Skip to main content

Valvular Heart Disease

  • Chapter
  • First Online:
Cardiac Pathology

Abstract

This chapter deals with current topics in valvular heart disease, focusing on the most common types of diseased valve encountered in routine surgical practice including floppy mitral valves, senile tricuspid aortic valves, and congenital bicuspid aortic valves. The pathology of infective endocarditis and rheumatic valvular heart disease is also discussed. Macroscopic and microscopic images of the different valve pathologies are provided as well as a detailed description of valve pathophysiology, and scientific data underlying the pathogenesis of the different forms of valvular heart disease is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpentier A. Cardiac valve surgery – the “French correction”. J Thorac Cardiovasc Surg. 1983;86:323–37.

    PubMed  CAS  Google Scholar 

  2. Ranganathan N, Lam JHC, Wigle ED, et al. Morphology of the human mitral valve: II. The valve leaflets. Circulation. 1970;41:459–67.

    Article  PubMed  CAS  Google Scholar 

  3. Lucas Jr RV, Edwards JE. The floppy mitral valve. Curr Probl Cardiol. 1982;7:1–48.

    Article  PubMed  Google Scholar 

  4. Cherubin CE, Neu HC. Infective endocarditis at the Presbyterian Hospital in New York City. Am J Med. 1971;51:83–95.

    Article  PubMed  CAS  Google Scholar 

  5. Rabinovich S, Evans J, Smith IM, et al. A long-term view of bacterial endocarditis. Ann Intern Med. 1965;63:185–98.

    PubMed  CAS  Google Scholar 

  6. Devereux RB, Frary CJ, Kramer-Fox R, et al. Cost-effectiveness of infective endocarditis prophylaxis for mitral valve prolapse with or without a mitral regurgitant murmur. Am J Cardiol. 1994;74:1024–9.

    Article  PubMed  CAS  Google Scholar 

  7. Devereux RB, Brown WT, Kramer-Fox R, et al. Inheritance of mitral valve prolapse: effect of age and sex on gene expression. Ann Intern Med. 1982;97:826–32.

    PubMed  CAS  Google Scholar 

  8. Clemens JD, Horwitz RI, Jaffe CC, et al. A controlled evaluation of the risk of bacterial endocarditis in persons with mitral valve prolapse. N Engl J Med. 1982;307:776–81.

    Article  PubMed  CAS  Google Scholar 

  9. McKinsey DS, Ratts TE, Bisno AL. Underlying cardiac lesions in adults with infective endocarditis. The changing spectrum. Am J Med. 1987;82:681–8.

    Article  PubMed  CAS  Google Scholar 

  10. Hickey AJ, MacMahon SW, Wilcken DEL. Mitral valve prolapse and bacterial endocarditis: when is antibiotic prophylaxis necessary? Am Heart J. 1985;109:421–35.

    Article  Google Scholar 

  11. Danchin N, Voiriot P, Briancon S, et al. Mitral valve prolapse as a risk factor for infective endocarditis. Lancet. 1989;1:743–5.

    Article  PubMed  CAS  Google Scholar 

  12. MacMahon SW, Hickey AJ, Wilcken DE, et al. Risk of infective endocarditis in mitral valve prolapse with and without precordial murmurs. Am J Cardiol. 1987;59:105–8.

    Article  PubMed  CAS  Google Scholar 

  13. Marks AR, Choong CY, Sanfilippo AJ, et al. Identification of high-risk and low-risk subgroups of patients with mitral-valve prolapse. N Engl J Med. 1989;320:1031–6.

    Article  PubMed  CAS  Google Scholar 

  14. Varstela E, Verkkala K, Pohjola-Sintonen S, et al. Surgical treatment of infective aortic valve endocarditis. Scand J Thorac Cardiovasc Surg. 1991;25:167–74.

    Article  PubMed  CAS  Google Scholar 

  15. Janatuinen MJ, Vanttinen EA, Nikoskelainen J, et al. Surgical treatment of active native endocarditis. Scand J Thorac Cardiovasc Surg. 1990;24:181–5.

    Article  PubMed  CAS  Google Scholar 

  16. Lamas CC, Ekyn SJ. Bicuspid aortic valve – a silent danger: analysis of 50 cases of infective endocarditis. Clin Infect Dis. 2000;30:336–41.

    Article  PubMed  CAS  Google Scholar 

  17. Moulsdale MT, Eykyn SJ, Phillips I. Infective endocarditis ­1970–1979. A study of culture-positive cases in St. Thomas Hospital. Q J Med. 1980;49:315–28.

    PubMed  CAS  Google Scholar 

  18. Mugge A, Daniel WG, Frank G, et al. Echocardiography in infective endocarditis: reassessment of prognostic implications of vegetation size determined by the transthoracic and the transesophageal approach. J Am Coll Cardiol. 1989;14:631–8.

    Article  PubMed  CAS  Google Scholar 

  19. Freedman LR, Valone Jr J. Experimental infective endocarditis. Prog Cardiovasc Dis. 1979;22:169–80.

    Article  PubMed  CAS  Google Scholar 

  20. Petersdorf RG, Pelletier LL, Durack DT. The 1976 Paul B. Beeson lecture. Some observations on experimental endocarditis. Yale J Biol Med. 1977;50:67–75.

    PubMed  CAS  Google Scholar 

  21. Von Reyn CF, Levy BS, Arbeit RD, et al. Infective endocarditis: an analysis based on strict case definitions. Ann Intern Med. 1981;94:505–18.

    Google Scholar 

  22. Ringer M, Feen DJ, Drapkin M. Mitral valve prolapse: jet stream causing mural endocarditis. Am J Cardiol. 1980;45:383–5.

    Article  PubMed  CAS  Google Scholar 

  23. Kuhn III C, Weber N. Mural bacterial endocarditis of a ventricular friction lesion. Arch Pathol. 1973;95:92–3.

    PubMed  Google Scholar 

  24. Bonow RO, Carabello BA, Chatterjee K, et al. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52:e1–142.

    Article  PubMed  Google Scholar 

  25. El-Shami K, Griffiths E, Streiff M. Nonbacterial thrombotic endocarditis in cancer patients; pathogenesis, diagnosis and treatment. The Oncologist. 2007;12:518–23.

    Article  PubMed  Google Scholar 

  26. Eiken PW, Edwards WD, Tazelaar HD, et al. Surgical pathology of nonbacterial thrombotic endocarditis in 30 patients, 1985–2000. Mayo Clin Proc. 2001;76:1204–12.

    Article  PubMed  CAS  Google Scholar 

  27. Kim H, Suzuki M, Lie J, et al. Non-bacterial thrombotic endocarditis (NBTE) and disseminated intravascular coagulation (DIC). Arch Pathol Lab Med. 1977;101:65–8.

    PubMed  CAS  Google Scholar 

  28. Olney B, Schattenberg T, Campbell J, et al. The consequences of the inconsequential: marantic (non-bacterial thrombotic) endocarditis. Am Heart J. 1979;98:513–22.

    Article  PubMed  CAS  Google Scholar 

  29. Hojnik M, George J, Ziporen L, et al. Heart valve involvement (Libman-Sacks Endocarditis) in the antiphospholipid syndrome. Circulation. 1996;93:1579–87.

    Article  PubMed  CAS  Google Scholar 

  30. Selzer A, Kohn KE. Natural history of mitral stenosis: a review. Circulation. 1972;45:878–90.

    Article  PubMed  CAS  Google Scholar 

  31. Abernathy WS, Willis III PW. Thromboembolic complications of rheumatic heart disease. Cardiovasc Clin. 1973;5:131–75.

    PubMed  CAS  Google Scholar 

  32. Cabot RC. Facts on the heart. Philadeliphia: W. B. Saunders; 1926.

    Google Scholar 

  33. Wood P. An appreciation of mitral stenosis, I: clinical features. Br Med J. 1954;4870:1051–63.

    Article  Google Scholar 

  34. Rowe JC, Bland EF, Sprague HB, et al. The course of mitral stenosis without surgery: ten- and twenty-year perspectives. Ann Intern Med. 1960;52:741–9.

    PubMed  CAS  Google Scholar 

  35. Olesen KH. The natural history of 271 patients with mitral stenosis under medical treatment. Br Heart J. 1962;24:349–57.

    Article  PubMed  CAS  Google Scholar 

  36. Rusted IE, Schiefley CH, Edwards JE. Studies of the mitral valve, II: certain anatomic features of the mitral valve and associated structures in mitral stenosis. Circulation. 1956;14:398–406.

    Article  PubMed  Google Scholar 

  37. Gorlin R, Gorlin SG. Hydraulic formula for calcification of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. Am Heart J. 1951;41:1–29.

    Article  PubMed  CAS  Google Scholar 

  38. Roberts WC. Morphologic features of the normal and abnormal mitral valve. Am J Cardiol. 1983;51:1005–28.

    Article  PubMed  CAS  Google Scholar 

  39. Lindroos M, Kupari M, Heikkila J, et al. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a ­random population sample. J Am Coll Cardiol. 1993;91:1220–5.

    Article  Google Scholar 

  40. Yuan S-M, Jing H, Lavee J. The bicuspid aortic valve and its relation to aortic dilation. Clinics. 2010;65:497–505.

    Article  PubMed  Google Scholar 

  41. Larson EW, Edwards WD. Risk factors for aortic dissection: a necropsy study of 161 cases. Am J Cardiol. 1984;53:849–55.

    Article  PubMed  CAS  Google Scholar 

  42. Rajamannan NM. Calcific aortic stenosis: lessons learned from experimental and clinical studies. Arterioscler Thromb Vasc Biol. 2009;29:162–8.

    Article  PubMed  CAS  Google Scholar 

  43. Mohler III ER, Gannon F, Reynolds C, et al. Bone formation and inflammation in cardiac valves. Circulation. 2001;103:1522–8.

    Article  PubMed  Google Scholar 

  44. O’Brien KD, Reichenbach DD, Marcovina SM, et al. Apolipoproteins B (a), and E accumulate in the morphologically early lesion of “degenerative” valvular aortic stenosis. Arterioscler Thromb Vasc Biol. 1996;16:523–32.

    Article  PubMed  Google Scholar 

  45. Olsson M, Dalsgaard CJ, Haegerstrand A, et al. Accumulation of T lymphocytes and expression of interleukin-2 receptors in nonrheumatic stenotic aortic valves. J Am Coll Cardiol. 1994;23:1162–70.

    Article  PubMed  CAS  Google Scholar 

  46. Aronow WS, Schwartz KS, Koenigsberg M. Correlation of serum lipids, calcium, and phosphorus, diabetes mellitus and history of systemic hypertension with presence or absence of calcified or thickened aortic cusps or root in elderly patients. Am J Cardiol. 1987;59:998–9.

    Article  PubMed  CAS  Google Scholar 

  47. Mohler ER, Sheridan MJ, Nichols R, et al. Development and progression of aortic valve stenosis: atherosclerotic risk factors – a causal relationship? A clinical morphologic study. Clin Cardiol. 1991;14:995–9.

    Article  PubMed  CAS  Google Scholar 

  48. Stewart BF, Siscovick D, Lind BK, et al. Clinical factors associated with calcific aortic valve disease. J Am Coll Cardiol. 1997;29:630–4.

    Article  PubMed  CAS  Google Scholar 

  49. Palta S, Pai AM, Gill KS, et al. New insights into the progression of aortic stenosis. Implications for secondary prevention. Circulation. 2000;101:2497–502.

    Article  PubMed  CAS  Google Scholar 

  50. Nassimiha D, Aronow WS, Ahn C. Association of coronary risk factors with progression of valvular aortic stenosis. Am J Cardiol. 2001;87:1313–4.

    Article  PubMed  CAS  Google Scholar 

  51. Cagirci G, Cay S, Karakurt O, et al. Paraoxonase activity might be predictive of the severity of aortic valve stenosis. J Heart Valve Disease. 2010;19:453–8.

    Google Scholar 

  52. Yetkin E, Waltenberger J. Molecular and cellular mechanisms of aortic stenosis. Int J Cardiol. 2009;35:4–13.

    Article  Google Scholar 

  53. Ghaisas NK, Foley JB, O’Brien DS, et al. Adhesion molecules in nonrheumatic aortic valve disease: endothelial expression, serum levels and effects of valve replacement. J Am Coll Cardiol. 2000;36:2257–62.

    Article  PubMed  CAS  Google Scholar 

  54. Sider KL, Blaser MC, Simmons CA. Animal models of calcific aortic valve disease. Article ID 364310, doi: 10.4061/2011/364310. Int J Inflamm 2011;2011:1–18.

    Google Scholar 

  55. O’Brien KD, Kuusisto J, Reichenbach M, et al. Osteopontin is expressed in human aortic valvular lesions. Circulation. 1995;92:2163–8.

    Article  PubMed  Google Scholar 

  56. Rajamannan NM, Subramaniam M, Springett M, et al. Atorvastatin inhibits hypercholesterolaemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation. 2002;105:2260–5.

    Article  CAS  Google Scholar 

  57. Rajamannan NM, Subramaniam M, Rickard D, et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation. 2003;107:2181–4.

    Article  PubMed  Google Scholar 

  58. Mohler III ER, Chawla MK, Chang AW, et al. Identification and characterization of calcifying valve cells from human and canine aortic valves. J Heart Valve Dis. 1999;8:254–60.

    PubMed  Google Scholar 

  59. Kaden JJ, Bickelhaupt S, Grobholz R, et al. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulate aortic valve calcification. J Mol Cell Cardiol. 2004;36:57–66.

    Article  PubMed  CAS  Google Scholar 

  60. Fondard O, Detaint D, Iung B, et al. Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur Heart J. 2005;26:1333–41.

    Article  PubMed  CAS  Google Scholar 

  61. Satta J, Oiva J, Salo T, et al. Evidence for an altered balance between matrix metalloproteinase-9 and its inhibitors in calcific aortic stenosis. Ann Thorac Surg. 2003;76:681–8.

    Article  PubMed  Google Scholar 

  62. Helske S, Syvaranta S, Lindstedt KA, et al. Increased expression of elastolytic cathepsins S, K, and V and their inhibitor cystatin C in aortic stenotic valves. Arterioscler Thromb Vasc Biol. 2006;26:1791–8.

    Article  PubMed  CAS  Google Scholar 

  63. Kaden JJ, Dempfle CE, Grobholz R, et al. Inflammatory regulation of extracellular matrix remodelling in calcific aortic valve stenosis. Cardiovasc Pathol. 2005;14:80–7.

    Article  PubMed  CAS  Google Scholar 

  64. Kaden JJ, Dempfle CE, Grobholz R, et al. Interleukin-1 beta promotes matrix metalloproteinase expression and cell proliferation in calcific aortic valve stenosis. Atherosclerosis. 2003;170:205–11.

    Article  PubMed  CAS  Google Scholar 

  65. Jian B, Narula N, Li QY, et al. Progression of aortic valve stenosis: TGF-beta 1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann Thorac Surg. 2003;75:457–65.

    Article  PubMed  Google Scholar 

  66. Kaden JJ, Dempfle C-E, Kilic R, et al. Influence of receptor activator nuclear factor kappa B on human aortic valve myofibroblasts. Exp Mol Pathol. 2005;78:36–40.

    Article  PubMed  CAS  Google Scholar 

  67. Soini Y, Salo T, Satta J. Angiogenesis is involved in the pathogenesis of nonrheumatic aortic valve stenosis. Hum Pathol. 2003;34:756–63.

    Article  PubMed  CAS  Google Scholar 

  68. Yang X, Fullerton DA, Su X, et al. Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of Toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2. J Am Coll Cardiol. 2009;53:491–500.

    Article  PubMed  CAS  Google Scholar 

  69. Ortlepp JR, Hoffmann R, Ohme F, et al. The vitamin D receptor genotype predisposes to the development of calcific aortic valve stenosis. Heart. 2001;85:635–8.

    Article  PubMed  CAS  Google Scholar 

  70. Nordstrom P, Glader CA, Dahlen G, et al. Oestrogen receptor alpha gene polymorphism is related to aortic valve sclerosis in postmenopausal women. J Intern Med. 2003;254:140–6.

    Article  PubMed  CAS  Google Scholar 

  71. Sprigings DC, Forfar JC. How should we manage symptomatic ­aortic stenosis in the patient who is 80 or older? Br Heart J. 1995;74:481–4.

    Article  PubMed  CAS  Google Scholar 

  72. Horstkotte D, Loogen F. The natural history of aortic valve stenosis. Eur Heart J. 1988;9(Suppl E):57–64.

    PubMed  Google Scholar 

  73. Schwarz F, Baumann P, Manthey J, et al. The effect of aortic valve replacement on survival. Circulation. 1982;66:1105–10.

    Article  PubMed  CAS  Google Scholar 

  74. Novaro GM, Tiong IY, Pearce GL, et al. Effect of hydroxymethylglutaryl coenzyme a reductase inhibitors on the progression of calcific aortic stenosis. Circulation. 2001;104:2205–9.

    Article  PubMed  CAS  Google Scholar 

  75. Aronow WS, Ahn C, Kronzon I, et al. Association of coronary risk factors and use of statins with progression of mild valvular aortic stenosis in older persons. Am J Cardiol. 2001;88:309–15.

    Google Scholar 

  76. Cowell SJ, Newby DE, Prescott RJ, et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med. 2005;352:2389–97.

    Article  PubMed  CAS  Google Scholar 

  77. Rossebo AB, Pedersen TR, Boman K, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med. 2008;359:1343–56.

    Article  PubMed  Google Scholar 

  78. Mundy G, Garret R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286:1946–9.

    Article  PubMed  CAS  Google Scholar 

  79. O’Brien KD, Shavelle DM, Caulfield MT, et al. Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma. Circulation. 2002;106:2224–30.

    Article  PubMed  Google Scholar 

  80. Braverman AC, Guven H, Beardslee MA, et al. The bicuspid aortic valve. Curr Probl Cardiol. 2005;30:470–522.

    Article  PubMed  Google Scholar 

  81. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    Article  PubMed  Google Scholar 

  82. Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol. 2010;55:2789–800.

    Article  PubMed  Google Scholar 

  83. Sybert VP. Cardiovascular malformations and complications in Turner syndrome. Pediatrics. 1998;101:E11.

    Article  PubMed  CAS  Google Scholar 

  84. Lopez-Rangel E, Maurice M, McGillivray B, et al. William’s syndrome in adults. Am J Med Genet. 1992;44:720–9.

    Article  PubMed  CAS  Google Scholar 

  85. Roos-Hesselink JW, Scholzel BE, et al. Aortic valve and aortic arch pathology after coarctation repair. Heart. 2003;89:1074–7.

    Article  PubMed  CAS  Google Scholar 

  86. Deshpande J, Kinare SG. The bicuspid aortic valve – an autopsy study. Indian J Pathol Microbiol. 1991;34:112–8.

    PubMed  CAS  Google Scholar 

  87. Suzuki T, Nagai R, Kurihara H, et al. Stenotic bicuspid aortic valve associated with a ventricular septal defect in an adult presenting with congestive heart failure: a rare observation. Eur Heart J. 1994;15:402–3.

    PubMed  CAS  Google Scholar 

  88. Bolling SF, Iannattoni MD, Dick 2nd M, et al. Shone’s anomaly: operative results and late outcome. Ann Thorac Surg. 1990;49:887–93.

    Article  PubMed  CAS  Google Scholar 

  89. Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437:270–4.

    Article  PubMed  CAS  Google Scholar 

  90. Huntington K, Hunter AG, Chan KL. A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J Am Coll Cardiol. 1997;30:1809–12.

    Article  PubMed  CAS  Google Scholar 

  91. Cripe L, Andelfinger G, Martin J, et al. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004;44:138–43.

    Article  PubMed  Google Scholar 

  92. Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). J Am Coll Cardiol. 2008;52:e1–121.

    Article  Google Scholar 

  93. Roberts WC. The congenitally bicuspid aortic valve. A study of 85 autopsy cases. Am J Cardiol. 1970;26:72–83.

    Article  PubMed  CAS  Google Scholar 

  94. Fernandes SM, Khairy P, Sanders SP, et al. Bicuspid aortic valve morphology and interventions in the young. J Am Coll Cardiol. 2007;49:2211–4.

    Article  PubMed  Google Scholar 

  95. Sievers HH, Schmidtke C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg. 2007;133:1226–33.

    Article  PubMed  Google Scholar 

  96. Sabet HY, Edwards WD, Tazelaar HD, et al. Congenitally bicuspid aortic valves: a surgical pathology study of 542 cases (1991 through 1996) and a literature review of 2,715 additional cases. Mayo Clin Proc. 1999;74:14–26.

    Article  PubMed  CAS  Google Scholar 

  97. Angelini A, Ho SY, Anderson RH, et al. The morphology of the normal aortic valve as compared with the aortic valve having two cusps. J Thorac Cardiovasc Surg. 1989;89:362–7.

    Google Scholar 

  98. Beppu S, Suzuki S, Matsuda H, et al. Rapidity of progression of aortic stenosis in patients with congenital bicuspid aortic valves. Am J Cardiol. 1993;71:322–7.

    Article  PubMed  CAS  Google Scholar 

  99. Nigam V, Sievers HH, Jensen BC, Simpson PC, Srivastava D, Mohamed SA. Altered microRNAs in bicuspid aortic valve: a comparison between stenotic and insufficient valves. J Heart Valve Dis. 2010;19:459–65.

    PubMed  Google Scholar 

  100. Rajamannan NM. Bicuspid aortic valve disease: the role of oxidative stress in Lrp5 bone formation. Cardiovasc Pathol. 2011;20:168–76.

    Article  PubMed  CAS  Google Scholar 

  101. Rabus MB, Kayalar N, Sareyyupoglu B, et al. Hypercholesterolaemia association with aortic stenosis of various etiologies. J Card Surg. 2009;24:146–50.

    Article  PubMed  Google Scholar 

  102. Yagubyan M, Sarkar G, Nishimura RA, et al. C-reactive protein as a marker of severe calcification among patients with bicuspid aortic valve disease. Journal of Surgical Research. 2004;121:281.

    Article  Google Scholar 

  103. Fedak PW, Verma S, David TE, et al. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106:900–4.

    Article  PubMed  Google Scholar 

  104. Pachulski RT, Weinberg AL, Chan KL. Aortic aneurysm in patients with functionally normal or minimally stenotic bicuspid aortic valve. Am J Cardiol. 1991;67:781–2.

    Article  PubMed  CAS  Google Scholar 

  105. Hahn RT, Roman MJ, Mogtader AH, et al. Association of aortic dilation with regurgitant, stenotic and functionally normal bicuspid aortic valves. J Am Coll Cardiol. 1992;19:283–8.

    Article  PubMed  CAS  Google Scholar 

  106. Edwards WD, Leaf DS, Edwards JE. Dissecting aortic aneurysm associated with congenital bicuspid aortic valve. Circulation. 1978;57:1022–5.

    Article  PubMed  CAS  Google Scholar 

  107. Roberts CS, Roberts WC. Dissection of the aorta associated with congenital malformation of the aortic valve. J Am Coll Cardiol. 1991;17:712–6.

    Article  PubMed  CAS  Google Scholar 

  108. Della Corte A, Bancone C, Quarto C, et al. Predictors of ascending aortic dilatation with bicuspid valve: a wide spectrum of disease expression. Eur J Cardiothrac Surg. 2007;31:397–405.

    Article  Google Scholar 

  109. Nistri S, Sorbo MD, Marin M, et al. Aortic root dilatation in young men with normally functioning bicuspid aortic valves. Heart. 1999;82:19–22.

    PubMed  CAS  Google Scholar 

  110. Ergin MA, Spielvogel D, Apaydin A, et al. Surgical treatment of the descending dilated aorta: when and how? Ann Thorac Surg. 1999;67:1834–9.

    Article  PubMed  CAS  Google Scholar 

  111. Morgan-Hughes GJ, Roobottom CA, Owens PE, et al. Dilatation of the aorta in pure, severe, bicuspid aortic valve stenosis. Am Heart J. 2004;147:736–40.

    Article  PubMed  Google Scholar 

  112. McKusick VA. Association of congenital bicuspid aortic valve and Erdheim’s cystic medial necrosis. Lancet. 1972;1:1026–7.

    Article  PubMed  CAS  Google Scholar 

  113. Niwa K, Perfloff JK, Bhuta SM, et al. Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses. Circulation. 2001;103:393–400.

    Article  PubMed  CAS  Google Scholar 

  114. Bonderman D, Gharehbaghi-Schnell E, Wollenek G, et al. Mechanisms underlying aortic dilatation in congenital aortic valve malformation. Circulation. 1999;99:2138–43.

    Article  PubMed  CAS  Google Scholar 

  115. Olson LJ, Subramanian R, Ackermann DM, et al. Surgical pathology of the mitral valve: a study of 712 cases spanning 21 years. Mayo Clin Proc. 1987;62:22–34.

    PubMed  CAS  Google Scholar 

  116. Waller BF, Morrow AG, Maron BJ, et al. Etiology of clinically isolated, severe, chronic, pure mitral regurgitation: analysis of 97 patients over 30 years of age having mitral valve replacement. Am Heart J. 1982;104:276–88.

    Article  PubMed  CAS  Google Scholar 

  117. Freed LA, Acierno Jr JS, Dai D, et al. A locus for autosomal dominant mitral valve prolapse on chromosome 11p15.4. Am J Hum Genet. 2003;72:1551–9.

    Article  PubMed  CAS  Google Scholar 

  118. Read RC, Thal AP, Wendt VE. Symptomatic valvular myxomatous transformation (the floppy valve syndrome). A possible forme fruste of the Marfan syndrome. Circulation. 1965;32:897–910.

    Article  PubMed  CAS  Google Scholar 

  119. Freed LA, Levy D, Levine RA, et al. Prevalence and clinical outcome of mitral valve prolapse. N Engl J Med. 1999;341:1–7.

    Article  PubMed  CAS  Google Scholar 

  120. Disse S, Abergel E, Berrebi A, et al. Mapping of a first locus for autosomal dominant myxomatous mitral-valve prolapse to chromosome 16p11.2-p12.1. Am J Hum Genet. 1999;65:1242–51.

    Article  PubMed  CAS  Google Scholar 

  121. Nesta F, Leyne M, Yosefy C, et al. New locus for autosomal dominant mitral valve prolapse on chromosome 13: clinical insights from genetic studies. Circulation. 2005;112:2022–30.

    Article  PubMed  Google Scholar 

  122. Kyndt F, Schott JJ, Trochu JN, et al. Mapping of X-linked myxomatous valvular dystrophy to chromosome Xq28. Am J Hum Genet. 1998;62:627–32.

    Article  PubMed  CAS  Google Scholar 

  123. Virmani R, Atkinson JB, Forman MB. The pathology of mitral valve prolapse. Herz. 1988;13:215–26.

    PubMed  CAS  Google Scholar 

  124. Cole WG, Chan D, Hickey AJ, et al. Collagen composition of ­normal and myxomatous human mitral heart valves. Biochem J. 1984;219:451–60.

    PubMed  CAS  Google Scholar 

  125. Tamura K, Fukuda Y, Ishizaki M, et al. Abnormalities in elastic fibres and other connective-tissue components of floppy mitral valve. Am Heart J. 1995;129:1149–58.

    Article  PubMed  CAS  Google Scholar 

  126. Olsen EG, Al-Rufaie HK. The floppy mitral valve: study on pathogenesis. Br Heart J. 1980;44:674–83.

    Article  PubMed  CAS  Google Scholar 

  127. Prunotto M, Primo Caimmi P, Bongiovanni M. Cellular pathology of mitral valve prolapse. Cardiovasc Pathol. 2010;19:e113–7.

    Article  PubMed  CAS  Google Scholar 

  128. Fontana ME, Sparks EA, Boudoulas H, et al. Mitral valve prolapse and the mitral valve prolapse syndrome. Curr Probl Cardiol. 1991;16:309–75.

    Article  PubMed  CAS  Google Scholar 

  129. Grigioni F, Averinos JF, Ling LH, et al. Atrial fibrillation complicating the course of degenerative mitral regurgitation: determinants and long-term outcome. J Am Coll Cardiol. 2002;40:84–92.

    Article  PubMed  Google Scholar 

  130. Vohra J, Sathe S, Warren R, et al. Malignant ventricular arrhythmias in patients with mitral valve prolapse and mild mitral regurgitation. Pacing Clin Electrophysiol. 1993;16:387–93.

    Article  PubMed  CAS  Google Scholar 

  131. Waller BF, Howard J, Fess S. Pathology of tricuspid valve stenosis and pure tricuspid regurgitation – part III. Clin Cardiol. 1995;18:225–30.

    Article  PubMed  CAS  Google Scholar 

  132. Waller BF, Howard J, Fess S. Pathology of tricuspid valve stenosis and pure tricuspid regurgitation – part I. Clin Cardiol. 1995;19:97–102.

    Article  Google Scholar 

  133. Waller BF, Howard J, Fess S. Pathology of tricuspid valve stenosis and pure tricuspid regurgitation – part II. Clin Cardiol. 1995;18:167–74.

    Article  PubMed  CAS  Google Scholar 

  134. Waller BF, Howard J, Fess S. Pathology of pulmonic valve stenosis and pure regurgitation. Clin Cardiol. 1995;18:45–50.

    Article  PubMed  CAS  Google Scholar 

  135. Altrichter PM, Olson LJ, Edwards WD, et al. Surgical pathology of the pulmonary valve: a study of 116 cases spanning 15 years. Mayo Clin Proc. 1989;64:1352–60.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siân Hughes MBBS, M.Sc., Ph.D., FRCPath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Hughes, S. (2013). Valvular Heart Disease. In: Suvarna, S. (eds) Cardiac Pathology. Springer, London. https://doi.org/10.1007/978-1-4471-2407-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2407-8_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2406-1

  • Online ISBN: 978-1-4471-2407-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics