Skip to main content

Experimental Models

  • Chapter
  • First Online:
  • 1258 Accesses

Abstract

There is need for animal models that can represent changes in the right ventricle that closely mimic the human situation. The availability of an animal model of pressure overload-induced right ventricular (RV) hypertrophy (e.g. the pulmonary artery banding model) provides a valuable tool to aid understanding of the differences between adaptive and maladaptive RV hypertrophy and to expand our knowledge about the direct effects on the heart of current therapies for pulmonary arterial hypertension. Here, we discuss the role of such models in investigating the physiological/pathophysiological mechanisms involved in adaptive and maladaptive RV hypertrophy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

COPD:

Chronic obstructive pulmonary disease

CTEPH:

Chronic thromboembolic pulmonary hypertension

CYP3A4:

Cytochrome P450

FDG:

18F-fluorodeoxyglucose

FHR:

Fawn-hooded rat

LAD:

Left anterior descending

LV:

Left ventricular

MCT:

Monocrotaline

MCTP:

Dehydromonocrotaline

MI:

Myocardial infarction

MMP:

Matrix metalloproteinase

OSA:

Obstructive sleep apnea

PA AcT:

Pulmonary artery acceleration time

PAB:

Pulmonary artery banding

PAH:

Pulmonary arterial hypertension

PAP:

Pulmonary artery pressure

PH:

Pulmonary hypertension

PVR:

Pulmonary vascular resistance

RV:

Right ventricle

RV:

Right ventricular

SUHx:

Sugen plus hypoxia

TAC:

Transverse aortic constriction

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

VEGF:

Vascular endothelial growth factor

References

  1. van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28(10):1250–7. Epub 2007/01/24.

    Article  PubMed  Google Scholar 

  2. Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation. 2009;120(11):992–1007. Epub 2009/09/16.

    Article  PubMed  Google Scholar 

  3. Huez S, Vachiery JL, Unger P, Brimioulle S, Naeije R. Tissue Doppler imaging evaluation of cardiac adaptation to severe pulmonary hypertension. Am J Cardiol. 2007;100(9):1473–8. Epub 2007/10/24.

    Article  PubMed  Google Scholar 

  4. Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol. 2011;8(8):443–55. Epub 2011/06/22.

    Article  CAS  PubMed  Google Scholar 

  5. Naeije R, Huez S. Expert opinion on available options treating pulmonary arterial hypertension. Expert Opin Pharmacother. 2007;8(14):2247–65. Epub 2007/10/12.

    Article  CAS  PubMed  Google Scholar 

  6. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the european Society Of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30(20):2493–537. Epub 2009/08/29.

    Article  PubMed  Google Scholar 

  7. Peacock AJ, Naeije R, Galie N, Rubin L. End-points and clinical trial design in pulmonary arterial hypertension: have we made progress? Eur Respir J. 2009;34(1):231–42. Epub 2009/07/02.

    Article  CAS  PubMed  Google Scholar 

  8. Chesney CF, Allen JR. Endocardial fibrosis associated with monocrotaline-induced pulmonary hypertension in nonhuman primates (Macaca arctoides). Am J Vet Res. 1973;34(12):1577–81. Epub 1973/12/01.

    CAS  PubMed  Google Scholar 

  9. Stenmark KR, Fasules J, Hyde DM, Voelkel NF, Henson J, Tucker A, et al. Severe pulmonary hypertension and arterial adventitial changes in newborn calves at 4,300 m. J Appl Physiol. 1987;62(2):821–30. Epub 1987/02/01.

    CAS  PubMed  Google Scholar 

  10. Villamor E, Le Cras TD, Horan MP, Halbower AC, Tuder RM, Abman SH. Chronic intrauterine pulmonary hypertension impairs endothelial nitric oxide synthase in the ovine fetus. Am J Physiol. 1997;272(5 Pt 1):L1013–20. Epub 1997/05/01.

    CAS  PubMed  Google Scholar 

  11. Rondelet B, Dewachter C, Kerbaul F, Kang X, Fesler P, Brimioulle S, et al. Prolonged overcirculation-induced pulmonary arterial hypertension as a cause of right ventricular failure. Eur Heart J. 2012;33(8):1017–26. Epub 2011/05/25.

    Article  CAS  PubMed  Google Scholar 

  12. Hubloue I, Rondelet B, Kerbaul F, Biarent D, Milani GM, Staroukine M, et al. Endogenous angiotensin II in the regulation of hypoxic pulmonary vasoconstriction in anaesthetized dogs. Crit Care. 2004;8(4):R163–71. Epub 2004/08/18.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ryan J, Bloch K, Archer SL. Rodent models of pulmonary hypertension: harmonisation with the world health organisation’s categorisation of human PH. Int J Clin Pract Suppl. 2011;172:15–34. Epub 2011/07/16.

    Article  PubMed  Google Scholar 

  14. Pak O, Janssen W, Ghofrani HA, Seeger W, Grimminger F, Schermuly RT, et al. Animal models of pulmonary hypertension: role in translational research. Drug Disc Today. 2010;7(3–4):89–97.

    CAS  Google Scholar 

  15. Janssen W, Schermuly RT, Kojonazarov B. The role of cGMP in the physiological and molecular responses of the right ventricle to pressure overload. Exp Physiol. 2013;98(8):1274–8. Epub 2013/07/23.

    Article  CAS  PubMed  Google Scholar 

  16. Kerbaul F, Rondelet B, Motte S, Fesler P, Hubloue I, Ewalenko P, et al. Effects of norepinephrine and dobutamine on pressure load-induced right ventricular failure. Crit Care Med. 2004;32(4):1035–40. Epub 2004/04/09.

    Article  CAS  PubMed  Google Scholar 

  17. Bogaard H, Natarajan R, Henderson S, Long C, Kraskauskas D, Smithson L, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120(20):1951–60. Epub 2009/11/04.

    Article  PubMed  Google Scholar 

  18. Kojonazarov B, Sydykov A, Pullamsetti SS, Luitel H, Dahal BK, Kosanovic D, et al. Effects of multikinase inhibitors on pressure overload-induced right ventricular remodeling. Int J Cardiol. 2013;167(6):2630–7. Epub 2012/08/03.

    Article  PubMed  Google Scholar 

  19. Urashima T, Zhao M, Wagner R, Fajardo G, Farahani S, Quertermous T, et al. Molecular and physiological characterization of RV remodeling in a murine model of pulmonary stenosis. Am J Physiol Heart Circ Physiol. 2008;295(3):H1351–68. Epub 2008/07/01.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Novoyatleva T, Janssen W, Wietelmann A, Schermuly RT, Engel FB. TWEAK/Fn14 axis is a positive regulator of cardiac hypertrophy. Cytokine. 2013;64(1):43–5. Epub 2013/06/15.

    Article  CAS  PubMed  Google Scholar 

  21. Wilson DW, Segall HJ, Pan LC, Lame MW, Estep JE, Morin D. Mechanisms and pathology of monocrotaline pulmonary toxicity. Crit Rev Toxicol. 1992;22(5–6):307–25. Epub 1992/01/01.

    Article  CAS  PubMed  Google Scholar 

  22. Reid MJ, Lame MW, Morin D, Wilson DW, Segall HJ. Involvement of cytochrome P450 3A in the metabolism and covalent binding of 14C-monocrotaline in rat liver microsomes. J Biochem Mol Toxicol. 1998;12(3):157–66. Epub 1998/04/02.

    Article  CAS  PubMed  Google Scholar 

  23. Kasahara Y, Kiyatake K, Tatsumi K, Sugito K, Kakusaka I, Yamagata S, et al. Bioactivation of monocrotaline by P-450 3A in rat liver. J Cardiovasc Pharmacol. 1997;30(1):124–9. Epub 1997/07/01.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenberg HC, Rabinovitch M. Endothelial injury and vascular reactivity in monocrotaline pulmonary hypertension. Am J Physiol. 1988;255(6 Pt 2):H1484–91. Epub 1988/12/01.

    CAS  PubMed  Google Scholar 

  25. Schermuly RT, Kreisselmeier KP, Ghofrani HA, Yilmaz H, Butrous G, Ermert L, et al. Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med. 2004;169(1):39–45. Epub 2003/09/06.

    Article  PubMed  Google Scholar 

  26. Stenmark K, Meyrick B, Galie N, Mooi WJ, Mcmurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol. 2009;297:L1013–32.

    Article  CAS  PubMed  Google Scholar 

  27. Miranda CL, Henderson MC, Schmitz JA, Buhler DR. Protective role of dietary butylated hydroxyanisole against chemical-induced acute liver damage in mice. Toxicol Appl Pharmacol. 1983;69(1):73–80. Epub 1983/06/15.

    Article  CAS  PubMed  Google Scholar 

  28. Yasuhara K, Mitsumori K, Shimo T, Onodera H, Takahashi M, Hayashi Y. Mice with focal pulmonary fibrosis caused by monocrotaline are insensitive to urethane induction of lung tumorigenesis. Toxicol Pathol. 1997;25(6):574–81. Epub 1998/01/23.

    Article  CAS  PubMed  Google Scholar 

  29. Molteni A, Ward WF, Ts’ao CH, Solliday NH. Monocrotaline pneumotoxicity in mice. Virchows Arch B Cell Pathol Incl Mol Pathol. 1989;57(3):149–55. Epub 1989/01/01.

    Article  CAS  PubMed  Google Scholar 

  30. Hayashi S, Mitsumori K, Imaida K, Imazawa T, Yasuhara K, Uneyama C, et al. Establishment of an animal model for pulmonary fibrosis in mice using monocrotaline. Toxicol Pathol. 1995;23(1):63–71. Epub 1995/01/01.

    Article  CAS  PubMed  Google Scholar 

  31. Deyo JA, Kerkvliet NI. Immunotoxicity of the pyrrolizidine alkaloid monocrotaline following subchronic administration to C57Bl/6 mice. Fundam Appl Toxicol. 1990;14(4):842–9. Epub 1990/05/01.

    Article  CAS  PubMed  Google Scholar 

  32. Deyo JA, Kerkvliet NI. Tier-2 studies on monocrotaline immunotoxicity in C57BL/6 mice. Toxicology. 1991;70(3):313–25. Epub 1991/01/01.

    Article  CAS  PubMed  Google Scholar 

  33. Deyo JA, Reed RL, Buhler DR, Kerkvliet NI. Role of metabolism in monocrotaline-induced immunotoxicity in C57BL/6 mice. Toxicology. 1994;94(1–3):209–22. Epub 1994/11/01.

    Article  CAS  PubMed  Google Scholar 

  34. Dumitrascu R, Koebrich S, Dony E, Weissmann N, Savai R, Pullamsetti SS, et al. Characterization of a murine model of monocrotaline pyrrole-induced acute lung injury. BMC Pulm Med. 2008;8:25. Epub 2008/12/18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Todorovich-Hunter L, Johnson DJ, Ranger P, Keeley FW, Rabinovitch M. Altered elastin and collagen synthesis associated with progressive pulmonary hypertension induced by monocrotaline. A biochemical and ultrastructural study. Lab Invest. 1988;58(2):184–95. Epub 1988/02/01.

    CAS  PubMed  Google Scholar 

  36. Schermuly RT, Pullamsetti SS, Kwapiszewska G, Dumitrascu R, Tian X, Weissmann N, et al. Phosphodiesterase 1 upregulation in pulmonary arterial hypertension: target for reverse-remodeling therapy. Circulation. 2007;115(17):2331–9. Epub 2007/04/18.

    Article  CAS  PubMed  Google Scholar 

  37. Kay JM, Harris P, Heath D. Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds. Thorax. 1967;22(2):176–9. Epub 1967/03/01.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005;115(10):2811–21. Epub 2005/10/04.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Buermans HP, Redout EM, Schiel AE, Musters RJ, Zuidwijk M, Eijk PP, et al. Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure. Physiol Genomics. 2005;21(3):314–23. Epub 2005/02/25.

    Article  CAS  PubMed  Google Scholar 

  40. Daicho T, Yagi T, Abe Y, Ohara M, Marunouchi T, Takeo S, et al. Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Sci. 2009;111(1):33–43. Epub 2009/09/19.

    Article  CAS  PubMed  Google Scholar 

  41. Hessel MH, Steendijk P, den Adel B, Schutte CI, van der Laarse A. Characterization of right ventricular function after monocrotaline-induced pulmonary hypertension in the intact rat. Am J Physiol Heart Circ Physiol. 2006;291(5):H2424–30. Epub 2006/05/30.

    Article  CAS  PubMed  Google Scholar 

  42. Ruiter G, de Man FS, Schalij I, Sairras S, Grunberg K, Westerhof N, et al. Reversibility of the monocrotaline pulmonary hypertension rat model. Eur J. 2013;42(2):553–6. Epub 2013/08/02.

    CAS  Google Scholar 

  43. Piao L, Fang YH, Cadete VJ, Wietholt C, Urboniene D, Toth PT, et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med (Berl). 2010;88(1):47–60. Epub 2009/12/02.

    Article  CAS  Google Scholar 

  44. Kosanovic D, Kojonazarov B, Luitel H, Dahal BK, Sydykov A, Cornitescu T, et al. Therapeutic efficacy of TBC3711 in monocrotaline-induced pulmonary hypertension. Respir Res. 2011;12:87. Epub 2011/06/28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Campian ME, Hardziyenka M, Michel MC, Tan HL. How valid are animal models to evaluate treatments for pulmonary hypertension? Naunyn Schmiedebergs Arch Pharmacol. 2006;373(6):391–400. Epub 2006/08/26.

    Article  CAS  PubMed  Google Scholar 

  46. Handoko ML, Lamberts RR, Redout EM, de Man FS, Boer C, Simonides WS, et al. Right ventricular pacing improves right heart function in experimental pulmonary arterial hypertension: a study in the isolated heart. Am J Physiol Heart Circ Physiol. 2009;297(5):H1752–9. Epub 2009/09/08.

    Article  CAS  PubMed  Google Scholar 

  47. Campian ME, Verberne HJ, Hardziyenka M, de Bruin K, Selwaness M, van den Hoff MJ, et al. Serial noninvasive assessment of apoptosis during right ventricular disease progression in rats. J Nucl Med. 2009;50(8):1371–7. Epub 2009/07/21.

    Article  PubMed  Google Scholar 

  48. Ecarnot-Laubriet A, Assem M, Poirson-Bichat F, Moisant M, Bernard C, Lecour S, et al. Stage-dependent activation of cell cycle and apoptosis mechanisms in the right ventricle by pressure overload. Biochim Biophys Acta. 2002;1586(3):233–42. Epub 2002/05/09.

    Article  CAS  PubMed  Google Scholar 

  49. de Man FS, Handoko ML, van Ballegoij JJ, Schalij I, Bogaards SJ, Postmus PE, et al. Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ Heart Fail. 2012;5(1):97–105. Epub 2011/12/14.

    Article  PubMed  CAS  Google Scholar 

  50. Campian ME, Hardziyenka M, de Bruin K, van Eck-Smit BL, de Bakker JM, Verberne HJ, et al. Early inflammatory response during the development of right ventricular heart failure in a rat model. Eur J Heart Fail. 2010;12(7):653–8. Epub 2010/05/25.

    Article  CAS  PubMed  Google Scholar 

  51. Umar S, Hessel M, Steendijk P, Bax W, Schutte C, Schalij M, et al. Activation of signaling molecules and matrix metalloproteinases in right ventricular myocardium of rats with pulmonary hypertension. Pathol Res Pract. 2007;203(12):863–72. Epub 2007/10/05.

    Article  CAS  PubMed  Google Scholar 

  52. Benoist D, Stones R, Drinkhill M, Bernus O, White E. Arrhythmogenic substrate in hearts of rats with monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 2011;300(6):H2230–7. Epub 2011/03/15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Benoist D, Stones R, Drinkhill MJ, Benson AP, Yang Z, Cassan C, et al. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2012;302(11):H2381–95. Epub 2012/03/20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Umar S, Lee JH, de Lange E, Iorga A, Partow-Navid R, Bapat A, et al. Spontaneous ventricular fibrillation in right ventricular failure secondary to chronic pulmonary hypertension. Circ Arrhythm Electrophysiol. 2012;5(1):181–90. Epub 2011/12/27.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Archer SL, Fang YH, Ryan JJ, Piao L. Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension. Pulm Circ. 2013;3(1):144–52. Epub 2013/05/11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Partovian C, Adnot S, Eddahibi S, Teiger E, Levame M, Dreyfus P, et al. Heart and lung VEGF mRNA expression in rats with monocrotaline- or hypoxia-induced pulmonary hypertension. Am J Physiol. 1998;275(6 Pt 2):H1948–56. Epub 1998/12/09.

    CAS  PubMed  Google Scholar 

  57. Marsboom G, Wietholt C, Haney CR, Toth PT, Ryan JJ, Morrow E, et al. Lung (1)(8)F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185(6):670–9. Epub 2012/01/17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Fang W, Zhao L, Xiong CM, Ni XH, He ZX, He JG, et al. Comparison of 18 F-FDG uptake by right ventricular myocardium in idiopathic pulmonary arterial hypertension and pulmonary arterial hypertension associated with congenital heart disease. Pulm Circ. 2012;2(3):365–72. Epub 2012/11/07.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Zhao L, Ashek A, Wang L, Fang W, Dabral S, Dubois O, et al. Heterogeneity in lung 18FDG uptake in PAH: potential of dynamic 18FDG-PET with kinetic analysis as a bridging biomarker for pulmonary remodeling targeted treatments. Circulation. 2013;128(11):1214–24. Epub 2013/08/01.

    CAS  PubMed  Google Scholar 

  60. Okada K, Tanaka Y, Bernstein M, Zhang W, Patterson GA, Botney MD. Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol. 1997;151(4):1019–25. Epub 1997/11/05.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Okada K, Bernstein ML, Zhang W, Schuster DP, Botney MD. Angiotensin-converting enzyme inhibition delays pulmonary vascular neointimal formation. Am J Respir Crit Care Med. 1998;158(3):939–50. Epub 1998/09/10.

    Article  CAS  PubMed  Google Scholar 

  62. Nishimura T, Faul JL, Berry GJ, Veve I, Pearl RG, Kao PN. 40-O–(2-hydroxyethyl)-rapamycin attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med. 2001;163(2):498–502. Epub 2001/02/17.

    Article  CAS  PubMed  Google Scholar 

  63. Nishimura T, Faul JL, Berry GJ, Vaszar LT, Qiu D, Pearl RG, et al. Simvastatin attenuates smooth muscle neointimal proliferation and pulmonary hypertension in rats. Am J Respir Crit Care Med. 2002;166(10):1403–8. Epub 2002/10/31.

    Article  PubMed  Google Scholar 

  64. Homma N, Nagaoka T, Karoor V, Imamura M, Taraseviciene-Stewart L, Walker LA, et al. Involvement of RhoA/Rho kinase signaling in protection against monocrotaline-induced pulmonary hypertension in pneumonectomized rats by dehydroepiandrosterone. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L71–8. Epub 2008/05/13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Faul JL, Nishimura T, Berry GJ, Benson GV, Pearl RG, Kao PN. Triptolide attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med. 2000;162(6):2252–8. Epub 2000/12/09.

    Article  CAS  PubMed  Google Scholar 

  66. Welsh DJ, Peacock AJ, MacLean M, Harnett M. Chronic hypoxia induces constitutive p38 mitogen-activated protein kinase activity that correlates with enhanced cellular proliferation in fibroblasts from rat pulmonary but not systemic arteries. Am J Respir Crit Care Med. 2001;164(2):282–9. Epub 2001/07/21.

    Article  CAS  PubMed  Google Scholar 

  67. Weerackody RP, Welsh DJ, Wadsworth RM, Peacock AJ. Inhibition of p38 MAPK reverses hypoxia-induced pulmonary artery endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2009;296(5):H1312–20. Epub 2009/02/10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Zhao L, Mason NA, Morrell NW, Kojonazarov B, Sadykov A, Maripov A, et al. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation. 2001;104(4):424–8. Epub 2001/07/27.

    Article  CAS  PubMed  Google Scholar 

  69. Dahal BK, Heuchel R, Pullamsetti SS, Wilhelm J, Ghofrani HA, Weissmann N, et al. Hypoxic pulmonary hypertension in mice with constitutively active platelet-derived growth factor receptor-beta. Pulm Circ. 2011;1(2):259–68. Epub 2011/10/29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Kwapiszewska G, Markart P, Dahal BK, Kojonazarov B, Marsh LM, Schermuly RT, et al. PAR-2 inhibition reverses experimental pulmonary hypertension. Circ Res. 2012;110(9):1179–91. Epub 2012/03/31.

    Article  CAS  PubMed  Google Scholar 

  71. Pullamsetti SS, Doebele C, Fischer A, Savai R, Kojonazarov B, Dahal BK, et al. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med. 2012;185(4):409–19. Epub 2011/12/14.

    Article  CAS  PubMed  Google Scholar 

  72. Kitabatake A, Inoue M, Asao M, Masuyama T, Tanouchi J, Morita T, et al. Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation. 1983;68(2):302–9. Epub 1983/08/01.

    Article  CAS  PubMed  Google Scholar 

  73. Kojonazarov BK, Imanov BZ, Amatov TA, Mirrakhimov MM, Naeije R, Wilkins MR, et al. Noninvasive and invasive evaluation of pulmonary arterial pressure in highlanders. Eur J. 2007;29(2):352–6. Epub 2006/11/03.

    CAS  Google Scholar 

  74. Scherrer-Crosbie M, Steudel W, Hunziker PR, Foster GP, Garrido L, Liel-Cohen N, et al. Determination of right ventricular structure and function in normoxic and hypoxic mice: a transesophageal echocardiographic study. Circulation. 1998;98(10):1015–21. Epub 1998/09/16.

    Article  CAS  PubMed  Google Scholar 

  75. Thibault HB, Kurtz B, Raher MJ, Shaik RS, Waxman A, Derumeaux G, et al. Noninvasive assessment of murine pulmonary arterial pressure: validation and application to models of pulmonary hypertension. Circ Cardiovasc Imaging. 2010;3(2):157–63. Epub 2010/01/02.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Tournoux F, Petersen B, Thibault H, Zou L, Raher MJ, Kurtz B, et al. Validation of noninvasive measurements of cardiac output in mice using echocardiography. J Am Soc Echocardiogr. 2011;24(4):465–70. Epub 2011/02/15.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Lutgens E, Daemen MJ, de Muinck ED, Debets J, Leenders P, Smits JF. Chronic myocardial infarction in the mouse: cardiac structural and functional changes. Cardiovasc Res. 1999;41(3):586–93. Epub 1999/08/06.

    Article  CAS  PubMed  Google Scholar 

  78. Mouraret N, Marcos E, Abid S, Gary-Bobo G, Saker M, Houssaini A, et al. Activation of lung p53 by Nutlin-3a prevents and reverses experimental pulmonary hypertension. Circulation. 2013;127(16):1664–76. Epub 2013/03/21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Tabima DM, Hacker TA, Chesler NC. Measuring right ventricular function in the normal and hypertensive mouse hearts using admittance-derived pressure-volume loops. Am J Physiol Heart Circ Physiol. 2010;299(6):H2069–75. Epub 2010/10/12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Hameed AG, Arnold ND, Chamberlain J, Pickworth JA, Paiva C, Dawson S, et al. Inhibition of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) reverses experimental pulmonary hypertension. J Exp Med. 2012;209(11):1919–35. Epub 2012/10/17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Ciuclan L, Bonneau O, Hussey M, Duggan N, Holmes AM, Good R, et al. A novel murine model of severe pulmonary arterial hypertension. Am J Respir Crit Care Med. 2011;184(10):1171–82. Epub 2011/08/27.

    Article  CAS  PubMed  Google Scholar 

  82. Sato K, Webb S, Tucker A, Rabinovitch M, O’Brien RF, McMurtry IF, et al. Factors influencing the idiopathic development of pulmonary hypertension in the fawn hooded rat. Am Rev Respir Dis. 1992;145(4 Pt 1):793–7. Epub 1992/04/01.

    Article  CAS  PubMed  Google Scholar 

  83. Nagaoka T, Muramatsu M, Sato K, McMurtry I, Oka M, Fukuchi Y. Mild hypoxia causes severe pulmonary hypertension in fawn-hooded but not in Tester Moriyama rats. Respir Physiol. 2001;127(1):53–60. Epub 2001/07/11.

    Article  CAS  PubMed  Google Scholar 

  84. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Haromy A, et al. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation. 2006;113(22):2630–41. Epub 2006/06/01.

    Article  CAS  PubMed  Google Scholar 

  85. Aguirre JI, Morrell NW, Long L, Clift P, Upton PD, Polak JM, et al. Vascular remodeling and ET-1 expression in rat strains with different responses to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol. 2000;278(5):L981–7. Epub 2000/04/27.

    CAS  PubMed  Google Scholar 

  86. Zhao L, Sebkhi A, Nunez DJ, Long L, Haley CS, Szpirer J, et al. Right ventricular hypertrophy secondary to pulmonary hypertension is linked to rat chromosome 17: evaluation of cardiac ryanodine Ryr2 receptor as a candidate. Circulation. 2001;103(3):442–7. Epub 2001/02/07.

    Article  CAS  PubMed  Google Scholar 

  87. Herget J, Suggett AJ, Leach E, Barer GR. Resolution of pulmonary hypertension and other features induced by chronic hypoxia in rats during complete and intermittent normoxia. Thorax. 1978;33(4):468–73. Epub 1978/08/01.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon G, Waltenberger J, et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J. 2001;15(2):427–38. Epub 2001/02/07.

    Article  CAS  PubMed  Google Scholar 

  89. Lang M, Kojonazarov B, Tian X, Kalymbetov A, Weissmann N, Grimminger F, et al. The soluble guanylate cyclase stimulator riociguat ameliorates pulmonary hypertension induced by hypoxia and SU5416 in rats. PLoS One. 2012;7(8):e43433. Epub 2012/08/23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, et al. Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation. 2010;121(25):2747–54. Epub 2010/06/16.

    Article  PubMed  Google Scholar 

  91. Oka M, Homma N, Taraseviciene-Stewart L, Morris KG, Kraskauskas D, Burns N, et al. Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res. 2007;100(6):923–9. Epub 2007/03/03.

    Article  CAS  PubMed  Google Scholar 

  92. Bogaard HJ, Natarajan R, Mizuno S, Abbate A, Chang PJ, Chau VQ, et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med. 2010;182(5):652–60. Epub 2010/05/29.

    Article  CAS  PubMed  Google Scholar 

  93. Drake JI, Bogaard HJ, Mizuno S, Clifton B, Xie B, Gao Y, et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol. 2011;45(6):1239–47. Epub 2011/07/02.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. White K, Johansen AK, Nilsen M, Ciuclan L, Wallace E, Paton L, et al. Activity of the estrogen-metabolizing enzyme cytochrome P450 1B1 influences the development of pulmonary arterial hypertension. Circulation. 2012;126(9):1087–98. Epub 2012/08/04.

    Article  CAS  PubMed  Google Scholar 

  95. Ciuclan L, Hussey MJ, Burton V, Good R, Duggan N, Beach S, et al. Imatinib attenuates hypoxia-induced pulmonary arterial hypertension pathology via reduction in 5-hydroxytryptamine through inhibition of tryptophan hydroxylase 1 expression. Am J Respir Crit Care Med. 2013;187(1):78–89. Epub 2012/10/23.

    Article  CAS  PubMed  Google Scholar 

  96. Weissmann N. VEGF receptor inhibition as a model of pulmonary hypertension in mice. Am J Respir Crit Care Med. 2011;184(10):1103–5. Epub 2011/11/17.

    Article  CAS  PubMed  Google Scholar 

  97. Butrous G, Ghofrani HA, Grimminger F. Pulmonary vascular disease in the developing world. Circulation. 2008;118(17):1758–66. Epub 2008/10/22.

    Article  PubMed  Google Scholar 

  98. Warren KS. Hepatosplenic schistosomiasis: a great neglected disease of the liver. Gut. 1978;19(6):572–7. Epub 1978/06/01.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. de Cleva R, Herman P, Pugliese V, Zilberstein B, Saad WA, Rodrigues JJ, et al. Prevalence of pulmonary hypertension in patients with hepatosplenic Mansonic schistosomiasis – prospective study. Hepatogastroenterology. 2003;50(54):2028–30. Epub 2003/12/31.

    PubMed  Google Scholar 

  100. Lapa M, Dias B, Jardim C, Fernandes CJ, Dourado PM, Figueiredo M, et al. Cardiopulmonary manifestations of hepatosplenic schistosomiasis. Circulation. 2009;119(11):1518–23. Epub 2009/03/11.

    Article  PubMed  Google Scholar 

  101. Tuder RM. Pathology of pulmonary arterial hypertension. Semin Respir Crit Care Med. 2009;30(4):376–85. Epub 2009/07/28.

    Article  PubMed  Google Scholar 

  102. Graham BB, Chabon J, Bandeira A, Espinheira L, Butrous G, Tuder RM. Significant intrapulmonary Schistosoma egg antigens are not present in schistosomiasis-associated pulmonary hypertension. Pulm Circ. 2011;1(4):456–61. Epub 2012/04/25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Kolosionek E, Graham BB, Tuder RM, Butrous G. Pulmonary vascular disease associated with parasitic infection–the role of schistosomiasis. Clin Microbiol Infect. 2011;17(1):15–24. Epub 2010/07/20.

    Article  CAS  PubMed  Google Scholar 

  104. Crosby A, Jones FM, Southwood M, Stewart S, Schermuly R, Butrous G, et al. Pulmonary vascular remodeling correlates with lung eggs and cytokines in murine schistosomiasis. Am J Respir Crit Care Med. 2010;181(3):279–88. Epub 2009/12/08.

    Article  CAS  PubMed  Google Scholar 

  105. Crosby A, Jones FM, Kolosionek E, Southwood M, Purvis I, Soon E, et al. Praziquantel reverses pulmonary hypertension and vascular remodeling in murine schistosomiasis. Am J Respir Crit Care Med. 2011;184(4):467–73. Epub 2011/06/11.

    Article  CAS  PubMed  Google Scholar 

  106. Graham BB, Chabon J, Kumar R, Kolosionek E, Gebreab L, Debella E, et al. Protective Role of IL6 in Vascular Remodeling in Schistosoma-Pulmonary Hypertension. Am J Resp Cell Mol Biol. 2013;49(6):951–9.

    Article  CAS  Google Scholar 

  107. Graham BB, Mentink-Kane MM, El-Haddad H, Purnell S, Zhang L, Zaiman A, et al. Schistosomiasis-induced experimental pulmonary hypertension: role of interleukin-13 signaling. Am J Pathol. 2010;177(3):1549–61. Epub 2010/07/31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Simmoneau G, Robbins I, Beghetti M, Channick R, Delcroix M, Denton C, et al. Updated Clinical Classification of Pulmonary Hypertension. J Am Coll Cardiol. 2009;54(1 Suppl S):S43–54.

    Article  Google Scholar 

  109. West JB, Mathieu-Costello O. Vulnerability of pulmonary capillaries in heart disease. Circulation. 1995;92(3):622–31. Epub 1995/08/01.

    Article  CAS  PubMed  Google Scholar 

  110. Rich S, Rabinovitch M. Diagnosis and treatment of secondary (non-category 1) pulmonary hypertension. Circulation. 2008;118(21):2190–9. Epub 2008/11/19.

    Article  PubMed  Google Scholar 

  111. Guazzi M, Borlaug BA. Pulmonary hypertension due to left heart disease. Circulation. 2012;126(8):975–90. Epub 2012/08/22.

    Article  PubMed  Google Scholar 

  112. Setaro JF, Cleman MW, Remetz MS. The right ventricle in disorders causing pulmonary venous hypertension. Cardiol Clin. 1992;10(1):165–83. Epub 1992/02/01.

    CAS  PubMed  Google Scholar 

  113. Klima UP, Guerrero JL, Vlahakes GJ. Myocardial perfusion and right ventricular function. Ann Thorac Cardiovasc Surg. 1999;5(2):74–80. Epub 1999/05/20.

    CAS  PubMed  Google Scholar 

  114. Voelkel N, Quaife R, Leinwand L, Barst R, Mcgoon M, Meldrum D, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883–91.

    Article  PubMed  Google Scholar 

  115. Hoeper MM, Barberà JA, Channick RN, Hassoun PM, Lang IM, Manes A, et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. J Am Chem Soc. 2009;54(Suppl):S85–96.

    Google Scholar 

  116. Guazzi M, Galie N. Pulmonary hypertension in left heart disease. Eur Respir Rev. 2012;21(126):338–46. Epub 2012/12/04.

    Article  PubMed  Google Scholar 

  117. Patten RD, Aronovitz MJ, Deras-Mejia L, Pandian NG, Hanak GG, Smith JJ, et al. Ventricular remodeling in a mouse model of myocardial infarction. Am J Physiol. 1998;274(5 Pt 2):H1812–20. Epub 1998/06/05.

    CAS  PubMed  Google Scholar 

  118. de Groote P, Millaire A, Foucher-Hossein C, Nugue O, Marchandise X, Ducloux G, et al. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol. 1998;32(4):948–54. Epub 1998/10/13.

    Article  PubMed  Google Scholar 

  119. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, et al. Myocardial infarct size and ventricular function in rats. Circ Res. 1979;44(4):503–12. Epub 1979/04/01.

    Article  CAS  PubMed  Google Scholar 

  120. Michael LH, Entman ML, Hartley CJ, Youker KA, Zhu J, Hall SR, et al. Myocardial ischemia and reperfusion: a murine model. Am J Physiol. 1995;269(6 Pt 2):H2147–54. Epub 1995/12/01.

    CAS  PubMed  Google Scholar 

  121. Tarnavski O, McMullen JR, Schinke M, Nie Q, Kong S, Izumo S. Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. Physiol Genom. 2004;16(3):349–60. Epub 2003/12/18.

    Article  CAS  Google Scholar 

  122. Wang J, Bo H, Meng X, Wu Y, Bao Y, Li Y. A simple and fast experimental model of myocardial infarction in the mouse. Tex Heart Inst J. 2006;33(3):290–3. Epub 2006/10/17.

    PubMed Central  PubMed  Google Scholar 

  123. Nguyen QT, Colombo F, Rouleau JL, Dupuis J, Calderone A. LU135252, an endothelin(A) receptor antagonist did not prevent pulmonary vascular remodelling or lung fibrosis in a rat model of myocardial infarction. Br J Pharmacol. 2000;130(7):1525–30. Epub 2000/08/06.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Ben Driss A, Devaux C, Henrion D, Duriez M, Thuillez C, Levy BI, et al. Hemodynamic stresses induce endothelial dysfunction and remodeling of pulmonary artery in experimental compensated heart failure. Circulation. 2000;101(23):2764–70. Epub 2000/06/14.

    Article  CAS  PubMed  Google Scholar 

  125. Jasmin JF, Calderone A, Leung TK, Villeneuve L, Dupuis J. Lung structural remodeling and pulmonary hypertension after myocardial infarction: complete reversal with irbesartan. Cardiovasc Res. 2003;58(3):621–31. Epub 2003/06/12.

    Article  CAS  PubMed  Google Scholar 

  126. Jiang BH, Nguyen QT, Tardif JC, Shi Y, Dupuis J. Single measurement of troponin T for early prediction of infarct size, congestive heart failure, and pulmonary hypertension in an animal model of myocardial infarction. Cardiovasc Pathol. 2011;20(3):e85–9. Epub 2010/06/12.

    Article  PubMed  Google Scholar 

  127. Jiang BH, Tardif JC, Sauvageau S, Ducharme A, Shi Y, Martin JG, et al. Beneficial effects of atorvastatin on lung structural remodeling and function in ischemic heart failure. J Card Fail. 2010;16(8):679–88. Epub 2010/07/31.

    Article  CAS  PubMed  Google Scholar 

  128. Toldo S, Bogaard HJ, Van Tassell BW, Mezzaroma E, Seropian IM, Robati R, et al. Right ventricular dysfunction following acute myocardial infarction in the absence of pulmonary hypertension in the mouse. PLoS ONE. 2011;6(3):e18102. Epub 2011/04/02.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Rockman HA, Ono S, Ross RS, Jones LR, Karimi M, Bhargava V, et al. Molecular and physiological alterations in murine ventricular dysfunction. Proc Natl Acad Sci U S A. 1994;91(7):2694–8. Epub 1994/03/29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. deAlmeida AC, van Oort RJ, Wehrens XH. Transverse aortic constriction in mice. J Vis Exp. 2010;(38):1729.

    Google Scholar 

  131. Patten RD, Hall-Porter MR. Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail. 2009;2(2):138–44. Epub 2009/10/08.

    Article  PubMed  Google Scholar 

  132. Barrick CJ, Rojas M, Schoonhoven R, Smyth SS, Threadgill DW. Cardiac response to pressure overload in 129S1/SvImJ and C57BL/6 J mice: temporal- and background-dependent development of concentric left ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 2007;292(5):H2119–30. Epub 2006/12/19.

    Article  CAS  PubMed  Google Scholar 

  133. Patten RD, Pourati I, Aronovitz MJ, Alsheikh-Ali A, Eder S, Force T, et al. 17 Beta-estradiol differentially affects left ventricular and cardiomyocyte hypertrophy following myocardial infarction and pressure overload. J Card Fail. 2008;14(3):245–53. Epub 2008/04/03.

    Article  CAS  PubMed  Google Scholar 

  134. Chen Y, Guo H, Xu D, Xu X, Wang H, Hu X, et al. Left ventricular failure produces profound lung remodeling and pulmonary hypertension in mice: heart failure causes severe lung disease. Hypertension. 2012;59(6):1170–8. Epub 2012/04/18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Fedullo P, Kerr KM, Kim NH, Auger WR. Chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2011;183(12):1605–13. Epub 2011/02/19.

    Article  PubMed  Google Scholar 

  136. Mayer E, Klepetko W. Techniques and outcomes of pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension. Proc Am Thorac Soc. 2006;3(7):589–93. Epub 2006/09/12.

    Article  PubMed  Google Scholar 

  137. Bottiger BW, Motsch J, Dorsam J, Mieck U, Gries A, Weimann J, et al. Inhaled nitric oxide selectively decreases pulmonary artery pressure and pulmonary vascular resistance following acute massive pulmonary microembolism in piglets. Chest. 1996;110(4):1041–7. Epub 1996/10/01.

    Article  CAS  PubMed  Google Scholar 

  138. Malik AB, van der Zee H. Time course of pulmonary vascular response to microembolization. J Appl Physiol Resp Environ Exerc Physiol. 1977;43(1):51–8. Epub 1977/07/01.

    CAS  Google Scholar 

  139. Palevsky HI, Fishman AP. Chronic cor pulmonale. Etiology and management. JAMA. 1990;263(17):2347–53. Epub 1990/05/02.

    Article  CAS  PubMed  Google Scholar 

  140. Delcroix M, Vonk Noordegraaf A, Fadel E, Lang I, Simonneau G, Naeije R. Vascular and right ventricular remodelling in chronic thromboembolic pulmonary hypertension. Eur J. 2013;41(1):224–32. Epub 2012/08/21.

    Google Scholar 

  141. Lang IM, Marsh JJ, Konopka RG, Olman MA, Binder BR, Moser KM, et al. Factors contributing to increased vascular fibrinolytic activity in mongrel dogs. Circulation. 1993;87(6):1990–2000. Epub 1993/06/01.

    Article  CAS  PubMed  Google Scholar 

  142. Mitzner W, Wagner EM. Vascular remodeling in the circulations of the lung. J Appl Physiol. 2004;97(5):1999–2004. Epub 2004/10/12.

    Article  PubMed  Google Scholar 

  143. Shelub I, van Grondelle A, McCullough R, Hofmeister S, Reeves JT. A model of embolic chronic pulmonary hypertension in the dog. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(3):810–5. Epub 1984/03/01.

    CAS  PubMed  Google Scholar 

  144. Weimann J, Zink W, Schnabel PA, Jakob H, Gebhard MM, Martin E, et al. Selective vasodilation by nitric oxide inhalation during sustained pulmonary hypertension following recurrent microembolism in pigs. J Crit Care. 1999;14(3):133–40. Epub 1999/10/20.

    Article  CAS  PubMed  Google Scholar 

  145. Dantzker DR, Bower JS. Partial reversibility of chronic pulmonary hypertension caused by pulmonary thromboembolic disease. Am Rev Respir Dis. 1981;124(2):129–31. Epub 1981/08/01.

    CAS  PubMed  Google Scholar 

  146. Moser KM, Cantor JP, Olman M, Villespin I, Graif JL, Konopka R, et al. Chronic pulmonary thromboembolism in dogs treated with tranexamic acid. Circulation. 1991;83(4):1371–9. Epub 1991/04/01.

    Article  CAS  PubMed  Google Scholar 

  147. Marsh JJ, Konopka RG, Lang IM, Wang HY, Pedersen C, Chiles P, et al. Suppression of thrombolysis in a canine model of pulmonary embolism. Circulation. 1994;90(6):3091–7. Epub 1994/12/01.

    Article  CAS  PubMed  Google Scholar 

  148. Li C-y, Deng W, Liao X-q, Deng J, Zhang Y-k, Wang DX. The effects and mechanism of ginsenoside Rg1 on myocardial remodeling in an animal model of chronic thromboembolic pulmonary hypertension. Eur J Med Res. 2013;18:16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  149. Fadel E, Mazmanian GM, Chapelier A, Baudet B, Detruit H, de Montpreville V, et al. Lung reperfusion injury after chronic or acute unilateral pulmonary artery occlusion. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1294–300. Epub 1998/05/01.

    Article  CAS  PubMed  Google Scholar 

  150. Mercier O, Tivane A, Raoux F, Decante B, Eddahibi S, Dartevelle PG, et al. A reliable piglet model of chronic thrombo-embolic pulmonary hypertension. Am J Respir Crit Care Med. 2011;183:A2415.

    Google Scholar 

  151. Bär H, Kreuzer J, Cojoc A, Jahn L. Upregulation of embryonic transcription factors right ventricular hypertrophy. Basic Res Cardiol. 2003;98:285–94.

    Article  PubMed  CAS  Google Scholar 

  152. Faber MJ, Dalinghaus M, Lankhuizen IM, Steendijk P, Hop WC, Schoemaker RG, et al. Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure-volume loops. Am J Physiol Heart Circ Physiol. 2006;291(4):H1580–6. Epub 2006/05/09.

    Article  CAS  PubMed  Google Scholar 

  153. Kreymborg K, Uchida S, Gellert P, Schneider A, Boettger T, Voswinckel R, et al. Identification of right heart-enriched genes in a murine model of chronic outflow tract obstruction. J Mol Cell Cardiol. 2010;49(4):598–605. Epub 2010/08/03.

    Article  CAS  PubMed  Google Scholar 

  154. Giardini A, Lovato L, Donti A, Formigari R, Oppido G, Gargiulo G, et al. Relation between right ventricular structural alterations and markers of adverse clinical outcome in adults with systemic right ventricle and either congenital complete (after Senning operation) or congenitally corrected transposition of the great arteries. Am J Cardiol. 2006;98(9):1277–82. Epub 2006/10/24.

    Article  PubMed  Google Scholar 

  155. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117(3):568–75. Epub 2007/03/03.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Mundhenke M, Schwartzkopff B, Stark P, Schulte HD, Strauer BE. Myocardial collagen type I and impaired left ventricular function under exercise in hypertrophic cardiomyopathy. Thorac Cardiovasc Surg. 2002;50(4):216–22. Epub 2002/08/08.

    Article  CAS  PubMed  Google Scholar 

  157. Jalil JE, Doering CW, Janicki JS, Pick R, Shroff SG, Weber KT. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res. 1989;64(6):1041–50. Epub 1989/06/01.

    Article  CAS  PubMed  Google Scholar 

  158. Wu Y, Cazorla O, Labeit D, Labeit S, Granzier H. Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol. 2000;32(12):2151–62. Epub 2000/12/13.

    Article  CAS  PubMed  Google Scholar 

  159. Schäfer S, Ellinghaus P, Janssen W, Kramer F, Lustig K, Milting H, et al. Chronic inhibition of phosphodiesterase 5 does not prevent pressure overload induced right ventricular remodelling. Cardiovasc Res. 2009;82(1):30–9.

    Article  PubMed  CAS  Google Scholar 

  160. Piao L, Fang YH, Parikh K, Ryan JJ, Toth PT, Archer SL. Cardiac glutaminolysis: a maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension. J Mol Med. 2013;91(10):1185–97. Epub 2013/06/25.

    Article  CAS  PubMed  Google Scholar 

  161. Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med. 2010;88(10):1011–20. Epub 2010/09/08.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Wright JL, Levy RD, Churg A. Pulmonary hypertension in chronic obstructive pulmonary disease: current theories of pathogenesis and their implications for treatment. Thorax. 2005;60(7):605–9. Epub 2005/07/05.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Seimetz M, Parajuli N, Pichl A, Veit F, Kwapiszewska G, Weisel FC, et al. Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice. Cell. 2011;147(2):293–305. Epub 2011/10/18.

    Article  CAS  PubMed  Google Scholar 

  164. Ferrer E, Peinado VI, Castaneda J, Prieto-Lloret J, Olea E, Gonzalez-Martin MC, et al. Effects of cigarette smoke and hypoxia on pulmonary circulation in the guinea pig. Eur J. 2011;38(3):617–27. Epub 2011/02/12.

    CAS  Google Scholar 

  165. Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365(9464):1046–53. Epub 2005/03/23.

    Article  PubMed  Google Scholar 

  166. Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Nieto FJ, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001;163(1):19–25. Epub 2001/02/24.

    Article  CAS  PubMed  Google Scholar 

  167. Dumitrascu R, Heitmann J, Seeger W, Weissmann N, Schulz R. Obstructive sleep apnea, oxidative stress and cardiovascular disease: lessons from animal studies. Oxid Med Cell Longev. 2013;2013:234631. Epub 2013/03/28.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  168. Sajkov D, McEvoy RD. Obstructive sleep apnea and pulmonary hypertension. Prog Cardiovasc Dis. 2009;51(5):363–70. Epub 2009/03/03.

    Article  PubMed  Google Scholar 

  169. Fagan KA. Selected contribution: pulmonary hypertension in mice following intermittent hypoxia. J Appl Physiol. 2001;90(6):2502–7. Epub 2001/05/18.

    CAS  PubMed  Google Scholar 

  170. Campen MJ, Shimoda LA, O’Donnell CP. Acute and chronic cardiovascular effects of intermittent hypoxia in C57BL/6J mice. J Appl Physiol. 2005;99(5):2028–35. Epub 2005/07/09.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Theo Schermuly PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Janssen, W., Schermuly, R.T., Kojonazarov, B. (2014). Experimental Models. In: Gaine, S., Naeije, R., Peacock, A. (eds) The Right Heart. Springer, London. https://doi.org/10.1007/978-1-4471-2398-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2398-9_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2397-2

  • Online ISBN: 978-1-4471-2398-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics