrossRefGoogle Scholar
  113. 113.
    Scherk H, Backens M, Schneider-Axmann T, et al. Neurochemical pathology in hippocampus in euthymic patients with bipolar I disorder. Acta Psychiatr Scand. 2008;117(4):283–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Stork C, Renshaw PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry. 2005;10(10):900–19.PubMedCrossRefGoogle Scholar
  115. 115.
    Frey BN, Stanley JA, Nery FG, et al. Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: an in vivo 1H MRS study. Bipolar Disord. 2007;9 Suppl 1:119–27.PubMedCrossRefGoogle Scholar
  116. 116.
    Regenold WT, Phatak P, Marano CM, Sassan A, Conley RR, Kling MA. Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry. 2009;65(6):489–94.PubMedCrossRefGoogle Scholar
  117. 117.
    Andreazza AC, Cassini C, Rosa AR, et al. Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res. 2007;41(6):523–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Kunz M, Gama CS, Andreazza AC, et al. Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(7):1677–81.PubMedCrossRefGoogle Scholar
  119. 119.
    Gergerlioglu HS, Savas HA, Bulbul F, Selek S, Uz E, Yumru M. Changes in nitric oxide level and superoxide dismutase activity during antimanic treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(3):697–702.PubMedCrossRefGoogle Scholar
  120. 120.
    Selek S, Savas HA, Gergerlioglu HS, Bulbul F, Uz E, Yumru M. The course of nitric oxide and superoxide dismutase during treatment of bipolar depressive episode. J Affect Disord. 2008;107(1–3):89–94.PubMedCrossRefGoogle Scholar
  121. 121.
    Fattal O, Budur K, Vaughan AJ, Franco K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics. 2006;47(1):1–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Shao L, Martin MV, Watson SJ, et al. Mitochondrial involvement in psychiatric disorders. Ann Med. 2008;40(4):281–95.PubMedCrossRefGoogle Scholar
  123. 123.
    Nciri R, Desmoulin F, Allagui MS, et al. Neuroprotective effects of chronic exposure of SH-SY5Y to low lithium concentration involve glycolysis stimulation, extracellular pyruvate accumulation and resistance to oxidative stress. Int J Neuropsychopharmacol. 2013;16(2):365–76.Google Scholar
  124. 124.
    Wang JF, Azzam JE, Young LT. Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells. Neuroscience. 2003;116(2):485–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Machado-Vieira R, Andreazza AC, Viale CI, et al. Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett. 2007;421(1):33–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Berk M, Copolov DL, Dean O, et al. N-acetyl cysteine for depressive symptoms in bipolar disorder—a double-blind randomized placebo-controlled trial. Biol Psychiatry. 2008;64(6):468–75.PubMedCrossRefGoogle Scholar
  127. 127.
    Berk M, Copolov D, Dean O, et al. N-acetyl cysteine as a glutathione precursor for schizophrenia—a double-blind, randomized, placebo-controlled trial. Biol Psychiatry. 2008;64(5):361–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Whitworth JA, Williamson PM, Mangos G, Kelly JJ. Cardiovascular consequences of cortisol excess. Vasc Health Risk Manag. 2005;1(4):291–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Rybakowski JK, Twardowska K. The dexamethasone/corticotropin-releasing hormone test in depression in bipolar and unipolar affective illness. J Psychiatr Res. 1999;33(5):363–70.PubMedCrossRefGoogle Scholar
  130. 130.
    Cassidy F, Ritchie JC, Carroll BJ. Plasma dexamethasone concentration and cortisol response during manic episodes. Biol Psychiatry. 1998;43(10):747–54.PubMedCrossRefGoogle Scholar
  131. 131.
    Kremen WS, O’Brien RC, Panizzon MS, et al. Salivary cortisol and prefrontal cortical thickness in middle-aged men: a twin study. Neuroimage. 2010;53(3):1093–102.PubMedCrossRefGoogle Scholar
  132. 132.
    Henckens MJ, Pu Z, Hermans EJ, van Wingen GA, Joels M, Fernandez G. Dynamically changing effects of corticosteroids on human hippocampal and prefrontal processing. Hum Brain Mapp. 2012;33(12):2885–97.PubMedCrossRefGoogle Scholar
  133. 133.
    Watson S, Gallagher P, Ritchie JC, Ferrier IN, Young AH. Hypothalamic-pituitary-adrenal axis function in patients with bipolar disorder. Br J Psychiatry. 2004;184:496–502.PubMedCrossRefGoogle Scholar
  134. 134.
    Ellenbogen MA, Santo JB, Linnen AM, Walker CD, Hodgins S. High cortisol levels in the offspring of parents with bipolar disorder during two weeks of daily sampling. Bipolar Disord. 2010;12(1):77–86.PubMedCrossRefGoogle Scholar
  135. 135.
    Deshauer D, Duffy A, Meaney M, Sharma S, Grof P. Salivary cortisol secretion in remitted bipolar patients and offspring of bipolar parents. Bipolar Disord. 2006;8(4):345–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Einat H, Manji HK. Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biol Psychiatry. 2006;59(12):1160–71.PubMedCrossRefGoogle Scholar
  137. 137.
    Young AH, Gallagher P, Watson S, Del-Estal D, Owen BM, Ferrier IN. Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology. 2004;29(8):1538–45.PubMedCrossRefGoogle Scholar
  138. 138.
    Harvey AG. Sleep and circadian functioning: critical mechanisms in the mood disorders? Annu Rev Clin Psychol. 2011;7:297–319.PubMedCrossRefGoogle Scholar
  139. 139.
    Lam JC, Ip MS. Sleep & the metabolic syndrome. Indian J Med Res. 2010;131:206–16.PubMedGoogle Scholar
  140. 140.
    Duffy A, Alda M, Crawford L, Milin R, Grof P. The early manifestations of bipolar disorder: a longitudinal prospective study of the offspring of bipolar parents. Bipolar Disord. 2007;9(8):828–38.PubMedCrossRefGoogle Scholar
  141. 141.
    Jackson A, Cavanagh J, Scott J. A systematic review of manic and depressive prodromes. J Affect Disord. 2003;74(3):209–17.PubMedCrossRefGoogle Scholar
  142. 142.
    Jiang H, Liu Y, Zhang Y, Chen ZY. Association of plasma brain-derived neurotrophic factor and cardiovascular risk factors and prognosis in angina pectoris. Biochem Biophys Res Commun. 2011;415(1):99–103.PubMedCrossRefGoogle Scholar
  143. 143.
    Fernandes BS, Gama CS, Cereser KM, et al. Brain-derived neurotrophic factor as a state-marker of mood episodes in bipolar disorders: a systematic review and meta-regression analysis. J Psychiatr Res. 2011;45(8):995–1004.PubMedCrossRefGoogle Scholar
  144. 144.
    Ferrer I, Krupinski J, Goutan E, Marti E, Ambrosio S, Arenas E. Brain-derived neurotrophic factor reduces cortical cell death by ischemia after middle cerebral artery occlusion in the rat. Acta Neuropathol. 2001;101(3):229–38.PubMedGoogle Scholar
  145. 145.
    Muller HD, Hanumanthiah KM, Diederich K, Schwab S, Schabitz WR, Sommer C. Brain-derived neurotrophic factor but not forced arm use improves long-term outcome after photothrombotic stroke and transiently upregulates binding densities of excitatory glutamate receptors in the rat brain. Stroke. 2008;39(3):1012–21.PubMedCrossRefGoogle Scholar
  146. 146.
    Ploughman M, Windle V, MacLellan CL, White N, Dore JJ, Corbett D. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke. 2009;40(4):1490–5.PubMedCrossRefGoogle Scholar
  147. 147.
    Jeste DV, Blazer D, Casey D, et al. ACNP White Paper: update on use of antipsychotic drugs in elderly persons with dementia. Neuropsychopharmacology. 2008;33(5):957–70.PubMedCrossRefGoogle Scholar
  148. 148.
    Morriss R, Mohammed FA. Metabolism, lifestyle and bipolar affective disorder. J Psychopharmacol. 2005;19(6 Suppl):94–101.PubMedCrossRefGoogle Scholar
  149. 149.
    Poulin MJ, Chaput JP, Simard V, et al. Management of antipsychotic-induced weight gain: prospective naturalistic study of the effectiveness of a supervised exercise programme. Aust N Z J Psychiatry. 2007;41(12):980–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of Florida College of MedicineGainesvilleUSA
  2. 2.Department of Psychiatry, Roy J. and Lucille A. Carver College of MedicineUniversity of Iowa Hospitals and ClinicsIowa CityUSA
  3. 3.Department of Internal Medicine, Roy J. and Lucille A. Carver College of MedicineUniversity of Iowa Hospitals and ClinicsIowa CityUSA
  4. 4.Department of Epidemiology, College of Public HealthThe University of IowaIowa CityUSA

Personalised recommendations