Skip to main content

Fragility Evaluation of PI and PID Controllers Tuning Rules

  • Chapter
PID Control in the Third Millennium

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Currently, the design of Proportional Integral Derivative (PID) controllers must take into account the closed-loop control system performance to set-point and load-disturbance step changes, its robustness to the changes in the controlled process characteristics, the control effort smoothness and extreme requirements, and its fragility to the variation of the controller parameters. In this chapter, the early work on the controller fragility is revised and the Delta Epsilon Robustness and Performance Fragility Indices are presented as measurements of the loss of robustness and/or performance when the controller parameters change due to inaccuracies in its implementation or due to its final fine tuning. Using the Delta 20 Fragility Indices, the fragility index is defined when a controller may be considered as a robustness or performance resilient, non-fragile or fragile controller. The fragility of a tuning rule as a whole, its ability to produce robustness- and/or performance-non-fragile controllers, is evaluated using the fragility plots. It is shown that although a controller tuning rule can produce control systems with a constant nominal robustness over its entire range of application, the controller fragility is affected by the controlled process parameters and by the control algorithm implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afolabi, D.: Optimal controllers are fragile. In: American Control Conference, Denver, Colorado, USA, 4–6 June 2003

    Google Scholar 

  2. Alfaro, V.M.: PID controllers’ fragility. ISA Trans. 46, 555–559 (2007)

    Article  Google Scholar 

  3. Alfaro, V.M., Vilanova, R., Arrieta, O.: Analytical robust tuning of PI controllers for first-order-plus-dead-time processes. In: 13th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA2008), Hamburg, Germany, 15–18 September 2008

    Google Scholar 

  4. Alfaro, V.M., Vilanova, R., Arrieta, O.: Fragility analysis of PID controllers. In: 18th IEEE Conference on Control Applications, Saint Petersburg, Russia, 8–10 July 2009

    Google Scholar 

  5. Alfaro, V.M., Vilanova, R., Arrieta, O.: NORT: a non-oscillatory robust tuning approach for 2-DoF PI controllers. In: 18th International Conference on Control Applications part of the 2009 IEEE Multi-Conference on Systems and Control (CCA2009), Saint Petersburg, Russia, 8–9 July 2009

    Google Scholar 

  6. Alfaro, V.M., Vilanova, R., Arrieta, O.: A single-parameter robust tuning approach for two-degree-of-freedom PID controllers. In: European Control Conference (ECC2009) Budapest, Hungary, 23–26 August 2009

    Google Scholar 

  7. Alfaro, V.M., Vilanova, R., Arrieta, O.: Maximum sensitivity based robust tuning for two-degree-of-freedom proportional-integral controllers. Ind. Eng. Chem. Res. 49, 5415–5423 (2010)

    Article  Google Scholar 

  8. Ali, A., Majhi, S.: PI/PID controller design based on IMC and percentage overshoot specification to controller setpoint change. ISA Trans. 48, 10–15 (2009)

    Article  Google Scholar 

  9. Araki, M.: On two-degree-of-freedom PID control system. Tech. rep., SICE Research Committee on Modeling and Control Design of Real Systems (1984)

    Google Scholar 

  10. Araki, M.: Two-degree-of-freedom control system—I. Syst. Control 29, 649–656 (1985)

    MathSciNet  Google Scholar 

  11. Åström, K.J., Hägglund, T.: Automatic tuning of simple regulators with specification on phase and amplitude margins. Automatica 20(5), 645–651 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design and Tuning. Instrument Society of America, Research Triangle Park (1995)

    Google Scholar 

  13. Åström, K.J., Hägglund, T.: Revisiting the Ziegler–Nichols step response method for PID control. J. Process Control 14, 635–650 (2004)

    Article  Google Scholar 

  14. Åström, K.J., Hägglund, T.: Advanced PID Control. ISA, Research Triangle Park (2006)

    Google Scholar 

  15. Åström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, Princeton (2008)

    Google Scholar 

  16. Åström, K.J., Hang, C.C., Persson, P., Ho, W.K.: Towards intelligent PID control. Automatica 28(1), 1–9 (1992)

    Article  Google Scholar 

  17. Åström, K.J., Panagopoulos, H., Hägglund, T.: Design of PI controllers based on non-convex optimization. Automatica 34, 585–601 (1998)

    Article  MATH  Google Scholar 

  18. Babb, M.: Pneumatic instruments gave birth to automatic control. Control Eng. 37(12), 20–22 (1990)

    Google Scholar 

  19. Bennett, S.: The past of PID controllers. In: IFAC Digital Control: Past, Present and Future of PID Control, Terrassa, Spain (2000)

    Google Scholar 

  20. Brosilow, C., Joseph, B.: Techniques of Model-Based Control. Prentice Hall PTR, Upper Saddle River (2002)

    Google Scholar 

  21. Chien, I.-L., Fruehauf, P.S.: Consider IMC tuning to improve controller performance. Chem. Eng. Prog. 86(10), 33–41 (1990)

    Google Scholar 

  22. Chien, I.L., Hrones, J.A., Reswick, J.B.: On the Automatic Control of generalized passive systems. Trans. ASME 74, 175–185 (1952)

    Google Scholar 

  23. Cohen, G.H., Coon, G.A.: Theoretical considerations of retarded control. ASME Trans. 75, 827–834 (1953)

    Google Scholar 

  24. Corripio, A.B.: Tuning of Industrial Control Systems, 2nd edn. ISA, Research Triangle Park (2001)

    Google Scholar 

  25. Datta, A., Ho, M.-T., Bhattacharyya, S.P.: Structure and Synthesis of PID Controllers. Springer, London (2000)

    MATH  Google Scholar 

  26. Dorato, P.: Non-fragile controller design: An overview. In: American Control Conference, Philadelphia, Pennsylvania, USA, June 1998

    Google Scholar 

  27. Fung, H.W., Wang, Q.G., Lee, T.H.: PI tuning in terms of gain and phase margin. Automatica 34(9), 1145–1149 (1998)

    Article  MATH  Google Scholar 

  28. Gerry, J.P., Hansen, P.D.: Choosing the right controller. Chem. Eng. 25, 65–68 (1987)

    Google Scholar 

  29. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  30. Gorez, R.: New design relations for 2-DOF PID-like control systems. Automatica 39, 901–908 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hägglund, T., Åström, K.J.: Revisiting the Ziegler–Nichols tuning rules for PI control. Asian J. Control 4, 354–380 (2002)

    Google Scholar 

  32. Hang, C.C., Cao, L.S.: Improvement of transient response by means of variable set point weighting. IEEE Trans. Ind. Electron. 4, 477–484 (1996)

    Article  Google Scholar 

  33. Herreros, A., Baeyens, E., Perán, J.R.: Design of PID-type controllers using multiobjective genetic algorithms. ISA Trans. 41, 457–472 (2002)

    Article  Google Scholar 

  34. Ho, M.T.: Non-fragile PID controller design. In: 39th IEEE Conference on Decision and Control Sydney, Australia, December 2000

    Google Scholar 

  35. Ho, W.K., Hang, C.C., Cao, L.S.: Tuning of PID controllers based on gain and phase margin specifications. Automatica 31(3), 497–502 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ho, W.K., Lim, K.W., Xu, W.: Optimal gain and phase margin tuning for PID controllers. Automatica 31(8), 10091014 (1998)

    Google Scholar 

  37. Ho, M.T., Datta, A., Bhattacharyya, S.P.: Robust and non-fragile PID controller design. Int. J. Robust Nonlinear Control 11, 681–708 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Huang, H.P., Jeng, J.C.: Monitoring and assessment of control performance for single loop systems. Ind. Eng. Chem. Res. 41, 1297–1309 (2002)

    Article  Google Scholar 

  39. Isaksson, A.J., Graebe, S.F.: Derivative filter is an integral part of PID design. IEE Proc., Control Theory Appl. 149(1), 41–45 (2002)

    Article  Google Scholar 

  40. Istepanian, R.S.H., Whidborne, J.F.: Finite-precision computing for digital control systems: current status and future paradigms. In: Istepanian, R.S.H., Whidborne, J.F. (eds.) Digital Controller Implementation and Fragility. A Modern Perspective, pp. 1–10. Springer, London (2001)

    Chapter  Google Scholar 

  41. Istepanian, R.S.H., Wu, J., Chu, J., Whidborne, J.F.: Maximizing lower bond stability measure of finite precision PID controller realizations by nonlinear programming. In: American Control Conference Philadelphia, Pennsylvania, USA, June 1998

    Google Scholar 

  42. Johnson, M.A.: PID control technology. In: Johnson, M.A., Moradi, M.H. (eds.) PID Control—New Identification and Design Methods, pp. 1–46. Springer, London (2005)

    Google Scholar 

  43. Kaesbauer, D., Ackermann, J.: How to escape from the fragility trap. In: American Control Conference (1998)

    Google Scholar 

  44. Kaya, I.: Tuning PI controllers for stable process with specifications on gain and phase margins. ISA Trans. 43, 297–304 (2004)

    Article  Google Scholar 

  45. Keel, L.H., Battacharyya, S.P.: Robust, fragile or optimal? IEEE Trans. Autom. Control 42, 1098–1105 (1997)

    Article  MATH  Google Scholar 

  46. Kristiansson, B.: PID controllers, design and evaluation. Ph.D. thesis, Control and Automation Laboratory, Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden (2003)

    Google Scholar 

  47. Lee, C.H.: A survey of PID controller design based on gain and phase margins. Int. J. Comput. Cogn. 2(3), 63–100 (2004)

    Google Scholar 

  48. López, A.M., Miller, J.A., Smith, C.L., Murrill, P.W.: Tuning controllers with error-integral criteria. Instrum. Technol. 14, 57–62 (1967)

    Google Scholar 

  49. Mäkilä, P.M.: Comments on “Robust fragile, or optimal”. IEEE Trans. Autom. Control 43, 1265–1267 (1998)

    Article  Google Scholar 

  50. Martin, J., Corripio, A.B., Smith, C.L.: Controller tuning from simple process models. Instrum. Technol. 22(12), 39–44 (1975)

    Google Scholar 

  51. Mian, A.A., Wang, D., Ahmand, M.I.: Optimal non-fragile controller realization algorithm and application to control problems. In: Chinese Control and Decision Conference (CCDC2008), Yantai, China, 2–4 July, pp. 5331–5336 (2008)

    Chapter  Google Scholar 

  52. Mian, A.A., Mian, I.A., Wang, D.: Controller fragility minimization algorithm and comparison with different controller realizations. In: Smart Manufacturing Application, 9–11 April, pp. 157–162. Kintex, Gyeonggi-do (2008)

    Chapter  Google Scholar 

  53. Morari, M., Zafiriou, E.: Robust Process Control. Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

  54. O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules, 2nd edn. Imperial College Press, London (2006)

    Book  Google Scholar 

  55. Paattilammi, J., Mäkilä, P.M.: Fragility and robustness: A case study on paper machine headbox control. IEEE Control Syst. Mag. 20(1), 13–22 (2000)

    Article  Google Scholar 

  56. Panagopoulos, H.: PID control design, extension, application. Ph.D. thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden (2000)

    Google Scholar 

  57. Rivera, D.E., Morari, M., Skogestad, S.: Internal model control. 4. PID controller design. Ind. Eng. Chem. Process Des. Dev. 25, 252–265 (1986)

    Article  Google Scholar 

  58. Rovira, A., Murrill, P.W., Smith, C.L.: Tuning controllers for setpoint changes. Instrum. Control Syst. 42, 67–69 (1969)

    Google Scholar 

  59. Shinskey, F.G.: Process control: As taught vs as practiced. Ind. Eng. Chem. Res. 41, 3745–3750 (2002)

    Article  Google Scholar 

  60. Silva, G.J., Datta, A., Bhattacharyya, S.P.: PID tuning revisited: Guaranteed stability and non-fragility. In: American Control Conference Anchorage, Arkansas, USA, 8–10 May (2002)

    Google Scholar 

  61. Silva, G.J., Datta, A., Bhattacharyya, S.P.: On the stability and controller robustness of some popular PID tuning rules. IEEE Trans. Autom. Control 48(9), 1638–1641 (2003)

    Article  MathSciNet  Google Scholar 

  62. Silva, G.J., Datta, A., Bhattacharyya, S.P.: PID Controllers for Time-Delay Systems. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  63. Skogestad, S.: Simple analytic rules for model reduction and PID controller tuning. J. Process Control 13, 291–309 (2003)

    Article  Google Scholar 

  64. Taguchi, H., Araki, M.: Two-degree-of-freedom PID controllers—their functions and optimal tuning. In: IFAC Digital Control: Past, Present and Future of PID Control, Terrassa, Spain (2000)

    Google Scholar 

  65. Tavakoli, S., Tavakoli, M.: Optimal tuning of PID controllers for first order plus time delay models using dimensional analysis. In: The Fourth International Conference on Control and Automation (ICCA’03), Montreal, Canada, 10–13 June 2003

    Google Scholar 

  66. Tavakoli, S., Griffin, I., Fleming, P.J.: Robust PI controller for load disturbance rejection and setpoint regulation. In: IEEE Conference on Control Applications, Toronto, Canada, 28–31 August 2005

    Google Scholar 

  67. Tavakoli, S., Griffin, I., Fleming, P.J.: Multi-objective optimization approach to the PI tuning problem. In: IEEE Congress on Evolutionary Computing (CEC2007), pp. 3165–3171 (2007)

    Chapter  Google Scholar 

  68. Visioli, A.: Practical PID Control. Springer, London (2006)

    MATH  Google Scholar 

  69. Whidborne, J.F.: Controller fragility. In: 25th Nathiagali Summer School on Physics and Contemporary Needs, Nathiagali, Pakistan, July 2000

    Google Scholar 

  70. Whidborne, J.F., Istepanian, R.S.H., Wu, J.: Reduction of controller fragility by pole sensitivity minimization. IEEE Trans. Autom. Control 46(2), 320–325 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  71. Xu, H.: Synthesis and design of PID controllers. Ph.D. thesis, Texas A&M University (2004)

    Google Scholar 

  72. Yaniv, O., Nagurka, M.: Design of PID controllers satisfying gain margin and sensitivity constrains on a set of plants. Automatica 40, 111–116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  73. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 64, 759–768 (1942)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Alfaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Alfaro, V.M., Vilanova, R. (2012). Fragility Evaluation of PI and PID Controllers Tuning Rules. In: Vilanova, R., Visioli, A. (eds) PID Control in the Third Millennium. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2425-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2425-2_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2424-5

  • Online ISBN: 978-1-4471-2425-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics