Skip to main content

PI/PID Controllers Design for Integrating and Unstable Systems

  • Chapter
PID Control in the Third Millennium

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

In this chapter, methods for designing PI/PID controllers for integrating and unstable systems are summarized. Several examples of unstable and integrating processes are provided. A review on controller design methods, based on the direct synthesis method, IMC method, and equating coefficient method, is presented. Further, methods of calculating the set-point weighting parameter are given. Robust analysis is carried out using Small gain theorem and Kharitonov’s theorem. Simulation results are given on few case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbogast, J.E., Cooper, D.J.: Extension of IMC tuning correlations for non-self regulating (integrating) processes. ISA Trans. 46, 303–311 (2007)

    Article  Google Scholar 

  2. Arbel, A., Rinard, I.H., Shinar, R., et al.: Dynamics and control of fluidized catalytic crackers. 2. Multiple steady states and instabilities. Ind. Eng. Chem. Res. 34, 3014–3026 (1995)

    Article  Google Scholar 

  3. Agarwal, P., Lim, H.C.: Analysis of various control schemes for continuous bioreactors. Adv. Biochem. Biotechnol. 30, 61–90 (1989)

    Google Scholar 

  4. Ali, E., Al-humaizi, K.: Temperature control of ethylene to butene-1 dimerization reactor. Ind. Eng. Chem. Res. 39, 1320–1329 (2000)

    Article  Google Scholar 

  5. Ali, A., Majhi, S.: PID controller tuning for integrating processes. ISA Trans. 49(1), 70–78 (2010)

    Article  Google Scholar 

  6. Bequette, B.W.: Process Control: Modeling, Design and Simulation. Prentice Hall, New York (2003)

    Google Scholar 

  7. Chen, C.C., Huang, H.P., Liaw, H.J.: Set point weighted PID controller tuning for time delayed unstable processes. Ind. Eng. Chem. Res. 47, 6983–6990 (2008)

    Article  Google Scholar 

  8. Chidambaram, M.: Control of unstable systems: a review. J. Energy Heat Mass Transf. 19, 49–57 (1997)

    Google Scholar 

  9. Chidambaram, M.: Periodic operation of isothermal plug flow reactors for autocatalytic reactions. Chem. Eng. Commun. 69, 219–228 (1988)

    Article  Google Scholar 

  10. Chidambaram, M.: Set point weighting PI/PID controller for integrating plus dead time processes. In: Proc. National Symp. on Intell. Measurement Contrl, Chennai, pp. 324–331 (2000)

    Google Scholar 

  11. Chidambaram, M., Sree, R.P.: A simple method of tuning PID controllers for integrator/dead time processes. Comput. Chem. Eng. 27, 211–215 (2003)

    Article  Google Scholar 

  12. Chien, I.L., Fruehauf, P.S.: Consider IMC tuning to improve performance. Chem. Eng. Prog. 10, 33–41 (1990)

    Google Scholar 

  13. Chiu, T., Christofides, P.D.: Nonlinear control of particulate processes. AIChE J. 45, 1279–1297 (1999)

    Article  Google Scholar 

  14. Clarke, R., Burken, J.J., Bosworth, J.T., et al.: X-29 flight control system: Lessons learned. Int. J. Control 59(1), 199–219 (1994)

    Article  Google Scholar 

  15. Eriksson, L., Oksanen, T., Mikkola, K.: PID controller tuning rules for integrating processes with varying time delays. J. Franklin Inst. 346(5), 470–487 (2009)

    Article  MATH  Google Scholar 

  16. Filatov, N.M., Keuchel, U., Unbehauen, H.: Dual control of unstable mechanical plant. IEEE Trans. Control Syst. Technol. 16(4), 31–37 (1996)

    Google Scholar 

  17. Foley, M.W., Julien, R.H., Copeland, B.R.: Proportional-integral-derivative tuning for integrating processes with deadtime. IEE Proc., Control Theory Appl. 4(3), 425–436 (2010)

    Article  MathSciNet  Google Scholar 

  18. Govindhakannan, J., Chidambaram, M.: Multivariable PI control of unstable systems. Process Control Qual. 10, 329–339 (1997)

    Google Scholar 

  19. Govindhakannan, J., Chidambaram, M.: Two stage multivariable PID controllers for unstable plus time delay systems. J. Indian Chem. Eng. 42, 89–93 (2000)

    Google Scholar 

  20. Hang, C.C., Wang, Q.G., Yang, X.P.: A modified Smith predictor for a process with an integrator and long dead time. Ind. Eng. Chem. Res. 42, 484–489 (2003)

    Article  Google Scholar 

  21. Hu, W., Xiao, G.: Analytical Proportional-Integral (PI) controller tuning using closed loop set point response. Ind. Eng. Chem. Res. 50(4), 2461–2466 (2011). doi:10.1021/ie101475n

    Article  Google Scholar 

  22. Huang, H.P., Chen, C.C.: Control system synthesis for open loop unstable system with time delay. IEE Proc., Control Theory Appl. 144, 334–346 (1997)

    Article  MATH  Google Scholar 

  23. Jacobsen, E.W.: On the dynamics of integrated plants non-minimum phase behavior. J. Process Control 9, 439–451 (1999)

    Article  Google Scholar 

  24. Jhunjhunwala, M.K., Chidambaram, M.: PID controller tuning for unstable systems by optimization method. Chem. Eng. Commun. 185, 91–113 (2001)

    Article  Google Scholar 

  25. Kaya, I.: Two-degree-of-freedom IMC structure and controller design for integrating processes based on gain and phase-margin specifications. IEE Proc., Control Theory Appl. 151(4), 401–407 (2004)

    Article  Google Scholar 

  26. Kausthubh, S.M., Chidambaram, M.: Control of isothermal crystallizers. In: Proc. of Chemcon, Calcutta, India, pp. 13–16 (2000)

    Google Scholar 

  27. Kendi, T.A., Doyle, F.J. III: Nonlinear control of a fluidized bed reactor using approximate feedback linearization. Ind. Eng. Chem. Res. 35, 746–757 (1996)

    Article  Google Scholar 

  28. Khinast, J., Luss, D., Harold, M.P., et al.: Continuously stirred decanting reactor: Operability and stability considerations. AIChE J. 44, 372–387 (1998)

    Article  Google Scholar 

  29. Klein, R.E.: Using bicycles to teach system dynamics. IEEE Control Syst. Mag. 9(3), 4–9 (1989)

    Article  Google Scholar 

  30. Kwak, H.J., Sung, S.W., Lee, I.B.: Stabilizability conditions and controller design for unstable processes. Chem. Eng. Res. Des. 78(A), 549–556 (2000)

    Article  Google Scholar 

  31. Lee, J., Park, S.: Adaptive model predictive control for unstable nonlinear processes. J. Chem. Eng. Jpn. 27, 760–767 (1994)

    Article  Google Scholar 

  32. Lee, Y., Lee, J., Park, S.: PID controller tuning for integrating and unstable processes with time delay. Chem. Eng. Sci. 55, 3481–3493 (2000)

    Article  Google Scholar 

  33. Li, K.W., Turksen, IB: Stabilization of unstable and unintuitive plants by fuzzy control. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 27, 55–67 (1997)

    Article  Google Scholar 

  34. Liu, T., Cai, Y.Z., Gu, D.Y., et al.: New modified Smith predictor scheme for integrating and unstable processes with time delay. IEE Proc., Control Theory Appl. 152(2), 238–246 (2005)

    Article  Google Scholar 

  35. Liu, T., Zhang, W., Gu, D.: Analytical design of two degree of freedom control scheme for open-loop unstable processes with time delay. J. Process Control 15(5), 559–572 (2005)

    Article  Google Scholar 

  36. Liou, C.T., Chien, Y.S.: The effect of non-ideal mixing on input multiplicities in a CSTR. Chem. Eng. Sci. 46, 2113–2116 (1991)

    Article  Google Scholar 

  37. Lu, X., Yang, Y.S., Wang, Q.G., et al.: A double two-degree of freedom control scheme for improved control of unstable delay processes. J. Process Control 15(5), 605–614 (2005)

    Article  MathSciNet  Google Scholar 

  38. Luyben, W.L.: Dynamics and control of recycle systems. 1. Simple open loop and closed loop systems. Ind. Eng. Chem. Res. 32, 466–475 (1993)

    Article  Google Scholar 

  39. Luyben, W.L.: Dynamics and control of recycle systems. 2. Comparison of alternative process design. Ind. Eng. Chem. Res. 32, 476–486 (1993)

    Article  Google Scholar 

  40. Luyben, W.L.: Dynamics and control of recycle systems. 1. Alternative process design in a ternary system. Ind. Eng. Chem. Res. 32, 1142–1153 (1993)

    Article  Google Scholar 

  41. Luyben, W.L.: Tuning proportional-integral-derivative controllers for integrator/deadtime processes. Ind. Eng. Chem. Res. 35, 3480–3483 (1996)

    Article  Google Scholar 

  42. Majhi, S., Atherton, D.P.: Obtaining controller parameters for a new Smith predictor using auto tuning. Automatica 36, 1651–1658 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Marlin, T.E.: Process Control: Designing Processes and Control Systems for Dynamic Performance. McGraw-Hill, New York (1995)

    Google Scholar 

  44. Morari, M., Zafiriou, E.: Robust Process Control. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  45. Namjoshi, A., Kienle, A., Ramakrishna, D.: Steady state multiplicity in bioreactors: Bifurcation analysis of cybernetic models. Chem. Eng. Sci. 58, 793–800 (2003)

    Article  Google Scholar 

  46. Nie, Z.Y., Wang, Q.G., Wu, M., et al.: Lead/lag compensator design for unstable delay processes based on new gain and phase margin specifications. Ind. Eng. Chem. Res. 53(3), 1330–1337 (2011)

    Article  MathSciNet  Google Scholar 

  47. Normey-Rico, J.E., Camacho, E.F.: Simple robust dead-time compensator for first-order plus dead-time unstable processes. Ind. Eng. Chem. Res. 47, 4784–4790 (2008)

    Article  Google Scholar 

  48. Oggunaike, B.A., Ray, W.H.: Process Dynamics, Modeling and Control. Oxford Press, New York (1994)

    Google Scholar 

  49. Pai, N.S., Chang, S.C., Huang, C.T.: Tuning PI/PID controllers for integrating processes with dead time and inverse response by simple calculations. J. Process Control 20(6), 726–733 (2010)

    Article  Google Scholar 

  50. Panda, R.C.: Synthesis for PID controller for unstable and integrating processes. Chem. Eng. Sci. 64, 2807–2816 (2009)

    Article  Google Scholar 

  51. Rao, A.S., Chidambaram, M.: Enhanced Smith predictor for unstable processes with time delay. Ind. Eng. Chem. Res. 44, 8291–8297 (2005)

    Article  Google Scholar 

  52. Rao, A.S., Chidambaram, M.: Enhanced two-degree-of-freedom control strategy for second order unstable processes with time delay. Ind. Eng. Chem. Res. 45(10), 3604–3614 (2006)

    Article  Google Scholar 

  53. Rao, A.S., Rao, V.S.R., Chidambaram, M.: Simple analytical design of modified smith predictor with improved performance for unstable first order time delay (FOPTD) processes. Ind. Eng. Chem. Res. 46, 4561–4571 (2007)

    Article  Google Scholar 

  54. Rao, A.S., Rao, V.S.R., Chidambaram, M.: Set point weighted modified Smith predictor for integrating and double integrating processes with time delay. ISA Trans. 46(1), 59–71 (2007)

    Article  Google Scholar 

  55. Rao, A.S., Rao, V.S.R., Chidambaram, M.: Direct synthesis based controller design for integrating processes with time delay. J. Franklin Inst. 346(1), 38–56 (2009)

    Article  MathSciNet  Google Scholar 

  56. Rao, C.V.N., Sree, R.P.: IMC based controller design for integrating systems with time delay. J. Indian Chem. Eng. 52(3), 194–218 (2010)

    Article  Google Scholar 

  57. Seki, H., Ogawa, M., Ohshima, M.: PID temperature control of an unstable gas-phase polyolefin reactor. J. Chem. Eng. Jpn. 34, 1415–1422 (2001)

    Article  Google Scholar 

  58. Shamsuzzoha, M., Lee, M.: PID controller tuning for integrating processes with time delays. Korean J. Chem. Eng. 25(4), 637–645 (2008)

    Article  Google Scholar 

  59. Shamsuzzoha, M., Lee, M.: Analytical design of enhanced PID filter controller for integrating and first order unstable processes with time delays. Chem. Eng. Sci. 63(10), 2717–2731 (2008)

    Article  Google Scholar 

  60. Shamsuzzoha, M., Lee, M.: Design of advanced PID controller for enhanced disturbance rejection of second order processes with time delay. AIChE J. 54(6), 1526–1536 (2008)

    Article  Google Scholar 

  61. Shamsuzzoha, M., Lee, M.: Enhanced disturbance rejection for open loop unstable processes with time delay. ISA Trans. 48(2), 237–244 (2009)

    Article  Google Scholar 

  62. Shamsuzzoha, M., Skogesatd, S.: The setpoint overshoot method: A simple and fast closed loop approach for PID tuning. J. Process Control 20(10), 1220–1234 (2010)

    Article  Google Scholar 

  63. Skogesatd, S.: Simple analytical rules for model reduction and PID controller tuning. J. Process Control 13, 291–309 (2003)

    Article  Google Scholar 

  64. Song, Y., Mode, M.O., Zhang, T.: Stabilization and algorithm of integrator plus dead time process using PID controller. J. Process Control 19, 1529–1537 (2009)

    Article  Google Scholar 

  65. Sree, R.P., Chidambaram, M.: A simple method of calculating the set point weighting parameter for unstable systems with a zero. Comput. Chem. Eng. 28, 2433–2437 (2004)

    Article  Google Scholar 

  66. Sree, R.P., Chidambaram, M.: Set Point weighted PID controllers for unstable systems. Chem. Eng. Commun. 192, 1–13 (2005)

    Article  Google Scholar 

  67. Sree, R.P., Chidambaram, M.: Simple and robust method of tuning PID controllers for integrator/dead time processes. J. Chem. Eng. Jpn. 38(2), 113–119 (2005)

    Article  Google Scholar 

  68. Sree, R.P., Chidambaram, M.: Control of Unstable Processes. Narosa, New Delhi (2006)

    Google Scholar 

  69. Sree, R.P., Srinivas, M.N., Chidambaram, M.: A simple method of tuning PID controllers for stable and unstable FOPTD systems. Comput. Chem. Eng. 28, 2201–2218 (2004)

    Article  Google Scholar 

  70. Tan, W., Marquez, H.J., Chen, T.: IMC design for unstable processes with time delays. J. Process Control 13, 203–213 (2003)

    Article  Google Scholar 

  71. Tyreus, B.D., Luyben, W.L.: Tuning PI controllers for integrator/deadtime processes. Ind. Eng. Chem. Res. 31, 2625–2628 (1992)

    Article  Google Scholar 

  72. Uma, S., Chidambaram, M., Rao, A.S.: Enhanced control of unstable cascade processes with time delays using modified Smith predictor. Ind. Eng. Chem. Res. 48(6), 3098–3111 (2009)

    Article  Google Scholar 

  73. Uma, S., Chidambaram, M., Rao, A.S.: Set-point weighted modified Smith predictor for non-minimum phase integrating processes. Chem. Eng. Res. Des. 88, 592–601 (2010)

    Article  Google Scholar 

  74. Uma, S., Chidambaram, M., Rao, A.S., et al.: Enhanced control of integrating cascade processes with time delays. Chem. Eng. Sci. 65, 1065–1075 (2010)

    Article  Google Scholar 

  75. Van Elk, E.P., Borman, B.C., Kuuipers, J.A.M., et al.: Modeling of gas liquid mass transfer accompanied by irreversible reaction. Chem. Eng. Sci. 54, 4869–4879 (1999)

    Article  Google Scholar 

  76. Veronesi, M., Visioli, A.: Performance assessment and retuning of PID controllers for integral processes. J. Process Control 20(3), 261–269 (2010)

    Article  Google Scholar 

  77. Visioli, A.: Optimal tuning of PID controllers for integral and unstable processes. IEE Proc., Control Theory Appl. 148(2), 180–184 (2001)

    Article  Google Scholar 

  78. Walker, D.J.: Multivariable control of longitudinal and lateral dynamics of a fly by wire helicopter. Control Eng. Pract. 11, 781–795 (2003)

    Article  Google Scholar 

  79. Wang, Y.G., Cai, W.J.: Advanced proportional-integral-derivative tuning for integrating and unstable processes with gain and phase margin specifications. Ind. Eng. Chem. Res. 41, 2910–2914 (2002)

    Article  Google Scholar 

  80. Wu, W.: Stable inverse control for non-minimum phase nonlinear processes. J. Process Control 9, 171–183 (1999)

    Article  Google Scholar 

  81. Zhang, W., Gu, D., Wang, W., et al.: Quantitative performance design of a modified Smith predictor for unstable processes with time delay. Ind. Eng. Chem. Res. 43, 56–67 (2004)

    Article  Google Scholar 

  82. Zhong, Q.C., Visioli, A.: Control of Integral Processes with Time Delays. Springer, London (2011)

    Google Scholar 

  83. Zhou, H.Q., Wang, Q.G., Shieh, L.S.: PID control of unstable processes with time delay: A comparative study. J. Chem. Eng. Jpn. 40(2), 145–163 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chidambaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Seshagiri Rao, A., Chidambaram, M. (2012). PI/PID Controllers Design for Integrating and Unstable Systems. In: Vilanova, R., Visioli, A. (eds) PID Control in the Third Millennium. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2425-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2425-2_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2424-5

  • Online ISBN: 978-1-4471-2425-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics