Skip to main content

Cerebrovascular Disease and Bipolar Disorder

  • Chapter
  • First Online:
Neuropsychiatric Symptoms of Cerebrovascular Diseases

Abstract

Bipolar disorder has been strongly associated with cardiovascular disease although the relationship between the two conditions is complex with regard to directionality and mechanisms. The defining syndromes of bipolar disorder, mania and hypomania, can occur following stroke, including in individuals who are seemingly otherwise not at risk based on age, family history, and past psychiatric history. This has led many experts to conclude that bipolar disorder may occur secondary to stroke. Individuals with idiopathic forms of bipolar disorder further face a considerably increased risk for cerebrovascular mortality and stroke. This elevation in risk is large and estimated to be approximately twice that expected from general population estimates for both cerebrovascular mortality and events. There exist a variety of mechanisms that may link bipolar disorder with cerebrovascular disease, and some risk factors may predispose vulnerable individuals to both conditions. These mechanisms include–though are not limited to–inflammation, oxidative stress/mitochondrial dysfunction, abnormalities in the hypothalamic-pituitary-adrenal axis, and sleep disorders. Clinicians should be mindful of the potential for stroke to induce mania and recognize that individuals with bipolar disorder are at special risk for vascular disease, a risk that early and assertive clinical intervention may potentially mitigate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Starkstein SE, Fedoroff P, Berthier ML, Robinson RG. Manic-depressive and pure manic states after brain lesions. Biol Psychiatry. 1991;29(2):149–58.

    Article  PubMed  CAS  Google Scholar 

  2. Murray DP, Weiner M, Prabhakar M, Fiedorowicz JG. Mania and mortality: why the excess cardiovascular risk in bipolar disorder? Curr Psychiatry Rep. 2009;11(6):475–80.

    Article  PubMed  Google Scholar 

  3. Weiner M, Warren L, Fiedorowicz JG. Cardiovascular morbidity and mortality in bipolar disorder. Ann Clin Psychiatry. 2011;23(1):40–7.

    PubMed  Google Scholar 

  4. Osby U, Brandt L, Correia N, Ekbom A, Sparen P. Excess mortality in bipolar and unipolar disorder in Sweden. Arch Gen Psychiatry. 2001;58(9):844–50.

    Article  PubMed  CAS  Google Scholar 

  5. Lin HC, Tsai SY, Lee HC. Increased risk of developing stroke among patients with bipolar disorder after an acute mood episode: a six-year follow-up study. J Affect Disord. 2007;100(1–3):49–54.

    Article  PubMed  Google Scholar 

  6. Nilsson FM, Kessing LV. Increased risk of developing stroke for patients with major affective disorder—a registry study. Eur Arch Psychiatry Clin Neurosci. 2004;254(6):387–91.

    Article  PubMed  Google Scholar 

  7. Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH. Smoking and mental illness: a population-based prevalence study. JAMA. 2000;284(20):2606–10.

    Article  PubMed  CAS  Google Scholar 

  8. Kilbourne AM, Rofey DL, McCarthy JF, Post EP, Welsh D, Blow FC. Nutrition and exercise behavior among patients with bipolar disorder. Bipolar Disord. 2007;9(5):443–52.

    Article  PubMed  Google Scholar 

  9. Yumru M, Savas HA, Kurt E, et al. Atypical antipsychotics related metabolic syndrome in bipolar patients. J Affect Disord. 2007;98(3):247–52.

    Article  PubMed  CAS  Google Scholar 

  10. Bradford DW, Kim MM, Braxton LE, Marx CE, Butterfield M, Elbogen EB. Access to medical care among persons with psychotic and major affective disorders. Psychiatr Serv. 2008;59(8):847–52.

    Article  PubMed  Google Scholar 

  11. Kilbourne AM, Brar JS, Drayer RA, Xu X, Post EP. Cardiovascular disease and metabolic risk factors in male patients with schizophrenia, schizoaffective disorder, and bipolar disorder. Psychosomatics. 2007;48(5):412–7.

    Article  PubMed  Google Scholar 

  12. Birkenaes AB, Opjordsmoen S, Brunborg C, et al. The level of cardiovascular risk factors in bipolar disorder equals that of schizophrenia: a comparative study. J Clin Psychiatry. 2007;68(6):917–23.

    Article  PubMed  Google Scholar 

  13. Angst F, Stassen HH, Clayton PJ, Angst J. Mortality of patients with mood disorders: follow-up over 34–38 years. J Affect Disord. 2002;68(2–3):167–81.

    Article  PubMed  CAS  Google Scholar 

  14. Ahrens B, Muller-Oerlinghausen B, Schou M, et al. Excess cardiovascular and suicide mortality of affective disorders may be reduced by lithium prophylaxis. J Affect Disord. 1995;33(2):67–75.

    Article  PubMed  CAS  Google Scholar 

  15. Brodersen A, Licht RW, Vestergaard P, Olesen AV, Mortensen PB. Sixteen-year mortality in patients with affective disorder commenced on lithium. Br J Psychiatry. 2000;176:429–33.

    Article  PubMed  CAS  Google Scholar 

  16. Gildengers AG, Mulsant BH, Al Jurdi RK, et al. The relationship of bipolar disorder lifetime duration and vascular burden to cognition in older adults. Bipolar Disord. 2010;12(8):851–8.

    Article  PubMed  Google Scholar 

  17. Robinson RG. Mood disorders secondary to stroke. Semin Clin Neuropsychiatry. 1997;2(4):244–51.

    PubMed  Google Scholar 

  18. Starkstein SE, Robinson RG. Affective disorders and cerebral vascular disease. Br J Psychiatry. 1989;154:170–82.

    Article  PubMed  CAS  Google Scholar 

  19. Steffens DC, Krishnan KR. Structural neuroimaging and mood disorders: recent findings, implications for classification, and future directions. Biol Psychiatry. 1998;43(10):705–12.

    Article  PubMed  CAS  Google Scholar 

  20. Fazekas F, Niederkorn K, Schmidt R, et al. White matter signal abnormalities in normal individuals: correlation with carotid ultrasonography, cerebral blood flow measurements, and cerebrovascular risk factors. Stroke. 1988;19(10):1285–8.

    Article  PubMed  CAS  Google Scholar 

  21. Beyer JL, Young R, Kuchibhatla M, Krishnan KR. Hyperintense MRI lesions in bipolar disorder: a meta-analysis and review. Int Rev Psychiatry. 2009;21(4):394–409.

    Article  PubMed  Google Scholar 

  22. Takahashi K, Oshima A, Ida I, et al. Relationship between age at onset and magnetic resonance image-defined hyperintensities in mood disorders. J Psychiatr Res. 2008;42(6):443–50.

    Article  PubMed  CAS  Google Scholar 

  23. Mahon K, Burdick KE, Szeszko PR. A role for white matter abnormalities in the pathophysiology of bipolar disorder. Neurosci Biobehav Rev. 2010;34(4):533–54.

    Article  PubMed  Google Scholar 

  24. Ahn KH, Lyoo IK, Lee HK, et al. White matter hyperintensities in subjects with bipolar disorder. Psychiatry Clin Neurosci. 2004;58(5):516–21.

    Article  PubMed  Google Scholar 

  25. Hajek T, Carrey N, Alda M. Neuroanatomical abnormalities as risk factors for bipolar disorder. Bipolar Disord. 2005;7(5):393–403.

    Article  PubMed  Google Scholar 

  26. Ovbiagele B, Saver JL. Cerebral white matter hyperintensities on MRI: current concepts and therapeutic implications. Cerebrovasc Dis. 2006;22(2–3):83–90.

    Article  PubMed  Google Scholar 

  27. Thomas AJ, O’Brien JT, Davis S, et al. Ischemic basis for deep white matter hyperintensities in major depression: a neuropathological study. Arch Gen Psychiatry. 2002;59(9):785–92.

    Article  PubMed  Google Scholar 

  28. Regenold WT, Hisley KC, Phatak P, et al. Relationship of cerebrospinal fluid glucose metabolites to MRI deep white matter hyperintensities and treatment resistance in bipolar disorder patients. Bipolar Disord. 2008;10(7):753–64.

    Article  PubMed  CAS  Google Scholar 

  29. Yuan P, Salvadore G, Li X, et al. Valproate activates the Notch3/c-FLIP signaling cascade: a strategy to attenuate white matter hyperintensities in bipolar disorder in late life? Bipolar Disord. 2009;11(3):256–69.

    Article  PubMed  CAS  Google Scholar 

  30. Ahearn EP, Speer MC, Chen YT, et al. Investigation of Notch3 as a candidate gene for bipolar disorder using brain hyperintensities as an endophenotype. Am J Med Genet. 2002;114(6):652–8.

    Article  PubMed  Google Scholar 

  31. Pillai JJ, Friedman L, Stuve TA, et al. Increased presence of white matter hyperintensities in adolescent patients with bipolar disorder. Psychiatry Res. 2002;114(1):51–6.

    Article  PubMed  Google Scholar 

  32. Lyoo IK, Lee HK, Jung JH, Noam GG, Renshaw PF. White matter hyperintensities on magnetic resonance imaging of the brain in children with psychiatric disorders. Compr Psychiatry. 2002;43(5):361–8.

    Article  PubMed  Google Scholar 

  33. Zanetti MV, Schaufelberger MS, de Castro CC, et al. White-matter hyperintensities in first-episode psychosis. Br J Psychiatry. 2008;193(1):25–30.

    Article  PubMed  Google Scholar 

  34. Lloyd AJ, Moore PB, Cousins DA, et al. White matter lesions in euthymic patients with bipolar disorder. Acta Psychiatr Scand. 2009;120(6):481–91.

    Article  PubMed  CAS  Google Scholar 

  35. Cerullo MA, Adler CM, Delbello MP, Strakowski SM. The functional neuroanatomy of bipolar disorder. Int Rev Psychiatry. 2009;21(4):314–22.

    Article  PubMed  Google Scholar 

  36. Sheline YI. Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry. 2003;54(3):338–52.

    Article  PubMed  Google Scholar 

  37. Chen CH, Suckling J, Lennox BR, Ooi C, Bullmore ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord. 2011;13(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  38. Pompili M, Innamorati M, Mann JJ, et al. Periventricular white matter hyperintensities as predictors of suicide attempts in bipolar disorders and unipolar depression. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(6):1501–7.

    Article  PubMed  Google Scholar 

  39. Moore PB, Shepherd DJ, Eccleston D, et al. Cerebral white matter lesions in bipolar affective disorder: relationship to outcome. Br J Psychiatry. 2001;178:172–6.

    Article  PubMed  CAS  Google Scholar 

  40. Fagiolini A, Kupfer DJ, Rucci P, Scott JA, Novick DM, Frank E. Suicide attempts and ideation in patients with bipolar I disorder. J Clin Psychiatry. 2004;65(4):509–14.

    Article  PubMed  Google Scholar 

  41. Fagiolini A, Frank E, Scott JA, Turkin S, Kupfer DJ. Metabolic syndrome in bipolar disorder: findings from the Bipolar Disorder Center for Pennsylvanians. Bipolar Disord. 2005;7(5):424–30.

    Article  PubMed  Google Scholar 

  42. Cassidy F, Ahearn E, Carroll BJ. Elevated frequency of diabetes mellitus in hospitalized manic-depressive patients. Am J Psychiatry. 1999;156(9):1417–20.

    PubMed  CAS  Google Scholar 

  43. Fagiolini A, Kupfer DJ, Houck PR, Novick DM, Frank E. Obesity as a correlate of outcome in patients with bipolar I disorder. Am J Psychiatry. 2003;160(1):112–7.

    Article  PubMed  Google Scholar 

  44. Xu J, Culman J, Blume A, Brecht S, Gohlke P. Chronic treatment with a low dose of lithium protects the brain against ischemic injury by reducing apoptotic death. Stroke. 2003;34(5):1287–92.

    Article  PubMed  CAS  Google Scholar 

  45. Ren M, Senatorov VV, Chen RW, Chuang DM. Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proc Natl Acad Sci USA. 2003;100(10):6210–5.

    Article  PubMed  CAS  Google Scholar 

  46. Yan XB, Wang SS, Hou HL, Ji R, Zhou JN. Lithium improves the behavioral disorder in rats subjected to transient global cerebral ischemia. Behav Brain Res. 2007;177(2):282–9.

    Article  PubMed  CAS  Google Scholar 

  47. Bian Q, Shi T, Chuang DM, Qian Y. Lithium reduces ischemia-induced hippocampal CA1 damage and behavioral deficits in gerbils. Brain Res. 2007;1184:270–6.

    Article  PubMed  CAS  Google Scholar 

  48. Xuan A, Long D, Li J, et al. Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci. 2012;90(11–12):463–8.

    Article  PubMed  CAS  Google Scholar 

  49. Qian YR, Lee MJ, Hwang S, Kook JH, Kim JK, Bae CS. Neuroprotection by valproic Acid in mouse models of permanent and transient focal cerebral ischemia. Korean J Physiol Pharmacol. 2010;14(6):435–40.

    Article  PubMed  CAS  Google Scholar 

  50. Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem. 2004;89(6):1358–67.

    Article  PubMed  CAS  Google Scholar 

  51. Vasudev A, Thomas A. ‘Bipolar disorder’ in the elderly: what’s in a name? Maturitas. 2010;66(3):231–5.

    Article  PubMed  Google Scholar 

  52. Tamashiro JH, Zung S, Zanetti MV, et al. Increased rates of white matter hyperintensities in late-onset bipolar disorder. Bipolar Disord. 2008;10(7):765–75.

    Article  PubMed  Google Scholar 

  53. Subramaniam H, Dennis MS, Byrne EJ. The role of vascular risk factors in late onset bipolar disorder. Int J Geriatr Psychiatry. 2007;22(8):733–7.

    Article  PubMed  Google Scholar 

  54. Kilbourne AM, Cornelius JR, Han X, et al. Burden of general medical conditions among individuals with bipolar disorder. Bipolar Disord. 2004;6(5):368–73.

    Article  PubMed  Google Scholar 

  55. Gurpegui M, Martinez-Ortega JM, Gutierrez-Rojas L, Rivero J, Rojas C, Jurado D. Overweight and obesity in patients with bipolar disorder or schizophrenia compared with a non-psychiatric sample. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37(1):169–75.

    Article  PubMed  Google Scholar 

  56. Fiedorowicz JG, Palagummi NM, Forman-Hoffman VL, Miller DD, Haynes WG. Elevated prevalence of obesity, metabolic syndrome, and cardiovascular risk factors in bipolar disorder. Ann Clin Psychiatry. 2008;20(3):131–7.

    Article  PubMed  Google Scholar 

  57. Fiedorowicz JG, He J, Merikangas KR. The association between mood and anxiety disorders with vascular diseases and risk factors in a nationally representative sample. J Psychosom Res. 2011;70(2):145–54.

    Article  PubMed  Google Scholar 

  58. Johannessen L, Strudsholm U, Foldager L, Munk-Jorgensen P. Increased risk of hypertension in patients with bipolar disorder and patients with anxiety compared to background population and patients with schizophrenia. J Affect Disord. 2006;95(1–3):13–7.

    Article  PubMed  Google Scholar 

  59. Garcia-Portilla MP, Saiz PA, Benabarre A, et al. The prevalence of metabolic syndrome in patients with bipolar disorder. J Affect Disord. 2008;106(1–2):197–201.

    Article  PubMed  Google Scholar 

  60. Politi P, Brondino N, Emanuele E. Increased proapoptotic serum activity in patients with chronic mood disorders. Arch Med Res. 2008;39(2):242–5.

    Article  PubMed  CAS  Google Scholar 

  61. Goldstein BI, Fagiolini A, Houck P, Kupfer DJ. Cardiovascular disease and hypertension among adults with bipolar I disorder in the United States. Bipolar Disord. 2009;11(6):657–62.

    Article  PubMed  Google Scholar 

  62. Fiedorowicz JG, Solomon DA, Endicott J, et al. Manic/hypomanic symptom burden and cardiovascular mortality in bipolar disorder. Psychosom Med. 2009;71(6):598–606.

    Article  PubMed  Google Scholar 

  63. Ramsey CM, Leoutsakos JM, Mayer LS, Eaton WW, Lee HB. History of manic and hypomanic episodes and risk of incident cardiovascular disease: 11.5 year follow-up from the Baltimore Epidemiologic Catchment Area Study. J Affect Disord. 2010;125(1–3):35–41.

    Article  PubMed  Google Scholar 

  64. Fiedorowicz JG, Coryell WH, Rice JP, Warren LL, Haynes W. Vasculopathy related to manic/hypomanic symptom burden and first generation antipsychotics in a sub-sample from the Collaborative Depression Study (CDS). Psychother Psychosom. 2012;81(4):235–43.

    Google Scholar 

  65. Shah A, Shen N, El-Mallakh RS. Weight gain occurs after onset of bipolar illness in overweight bipolar patients. Ann Clin Psychiatry. 2006;18(4):239–41.

    Article  PubMed  Google Scholar 

  66. Fiedorowicz JG. Course of illness and the development of vascular disease in individuals with bipolar disorder. Dissertation, The University of Iowa; 2001.

    Google Scholar 

  67. Yatsuya H, Folsom AR, Yamagishi K, North KE, Brancati FL, Stevens J. Race- and sex-specific associations of obesity measures with ischemic stroke incidence in the Atherosclerosis Risk in Communities (ARIC) study. Stroke. 2010;41(3):417–25.

    Article  PubMed  Google Scholar 

  68. Kendler KS, Eaves LJ, Walters EE, Neale MC, Heath AC, Kessler RC. The identification and validation of distinct depressive syndromes in a population-based sample of female twins. Arch Gen Psychiatry. 1996;53(5):391–9.

    Article  PubMed  CAS  Google Scholar 

  69. Sullivan PF, Prescott CA, Kendler KS. The subtypes of major depression in a twin registry. J Affect Disord. 2002;68(2–3):273–84.

    Article  PubMed  Google Scholar 

  70. Wildes JE, Marcus MD, Fagiolini A. Obesity in patients with bipolar disorder: a biopsychosocial-behavioral model. J Clin Psychiatry. 2006;67(6):904–15.

    Article  PubMed  Google Scholar 

  71. Black DW, Goldstein RB, Mason EE, Bell SE, Blum N. Depression and other mental disorders in the relatives of morbidly obese patients. J Affect Disord. 1992;25(2):91–5.

    Article  PubMed  CAS  Google Scholar 

  72. Chwastiak LA, Rosenheck RA, Kazis LE. Association of psychiatric illness and obesity, physical inactivity, and smoking among a national sample of veterans. Psychosomatics. 2011;52(3):230–6.

    Article  PubMed  Google Scholar 

  73. Langan C, McDonald C. Neurobiological trait abnormalities in bipolar disorder. Mol Psychiatry. 2009;14(9):833–46.

    Article  PubMed  CAS  Google Scholar 

  74. Muir KW, Tyrrell P, Sattar N, Warburton E. Inflammation and ischaemic stroke. Curr Opin Neurol. 2007;20(3):334–42.

    Article  PubMed  CAS  Google Scholar 

  75. Cunha AB, Andreazza AC, Gomes FA, et al. Investigation of serum high-sensitive C-reactive protein levels across all mood states in bipolar disorder. Eur Arch Psychiatry Clin Neurosci. 2008;258(5):300–4.

    Article  PubMed  Google Scholar 

  76. O’Brien SM, Scully P, Scott LV, Dinan TG. Cytokine profiles in bipolar affective disorder: focus on acutely ill patients. J Affect Disord. 2006;90(2–3):263–7.

    Article  PubMed  CAS  Google Scholar 

  77. Kim YK, Jung HG, Myint AM, Kim H, Park SH. Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J Affect Disord. 2007;104(1–3):91–5.

    Article  PubMed  CAS  Google Scholar 

  78. Breunis MN, Kupka RW, Nolen WA, et al. High numbers of circulating activated T cells and raised levels of serum IL-2 receptor in bipolar disorder. Biol Psychiatry. 2003;53(2):157–65.

    Article  PubMed  CAS  Google Scholar 

  79. Brietzke E, Kauer-Sant’Anna M, Teixeira AL, Kapczinski F. Abnormalities in serum chemokine levels in euthymic patients with bipolar disorder. Brain Behav Immun. 2009;23(8):1079–82.

    Article  PubMed  CAS  Google Scholar 

  80. Hope S, Dieset I, Agartz I, et al. Affective symptoms are associated with markers of inflammation and immune activation in bipolar disorders but not in schizophrenia. J Psychiatr Res. 2011;45(12):1608–16.

    Article  PubMed  Google Scholar 

  81. Kauer-Sant’Anna M, Kapczinski F, Andreazza AC, et al. Brain-derived neurotrophic factor and inflammatory markers in patients with early- vs. late-stage bipolar disorder. Int J Neuropsychopharmacol. 2009;12(4):447–58.

    Article  PubMed  CAS  Google Scholar 

  82. Kaptoge S, Di Angelantonio E, Lowe G, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375(9709):132–40.

    Article  PubMed  CAS  Google Scholar 

  83. Thomas AJ, Davis S, Ferrier IN, Kalaria RN, O’Brien JT. Elevation of cell adhesion molecule immunoreactivity in the anterior cingulate cortex in bipolar disorder. Biol Psychiatry. 2004;55(6):652–5.

    Article  PubMed  CAS  Google Scholar 

  84. Rao JS, Harry GJ, Rapoport SI, Kim HW. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry. 2010;15(4):384–92.

    Article  PubMed  CAS  Google Scholar 

  85. Boufidou F, Nikolaou C, Alevizos B, Liappas IA, Christodoulou GN. Cytokine production in bipolar affective disorder patients under lithium treatment. J Affect Disord. 2004;82(2):309–13.

    Article  PubMed  CAS  Google Scholar 

  86. Ichiyama T, Okada K, Lipton JM, Matsubara T, Hayashi T, Furukawa S. Sodium valproate inhibits production of TNF-alpha and IL-6 and activation of NF-kappaB. Brain Res. 2000;857(1–2):246–51.

    Article  PubMed  CAS  Google Scholar 

  87. Marik PE, Varon J. Omega-3 dietary supplements and the risk of cardiovascular events: a systematic review. Clin Cardiol. 2009;32(7):365–72.

    Article  PubMed  Google Scholar 

  88. Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58(20):2047–67.

    Article  PubMed  CAS  Google Scholar 

  89. McNamara RK, Jandacek R, Rider T, Tso P, Dwivedi Y, Pandey GN. Selective deficits in erythrocyte docosahexaenoic acid composition in adult patients with bipolar disorder and major depressive disorder. J Affect Disord. 2010;126(1–2):303–11.

    Article  PubMed  CAS  Google Scholar 

  90. Sobczak S, Honig A, Christophe A, et al. Lower high-density lipoprotein cholesterol and increased omega-6 polyunsaturated fatty acids in first-degree relatives of bipolar patients. Psychol Med. 2004;34(1):103–12.

    Article  PubMed  CAS  Google Scholar 

  91. Noaghiul S, Hibbeln JR. Cross-national comparisons of seafood consumption and rates of bipolar disorders. Am J Psychiatry. 2003;160(12):2222–7.

    Article  PubMed  Google Scholar 

  92. McNamara RK, Jandacek R, Rider T, et al. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder. Psychiatry Res. 2008;160(3):285–99.

    Article  PubMed  CAS  Google Scholar 

  93. Sarris J, Mischoulon D, Schweitzer I. Adjunctive nutraceuticals with standard pharmacotherapies in bipolar disorder: a systematic review of clinical trials. Bipolar Disord. 2011;13(5–6):454–65.

    Article  PubMed  CAS  Google Scholar 

  94. Basselin M, Kim HW, Chen M, et al. Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation. J Lipid Res. 2010;51(5):1049–56.

    Article  PubMed  CAS  Google Scholar 

  95. Faraci FM. Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol. 2011;300(5):H1566–82.

    Article  PubMed  CAS  Google Scholar 

  96. Kato T, Kato N. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord. 2000;2(3 Pt 1):180–90.

    Article  PubMed  CAS  Google Scholar 

  97. Kato T. Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder. Cell Calcium. 2008;44(1):92–102.

    Article  PubMed  CAS  Google Scholar 

  98. Wang JF, Shao L, Sun X, Young LT. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord. 2009;11(5):523–9.

    Article  PubMed  CAS  Google Scholar 

  99. Benes FM, Matzilevich D, Burke RE, Walsh J. The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry. 2006;11(3):241–51.

    Article  PubMed  CAS  Google Scholar 

  100. Sun X, Wang JF, Tseng M, Young LT. Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci. 2006;31(3):189–96.

    PubMed  Google Scholar 

  101. Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry. 2010;67(4):360–8.

    Article  PubMed  CAS  Google Scholar 

  102. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2011;14(1):123–30.

    Article  PubMed  CAS  Google Scholar 

  103. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry. 2004;61(3):300–8.

    Article  PubMed  CAS  Google Scholar 

  104. Hamakawa H, Murashita J, Yamada N, Inubushi T, Kato N, Kato T. Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder. Psychiatry Clin Neurosci. 2004;58(1):82–8.

    Article  PubMed  CAS  Google Scholar 

  105. Dager SR, Friedman SD, Parow A, et al. Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry. 2004;61(5):450–8.

    Article  PubMed  CAS  Google Scholar 

  106. Molina V, Sanchez J, Sanz J, et al. Dorsolateral prefrontal N-acetyl-aspartate concentration in male patients with chronic schizophrenia and with chronic bipolar disorder. Eur Psychiatry. 2007;22(8):505–12.

    Article  PubMed  CAS  Google Scholar 

  107. Caetano SC, Olvera RL, Hatch JP, et al. Lower N-acetyl-aspartate levels in prefrontal cortices in pediatric bipolar disorder: a (1)H magnetic resonance spectroscopy study. J Am Acad Child Adolesc Psychiatry. 2011;50(1):85–94.

    Article  PubMed  Google Scholar 

  108. Sassi RB, Stanley JA, Axelson D, et al. Reduced NAA levels in the dorsolateral prefrontal cortex of young bipolar patients. Am J Psychiatry. 2005;162(11):2109–15.

    Article  PubMed  Google Scholar 

  109. Winsberg ME, Sachs N, Tate DL, Adalsteinsson E, Spielman D, Ketter TA. Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biol Psychiatry. 2000;47(6):475–81.

    Article  PubMed  CAS  Google Scholar 

  110. Atmaca M, Yildirim H, Ozdemir H, Poyraz AK, Tezcan E, Ogur E. Hippocampal 1H MRS in first-episode bipolar I patients. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(7):1235–9.

    Article  PubMed  CAS  Google Scholar 

  111. Bertolino A, Frye M, Callicott JH, et al. Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry. 2003;53(10):906–13.

    Article  PubMed  Google Scholar 

  112. Deicken RF, Pegues MP, Anzalone S, Feiwell R, Soher B. Lower concentration of hippocampal N-acetylaspartate in familial bipolar I disorder. Am J Psychiatry. 2003;160(5):873–82.

    Article  PubMed  Google Scholar 

  113. Scherk H, Backens M, Schneider-Axmann T, et al. Neurochemical pathology in hippocampus in euthymic patients with bipolar I disorder. Acta Psychiatr Scand. 2008;117(4):283–8.

    Article  PubMed  CAS  Google Scholar 

  114. Stork C, Renshaw PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry. 2005;10(10):900–19.

    Article  PubMed  CAS  Google Scholar 

  115. Frey BN, Stanley JA, Nery FG, et al. Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: an in vivo 1H MRS study. Bipolar Disord. 2007;9 Suppl 1:119–27.

    Article  PubMed  Google Scholar 

  116. Regenold WT, Phatak P, Marano CM, Sassan A, Conley RR, Kling MA. Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry. 2009;65(6):489–94.

    Article  PubMed  CAS  Google Scholar 

  117. Andreazza AC, Cassini C, Rosa AR, et al. Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res. 2007;41(6):523–9.

    Article  PubMed  Google Scholar 

  118. Kunz M, Gama CS, Andreazza AC, et al. Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(7):1677–81.

    Article  PubMed  CAS  Google Scholar 

  119. Gergerlioglu HS, Savas HA, Bulbul F, Selek S, Uz E, Yumru M. Changes in nitric oxide level and superoxide dismutase activity during antimanic treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(3):697–702.

    Article  PubMed  CAS  Google Scholar 

  120. Selek S, Savas HA, Gergerlioglu HS, Bulbul F, Uz E, Yumru M. The course of nitric oxide and superoxide dismutase during treatment of bipolar depressive episode. J Affect Disord. 2008;107(1–3):89–94.

    Article  PubMed  CAS  Google Scholar 

  121. Fattal O, Budur K, Vaughan AJ, Franco K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics. 2006;47(1):1–7.

    Article  PubMed  Google Scholar 

  122. Shao L, Martin MV, Watson SJ, et al. Mitochondrial involvement in psychiatric disorders. Ann Med. 2008;40(4):281–95.

    Article  PubMed  CAS  Google Scholar 

  123. Nciri R, Desmoulin F, Allagui MS, et al. Neuroprotective effects of chronic exposure of SH-SY5Y to low lithium concentration involve glycolysis stimulation, extracellular pyruvate accumulation and resistance to oxidative stress. Int J Neuropsychopharmacol. 2013;16(2):365–76.

    Google Scholar 

  124. Wang JF, Azzam JE, Young LT. Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells. Neuroscience. 2003;116(2):485–9.

    Article  PubMed  CAS  Google Scholar 

  125. Machado-Vieira R, Andreazza AC, Viale CI, et al. Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett. 2007;421(1):33–6.

    Article  PubMed  CAS  Google Scholar 

  126. Berk M, Copolov DL, Dean O, et al. N-acetyl cysteine for depressive symptoms in bipolar disorder—a double-blind randomized placebo-controlled trial. Biol Psychiatry. 2008;64(6):468–75.

    Article  PubMed  CAS  Google Scholar 

  127. Berk M, Copolov D, Dean O, et al. N-acetyl cysteine as a glutathione precursor for schizophrenia—a double-blind, randomized, placebo-controlled trial. Biol Psychiatry. 2008;64(5):361–8.

    Article  PubMed  CAS  Google Scholar 

  128. Whitworth JA, Williamson PM, Mangos G, Kelly JJ. Cardiovascular consequences of cortisol excess. Vasc Health Risk Manag. 2005;1(4):291–9.

    Article  PubMed  CAS  Google Scholar 

  129. Rybakowski JK, Twardowska K. The dexamethasone/corticotropin-releasing hormone test in depression in bipolar and unipolar affective illness. J Psychiatr Res. 1999;33(5):363–70.

    Article  PubMed  CAS  Google Scholar 

  130. Cassidy F, Ritchie JC, Carroll BJ. Plasma dexamethasone concentration and cortisol response during manic episodes. Biol Psychiatry. 1998;43(10):747–54.

    Article  PubMed  CAS  Google Scholar 

  131. Kremen WS, O’Brien RC, Panizzon MS, et al. Salivary cortisol and prefrontal cortical thickness in middle-aged men: a twin study. Neuroimage. 2010;53(3):1093–102.

    Article  PubMed  CAS  Google Scholar 

  132. Henckens MJ, Pu Z, Hermans EJ, van Wingen GA, Joels M, Fernandez G. Dynamically changing effects of corticosteroids on human hippocampal and prefrontal processing. Hum Brain Mapp. 2012;33(12):2885–97.

    Article  PubMed  Google Scholar 

  133. Watson S, Gallagher P, Ritchie JC, Ferrier IN, Young AH. Hypothalamic-pituitary-adrenal axis function in patients with bipolar disorder. Br J Psychiatry. 2004;184:496–502.

    Article  PubMed  Google Scholar 

  134. Ellenbogen MA, Santo JB, Linnen AM, Walker CD, Hodgins S. High cortisol levels in the offspring of parents with bipolar disorder during two weeks of daily sampling. Bipolar Disord. 2010;12(1):77–86.

    Article  PubMed  Google Scholar 

  135. Deshauer D, Duffy A, Meaney M, Sharma S, Grof P. Salivary cortisol secretion in remitted bipolar patients and offspring of bipolar parents. Bipolar Disord. 2006;8(4):345–9.

    Article  PubMed  CAS  Google Scholar 

  136. Einat H, Manji HK. Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biol Psychiatry. 2006;59(12):1160–71.

    Article  PubMed  CAS  Google Scholar 

  137. Young AH, Gallagher P, Watson S, Del-Estal D, Owen BM, Ferrier IN. Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology. 2004;29(8):1538–45.

    Article  PubMed  CAS  Google Scholar 

  138. Harvey AG. Sleep and circadian functioning: critical mechanisms in the mood disorders? Annu Rev Clin Psychol. 2011;7:297–319.

    Article  PubMed  Google Scholar 

  139. Lam JC, Ip MS. Sleep & the metabolic syndrome. Indian J Med Res. 2010;131:206–16.

    PubMed  Google Scholar 

  140. Duffy A, Alda M, Crawford L, Milin R, Grof P. The early manifestations of bipolar disorder: a longitudinal prospective study of the offspring of bipolar parents. Bipolar Disord. 2007;9(8):828–38.

    Article  PubMed  Google Scholar 

  141. Jackson A, Cavanagh J, Scott J. A systematic review of manic and depressive prodromes. J Affect Disord. 2003;74(3):209–17.

    Article  PubMed  Google Scholar 

  142. Jiang H, Liu Y, Zhang Y, Chen ZY. Association of plasma brain-derived neurotrophic factor and cardiovascular risk factors and prognosis in angina pectoris. Biochem Biophys Res Commun. 2011;415(1):99–103.

    Article  PubMed  CAS  Google Scholar 

  143. Fernandes BS, Gama CS, Cereser KM, et al. Brain-derived neurotrophic factor as a state-marker of mood episodes in bipolar disorders: a systematic review and meta-regression analysis. J Psychiatr Res. 2011;45(8):995–1004.

    Article  PubMed  Google Scholar 

  144. Ferrer I, Krupinski J, Goutan E, Marti E, Ambrosio S, Arenas E. Brain-derived neurotrophic factor reduces cortical cell death by ischemia after middle cerebral artery occlusion in the rat. Acta Neuropathol. 2001;101(3):229–38.

    PubMed  CAS  Google Scholar 

  145. Muller HD, Hanumanthiah KM, Diederich K, Schwab S, Schabitz WR, Sommer C. Brain-derived neurotrophic factor but not forced arm use improves long-term outcome after photothrombotic stroke and transiently upregulates binding densities of excitatory glutamate receptors in the rat brain. Stroke. 2008;39(3):1012–21.

    Article  PubMed  CAS  Google Scholar 

  146. Ploughman M, Windle V, MacLellan CL, White N, Dore JJ, Corbett D. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke. 2009;40(4):1490–5.

    Article  PubMed  CAS  Google Scholar 

  147. Jeste DV, Blazer D, Casey D, et al. ACNP White Paper: update on use of antipsychotic drugs in elderly persons with dementia. Neuropsychopharmacology. 2008;33(5):957–70.

    Article  PubMed  CAS  Google Scholar 

  148. Morriss R, Mohammed FA. Metabolism, lifestyle and bipolar affective disorder. J Psychopharmacol. 2005;19(6 Suppl):94–101.

    Article  PubMed  Google Scholar 

  149. Poulin MJ, Chaput JP, Simard V, et al. Management of antipsychotic-induced weight gain: prospective naturalistic study of the effectiveness of a supervised exercise programme. Aust N Z J Psychiatry. 2007;41(12):980–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne A. Byars MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Byars, J.A., Fiedorowicz, J.G. (2013). Cerebrovascular Disease and Bipolar Disorder. In: Ferro, J. (eds) Neuropsychiatric Symptoms of Cerebrovascular Diseases. Neuropsychiatric Symptoms of Neurological Disease. Springer, London. https://doi.org/10.1007/978-1-4471-2428-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2428-3_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2427-6

  • Online ISBN: 978-1-4471-2428-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics