Skip to main content

PID Control for MIMO Processes

  • Chapter
Book cover PID Control in the Third Millennium

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Real industrial processes are almost all of multi-input and multi-output (MIMO) nature, and any change or disturbance occurring in one loop will affect the other loops through the cross-couplings between loops, which is the most important features of a MIMO system, and which implies that the control engineer cannot design each loop independently as they do for SISO systems. Therefore, the requirements for high performance in MIMO control are known to be much more difficult than in the SISO control. Despite great advances in modern control theory, the PID controller is still the most popular controller type used in process industries due to its simplicity and reliability. There are rich theories and designs for the SISO PID control, but little has been done for MIMO PID control while much is demanded for the latter to reach the same maturity and popularity as the single-loop PID case. In this chapter, we first introduce some fundamentals for MIMO systems such as transfer function matrices, poles, zeros, and feedback system stability. Then, we present a graphical method for the design of a multiloop PI controller to achieve the desired gain and phase margins for each loop. Finally, we define the loop gain margins and compute them for multivariable feedback systems. In this way, the stability and robustness of an multivariable feedback system can be really achieved and guaranteed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenbrock, H.H.: State-Space and Multivariable Theory. Nelson, London (1970)

    MATH  Google Scholar 

  2. Desoer, C.A., Shulman, J.D.: Zeros and poles of matrix transfer-functions and their dynamical interpretation. IEEE Trans. Circuits Syst. CAS-21, 3–8 (1974)

    Article  Google Scholar 

  3. Desoer, C.A., Chan, W.S.: The feedback interconnection of linear time-invariant systems. J. Franklin Inst. 300, 335–351 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Desoer, C., Wang, Y.T.: On the generalized Nyquist stability criterion. IEEE Trans. Autom. Control 25, 187–196 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jeng, J.C., Huang, H.P., Lin, F.Y.: Modified relay feedback approach for controller tuning based on assessment of gain and phase margins. Ind. Eng. Chem. Res. 45, 4043–4051 (2006)

    Article  Google Scholar 

  6. Wang, Y.G., Shao, H.H.: PID autotuner based on gain and phase margin specifications. Ind. Eng. Chem. Res. 45, 3007–3012 (1999)

    Article  Google Scholar 

  7. Wang, Q.G., Fung, H.W., Zhang, Y.: PID tuning with exact gain and phase margins. ISA Trans. 38, 243–249 (1999)

    Article  Google Scholar 

  8. Keel, L.H., Bhattacharyya, S.P.: Robust fragile, or optimal? IEEE Trans. Autom. Control 42, 1098–1105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Astrom, K.J., Hagglund, T.: Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20, 645–651 (1984)

    Article  MathSciNet  Google Scholar 

  10. Ho, W.K., Hang, C.C., Cao, L.S.: Tuning of PID controllers based on gain and phase margin specifications. Automatica 31, 497–502 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fung, H.W., Wang, Q.G., Lee, T.H.: PI tuning in terms of gain and phase margins. Automatica 34, 1145–1149 (1998)

    Article  MATH  Google Scholar 

  12. Wang, Q.G., Lin, C., Ye, Z., Wen, G.L., He, Y. Hang C.C.: A quasi-LMI approach to computing stabilizing parameter ranges of multi-loop PID controllers. J. Process Control 17, 59–72 (2007)

    Article  Google Scholar 

  13. Palmor, Z.J., Halevi, Y., Krasney, N.: Automatic tuning of decentralized PID controllers for TITO processes. Automatica 31, 1001–1010 (1995)

    Article  MATH  Google Scholar 

  14. Wang, Q.G., Zou, B., Lee, T.H., Bi, Q.: Auto-tuning of multivariable PID controllers from decentralized relay feedback. Automatica 33, 319–330 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, Q.G., Ye, Z., Cai, W.J., Hang, C.C.: PID Control for Multivariable Processes. Springer, Berlin (2008)

    MATH  Google Scholar 

  16. Ho, W.K., Lee, T.H., Gan, O.P.: Tuning of multiloop proportional-integral-derivative controllers based on gain and phase margin specifications. Ind. Eng. Chem. Res. 36, 2231–2238 (1997)

    Article  Google Scholar 

  17. Kookos, I.K.: Comments on “Tuning of multiloop proportional-integral-derivative controllers based on gain and phase margin specifications”. Ind. Eng. Chem. Res. 37, 1574 (1998)

    Article  Google Scholar 

  18. Huang, H.P., Jeng, J.C., Chiang, C.H., Pan, W.: A direct method for multi-loop PI/PID controller design. J. Process Control 13, 760–786 (2003)

    Article  Google Scholar 

  19. Tavakoli, S., Griffin, I., Fleming, J.: Tuning of decentralized PI (PID) controllers for TITO processes. Control Eng. Pract. 14, 1069–1080 (2006)

    Article  Google Scholar 

  20. Zhang, Y., Wang, Q.G., Astrom, K.J.: Dominant pole placement for multi-loop control systems. Automatica 38, 1213–1220 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nie, Z.Y., Wang, Q.G., Wu, M., He, Y.: Tuning of multi-loop PI controllers based on gain and phase margin specifications. J. Process Control 21, 1287–1295 (2011)

    Article  Google Scholar 

  22. Majhi, S.: On-line PI control of stable processes. J. Process Control 15, 859–867 (2005)

    Article  Google Scholar 

  23. Astrom, K.J., Panagopoulos, H., Hagglund, T.: Design of PI controllers based on non-convex optimization. Automatica 34, 585–601 (1998)

    Article  MathSciNet  Google Scholar 

  24. Bissell, C.: Control Engineering. Chapman and Hall, New York (1994)

    Google Scholar 

  25. Wood, R.K., Berry, M.W.: Terminal composition control of a binary distillation column. Chem. Eng. Sci. 28, 1707–1717 (1973)

    Article  Google Scholar 

  26. Luyben, W.L.: Simple method for tuning SISO controllers in multivariable systems. Ind. Eng. Chem. Process Des. Dev. 25, 654–660 (1986)

    Article  Google Scholar 

  27. Lee, T.T., Wang, F.Y., Newell, R.B.: Robust multivariable control of complex biological processes. J. Process Control 14, 193–209 (2004)

    Article  Google Scholar 

  28. Kristiansson, B., Lennartson, B.: Evaluation and simple tuning of PID controllers with high frequency robustness. J. Process Control 16, 91–102 (2006)

    Article  Google Scholar 

  29. Cvejn, J.: Sub-optimal PID controller settings for FOPDT systems with long dead time. J. Process Control 19, 1486–1495 (2009)

    Article  Google Scholar 

  30. Wang, Q.G.: Decoupling Control. Springer, New York (2003)

    MATH  Google Scholar 

  31. He, M.J., Cai, W.J., Wu, B.F., He, M.: Simple decentralized PID controller design method based on dynamic relative interaction analysis. Ind. Eng. Chem. Res. 44, 8334–8344 (2005)

    Article  Google Scholar 

  32. Doyle, J.: Analysis of feedback systems with structured uncertainty. IEE Proc. Part D. Control Theory Appl. 129, 242–250 (1982)

    Article  MathSciNet  Google Scholar 

  33. Fan, M.K.H., Tits, A., Doyle, J.C.: Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Trans. Autom. Control 36, 25–38 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Braatz, R.P., Young, P.M., Doyle, J.C., Morari, M.: Computation complexity of calculation. IEEE Trans. Autom. Control 39, 1000–1002 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Safonov, M.G.: Stability margins of diagonally perturbed multivariable feedback systems. IEE Proc. Part D. Control Theory Appl. 129, 251–256 (1982)

    Article  MathSciNet  Google Scholar 

  36. Safonov, M.G., Athans, M.: A multiloop generalization of the circle criterion for stability margin analysis. IEEE Trans. Autom. Control 26, 415–422 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  37. De Gastion, R.R.E., Safonov, M.G.: Exact calculation of the multiloop stability margin. IEEE Trans. Autom. Control 33, 156–171 (1988)

    Article  Google Scholar 

  38. Bar-on, J.R., Jonckheere, E.A.: Multivariable gain margin. Int. J. Control 54, 337–365 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, Y., Lee, E.B.: Stability robustness characterization and related issues for control systems design. Automatica 29, 479–484 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hong, Y., Yang, O.W.W.: Self-tuning multiloop PI rate controller for an MIMO AQM router with interval gain margin assignment. High Perform. Switch. Routing 12, 401–405 (2005)

    Google Scholar 

  41. Ye, Z., Wang, Q.G., Hang, C.C.: Frequency domain approach to computing loop phase margins of multivariable systems. Ind. Eng. Chem. Res. 47, C4418–C4424 (2008)

    Article  Google Scholar 

  42. Galin, D.M.: Real matrices depending on parameters. Usp. Mat. Nauk 27, 241–242 (1972)

    MathSciNet  MATH  Google Scholar 

  43. Ballantine, C.S.: Numerical range of a matrix: some effective criteria. Linear Algebra Appl. 19, 117–188 (1987)

    Article  MathSciNet  Google Scholar 

  44. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  45. Morari, M., Zafiriou, E.: Robust Process Control. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Guo Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Wang, QG., Nie, ZY. (2012). PID Control for MIMO Processes. In: Vilanova, R., Visioli, A. (eds) PID Control in the Third Millennium. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2425-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2425-2_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2424-5

  • Online ISBN: 978-1-4471-2425-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics