Skip to main content

Predictive Control Approaches for PID Control Design and Its Extension to Multirate System

  • Chapter
PID Control in the Third Millennium

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Proportional-Integral-Derivative (PID) control is the most widely used control method. Since, PID control performance can be adjusted by tuning the PID parameters, the selection of the PID parameters is very important, but optimal PID parameters are not easily obtained. Advanced control has high potential, but on-site engineers prefer PID control to advanced control. Hence, advanced control needs to be achieved by PID control.

In this chapter, generalized predictive control (GPC) is attained by PID control. First, the technique that GPC law is approximated by a PID control law is introduced. Next, the obtained GPC-based PID control is applied to a weigh feeder. Finally, the design method of a GPC-based PID control system is extended to a multirate system in which the sampling interval is an integer multiple of the update interval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter summarizes published papers [28–30].

  2. 2.

    These studies have been published in [28–30].

References

  1. Albertos, P.: Block multirate input-output model for sampled-data control systems. IEEE Trans. Autom. Control 35(9), 1085–1088 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Araki, M., Yamamoto, K.: Multivariable multirate sampled-data systems: state-space description, transfer characteristics, and Nyquist criterion. IEEE Trans. Autom. Control AC-31(2), 145–154 (1986)

    Article  MathSciNet  Google Scholar 

  3. Asano, M., Yamamoto, T.: A design of self-tuning predictive PID controllers. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E84-A(7), 1779–1783 (2001)

    Google Scholar 

  4. Asano, M., Yamamoto, T., Oki, T., Kaneda, M.: A design of neural-net based predictive PID controllers. In: Proc. of IEEE Conference on Systems, Man and Cybernetics, pp. 1113–1118 (1999)

    Google Scholar 

  5. Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design and Tuning, 2nd edn. Instrument Society of America, Research Triangle Park (1995)

    Google Scholar 

  6. Camacho, E.F., Bordons, C.: Model Predictive Control, 2nd edn. Springer, Berlin (2000)

    Google Scholar 

  7. Chen, T., Francis, B.: Optimal Sampled-data Control Systems. Springer, Berlin (1995)

    MATH  Google Scholar 

  8. Clarke, D.W.: Self-tuning control of nonminimum-phase systems. Automatica 20(5), 501–517 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clarke, D.W., Mohtadi, C., Tuffs, P.S.: Generalized predictive control—part I and II. Automatica 23(2), 137–160 (1987)

    Article  MATH  Google Scholar 

  10. Deng, M., Inoue, A., Ishibashi, N., Yanou, A.: Application of an anti-windup multivariable continuous-time generalised predictive control to a temperature control of an aluminium plate. Int. J. Model. Identif. Control 2(2), 130–137 (2007)

    Article  Google Scholar 

  11. Ding, F.: Generalized yule-walker and two-stage identification algorithms for dual-rate systems. J. Control Theory Appl. 4, 338–342 (2006)

    Article  MATH  Google Scholar 

  12. Goodwin, G.C., Sin, K.S.: Adaptive Filtering Prediction and Control. Prentice-Hall, New York (1984)

    MATH  Google Scholar 

  13. Haefner, H.: Advanced weigh feeder system for optimization of the kiln system. World Cem. 27(6), 19–27 (1996)

    Google Scholar 

  14. Heinrici, H.: Continuous weighing and feeding systems—an integral component in process engineering. Aufbereit.-Tech. 41(8), 376–383 (2000) (in German)

    Google Scholar 

  15. Hopkins, M.: Loss in weight feeder systems. Meas. Control 39(8), 237–240 (2006)

    Google Scholar 

  16. Inoue, A., Yanou, A., Hirashima, Y.: A design of a strongly stable generalized predictive control using coprime factorization approach. In: Proc. of the American Control Conference, San Diego, pp. 652–656 (1999)

    Google Scholar 

  17. Ishitobi, M., Kawanaka, M., Nishi, H.: Ripple-suppressed multirate adaptive control. In: Proc. of 15th IFAC World Congress, pp. 327–332 (2002)

    Google Scholar 

  18. Izadi, I., Zhao, Q., Chen, T.: An h∞ approach to fast rate fault detection for multirate sampled-data systems. J. Process Control 16, 651–658 (2006)

    Article  Google Scholar 

  19. Johnson, M.A., Moradi, M.H. (eds.): PID Control—New Identification and Design Methods. Springer, London (2005)

    Google Scholar 

  20. Kwok, K., Shah, S.: Long-range predictive control with steady state error weighting. Int. J. Adapt. Control Signal Process. 11, 201–215 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liang, S., Ishitobi, M.: Properties of zeros of discretised system using multirate input and hold. IEE Proc., Control Theory Appl. 151(2), 180–184 (2004)

    Article  Google Scholar 

  22. Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, New York (2002)

    Google Scholar 

  23. Miller, R.M., Shah, S.L., Wood, R.K., Kwok, E.K.: Predictive PID. ISA Trans. 38, 11–23 (1999)

    Article  Google Scholar 

  24. Moradi, M.H., Johnson, M.A., Katebi, M.R.: Predictive PID control. In: Johnson, M.A., Moradi, M.H. (eds.) PID Control—New Identification and Design Methods, pp. 473–524. Springer, Berlin (2005)

    Google Scholar 

  25. O’Dwyer, A.: Hand Book of PI and PID Controller Tuning Rules. Imperial College Press, Singapore (2003)

    Google Scholar 

  26. Omatu, S., Yamamoto, T. (eds.): Self-tuning Control. The Society of Instrument and Control Engineers (1996) (in Japanese)

    Google Scholar 

  27. Park, B.G., Kwon, W.H., Park, S.H.: Discrete two degrees of freedom PID controller based on the GPC. In: SICE ’95, Sapporo, pp. 1251–1255 (1995)

    Google Scholar 

  28. Sato, T.: Design method of PID controller in multirate system. Dyn. Contin. Discrete Impuls. Syst. 16(1), 123–138 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Sato, T.: Strongly stable GPC-based PID controller. Int. J. Adv. Mechatron. Syst. 1(3), 183–193 (2009)

    Article  Google Scholar 

  30. Sato, T.: Design of a GPC-based PID controller for controlling a weigh feeder. Control Eng. Pract. 18(2), 105–113 (2010)

    Article  Google Scholar 

  31. Sato, T., Inoue, A.: Improvement of tracking performance in self-tuning PID controller based on generalized predictive control. Int. J. Innov. Comput. Inf. Control 2(3), 491–503 (2006)

    Google Scholar 

  32. Sato, T., Inoue, A.: Generalized predictive control in fast-rate single-rate and dual-rate systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A(11), 2616–2619 (2007)

    Article  Google Scholar 

  33. Sato, T., Kameoka, K.: Self-tuning control of a weigh feeder. Trans. Soc. Instrum. Control Eng. 43(6), 522–524 (2007) (in Japanese)

    Google Scholar 

  34. Sato, T., Inoue, A., Yamamoto, T., Shah, S.L.: Self-tuning PID controllers based on the strongly stable generalized minimum variance control law. In: IFAC Workshop on Digital Control: Past, Present and Future of PID Control, Terrassa, pp. 511–516 (2000)

    Google Scholar 

  35. Sato, T., Inoue, A., Yamamoto, T.: Improvement of tracking performance in designing a GPC-based PID controller using a time-varying proportional gain. IEEJ Trans. Electr. Electron. Eng. 1(4), 438–441 (2006)

    Article  Google Scholar 

  36. Sato, T., Inoue, A., Yamamoto, T.: Gpc-based PID controller using a stable time-varying proportional gain. In: Proc. of the 2007 IEEE Int. Conf. on Networking, Sensing and Control, pp. 536–541 (2007)

    Chapter  Google Scholar 

  37. Sato, T., Inoue, A., Yamamoto, T.: Two-degree-of-freedom PID controller based on extended generalized minimum variance control. Int. J. Innov. Comput. Inf. Control 4(12), 3111–3122 (2008)

    Google Scholar 

  38. Scattolini, R.: Multi-rate self-tuning predictive controller for multi-variable systems. Int. J. Syst. Sci. 23(8), 1347–1359 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sheng, J., Chen, T., Shah, S.L.: Multirate generalized predictive control for sampled-data systems. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 8(4), 485–499 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Silva, G.J., Datta, A., Bhattacharyya, S.P.: PID Controllers for Time-Delay Systems. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  41. Smith, O.J.: Closer control of loops with dead-time. Chem. Eng. Prog. 53, 217–219 (1957)

    Google Scholar 

  42. Smith, O.J.: A controller to overcome dead-time. ISA J. 6, 28–33 (1959)

    Google Scholar 

  43. Sunan, H., King, T.K., Hen, L.T.: Applied Predictive Control. Springer, London (2002)

    Google Scholar 

  44. Tan, K.K., Huang, S.N., Lee, T.H.: Development of a GPC-based PID controller for unstable systems with deadtime. ISA Trans. 39, 57–70 (2000)

    Article  Google Scholar 

  45. Tan, K.K., Lee, T.H., Leu, F.M.: Predictive PI versus smith control for dead-time compensation. ISA Trans. 40, 17–29 (2001)

    Article  Google Scholar 

  46. Tan, K.K., Lee, T.H., Huang, S.N., Leu, F.M.: PID control design based on a GPC approach. Ind. Eng. Chem. Res. 41(8), 2013–2022 (2002)

    Article  Google Scholar 

  47. Tan, K.K., Lee, T.H., Leu, F.M.: Optimal smith-predictor design based on a GPC approach. Ind. Eng. Chem. Res. 41(5), 1242–1248 (2002)

    Article  Google Scholar 

  48. Tangirala, A.K., Li, D., Patwardhan, R., Shah, S.L., Chen, T.: Issues in multirate process control. In: Proc. of the American Control Conference, pp. 2771–2775 (1999)

    Google Scholar 

  49. Tangirala, A.T., Li, D., Patwardhan, R.S., Shah, S.L., Chen, T.: Ripple-free conditions for lifted multirate control systems. Automatica 37(10), 1637–1645 (2001)

    Article  MATH  Google Scholar 

  50. Usui, K.: Continuous flow rate control system with fuzzy controller. In: International Symposium on Measurement of Force and Mass, pp. 79–84 (1992)

    Google Scholar 

  51. Vermylen, J.: Controllers assure consistency in batch mixing of pasta dough. Food Process. 46(10), 138–139 (1985)

    Google Scholar 

  52. Vidyasagar, M.: A Factorization Approach. Control System Synthesis. The MIT Press, Cambridge (1985)

    Google Scholar 

  53. Visioli, A.: Practical PID Control. Springer, London (2006)

    MATH  Google Scholar 

  54. Wang, X., Huang, B., Chen, T.: Multirate minimum variance control design and control performance assessment: A data-driven subspace approach. IEEE Trans. Control Syst. Technol. 15(1), 65–74 (2007)

    Article  Google Scholar 

  55. Yamamoto, T., Kaneda, M.: A design of self-tuning PID controllers based on the generalized minimum variance control law. Trans. Inst. Syst. Control Inf. Eng. 11(1), 1–9 (1998) (in Japanese)

    Google Scholar 

  56. Yamamoto, T., Inoue, A., Shah, S.L.: Generalized minimum variance self-tuning pole-assignment controller with a PID structure. In: Proc. of 1999 IEEE Int Conf. on Control Applications, Hawaii, pp. 125–130 (1999)

    Google Scholar 

  57. Yanou, A., Inoue, A.: An extension of multivariable continuous-time generalized predictive control by using coprime factorization approach. In: Proc. of SICE Annual Conference, Fukui, pp. 3018–3022 (2003)

    Google Scholar 

  58. Yu, C.C.: Autotuning of PID Controllers, 2nd edn. Springer, London (2006)

    Google Scholar 

Download references

Acknowledgements

The author would like to express his sincere gratitude to Professor Akira Inoue and Dr. Shiro Masuda for their helpful suggestions and valuable discussions.

The author is grateful to Professor Toru Yamamoto and Professor Sirish L. Shah for their detailed comments and suggestions.

The author would like to thank Professor Koichi Kameoka and Yamato Scale Co. Ltd. for providing the experimental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sato, T. (2012). Predictive Control Approaches for PID Control Design and Its Extension to Multirate System. In: Vilanova, R., Visioli, A. (eds) PID Control in the Third Millennium. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2425-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2425-2_18

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2424-5

  • Online ISBN: 978-1-4471-2425-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics